ASS1

Section Page

Introduction 1
LY/ I 5 4
Reading Words e 9
AVL FUDCHIONS . . oottt e e 13
ROtation ... 21
Sorting the Words o 26
DU DU« ottt e 33
AdL DOme . o e 36

I .o 37

T W

81 ASs1 INTRODUCTION 1

1. Introduction. This is a literate program which solves the problem set in Assignment one—text
processing.
This program is required to:

1.
2.

3.

6.

7.

Read the name of the text file from the console.

Read in a text file, not all at once. (This can be line by line, word by word or character by
character.)

The file content must be converted to a sequence of words, discarding punctuation and folding
all letters into lower case.

Store the unique words and maintain a count of each different word.

. The words should be ordered by decreasing count and, if there are multiple words with the same

count, alphabetically. (This ordering may be achieved as the words are read in, partially as the
words are read or at the end of all input processing.)

Output the first ten words in the sorted list, along with their counts.

Output the last ten words in the list, along with their counts.

We will start with the outline of the program.

using namespace std;

Headers 6)
Prototypes for functions 14)

The main program 4)
Implementation of functions 15)

(
(
(Global data 2)
(
(

2. For this program we will start by declaring the main global data structures that will be needed. These
will include storage for unique words, for which we will use a string pool, pool—an array of char in which
the words will be stored packed tightly together.

In addition to this we will need storage for the data related to each word. This could be maintained in an
array of structs or in a set of arrays—we will use the latter approach.

These arays are:

1.
2.
3.

wordStart, the starting position of each word in pool.
wordEnd , the ending position of each word in pool.
wordCount, the number of times that this word has been encountered in the text file.

We will also need to declare two constants, POOL_SIZE, the size of pool and MAX_WORD_COUNT, the maximum
number of unique words in the input text.

(Global data 2) =
const int POOL_SIZE = 500000;
const int MAX_WORD_COUNT = 50000;
char pool[POOL_SIZE];
int wordStart[MAX_WORD_COUNT];
int wordEnd [MAX_WORD_COUNT];
int wordCount|[MAX_WORD_COUNT];

See also section 3.

This code is used in section 1.

2 INTRODUCTION ASS1 83

3. To make the process of searching the words efficient we will organise the words in the form of an AVL
tree, ordered alphabetically. To do this I will need further arrays:

1. treeLeft, the index in these arrays of the left child of the current word.

2. treeRight, the index of the right child of the current word.

3. treeHeight, the depth of the current word.

The initialisation of treeLeft, treeRight and treeHeight will allow the use of index 0 to designate empty
links. This means that index 1 will be used to manage the first word in the pool.

We will also need to keep track of some global counters. These are:

1. numChars, the number of valid characters in pool.
2. numWords, the number of unique words.
3. root, the index of the word which is the root of the AVL tree.

Each of these variables is initialised to a suitable value. The treeLeft and treeRighht arrays are set to 0 for
all elements. We set the treeHeight[0] to the value —1, the remaining elements will be set to 0 as well. As a
result of this, empty nodes, for which their location, node, has the value 0 will return a treeHeight value of
—1, which is exactly what we want.

This hack removes the need for a chunk of special-case coding for empty leaf-nodes.

{Global data 2) +=
int treeLeft [MAX_WORD_COUNT] = {0};
int treeRight[MAX_WORD_COUNT] = {0};
int treeHeight [MAX_WORD_COUNT] = {—1};
int numChars = 0;
int numWords = 0;
int root = 0;

84 ASS1 MAIN 3

4. Main. Ok, let’s start writing main. The skeleton of the main program is as follows.
(The main program 4) =
int main()
{
(Variables of main 5)
(Open and validate the input file 7)
(Read the words 9)
(Sort the words 26)
{ Write the results 33)
(Finish up 36)

}

This code is used in section 1.

5. The first thing we need to do is declare the variables we need to input words. Let’s start with the
character array filename and the input stream fin.

(Variables of main 5) =
char filename[20];

ifstream fin;
See also section 8.

This code is used in section 4.

6. We need a couple of header files iostream for stream-based input and fstream for managing files.

(Headers 6) =
#include <iostream>
#include <fstream>
See also sections 10 and 25.

This code is used in section 1.

7. Now we can get the file opened and ready for input. We will prompt for the input file name using cerr
so that we can redirect the output without getting the prompt in the output file and so that we can see
the prompt even when we redirect standard output. We will then read in the file name and open an input
stream. We should test for errors too, I guess.

(Open and validate the input file 7) =
cerr < "Please enter the name of the input file:";
cin > filename;
fin.open(filename);
if (—fin) {
cerr < "Error opening file " < filename < ". Program will exit." < endl;
return 0;

}

This code is used in section 4.

8. We are now ready to start the program proper.

We need a character array word to assemble words from the input file into. We will assume that individual
words are never more than WORD_SIZE in length.
(Variables of main 5) +=

const int WORD_SIZE = 100;
char word [WORD_SIZE];

4 READING WORDS ASS1 89

9. Reading Words. The process of getting the words wil be performed in a loop containing a finite-state
machine. The file will be read one character at a time and the input character will be classified as:
alpha an alphabetic character;
space a character we can treat as a space;
other 66any other character which we will ignore.
The variable wordLen will be used to keep track of the length of the current word.
(Read the words 9) =
int wordLen = 0;
char inChar;
while (fin) {
fin.get (inChar);
if (isalpha(inChar)) {
(Process an alphabetic character 11)
}

else if (isspace(inChar)) {
(Process a space character 12)
}

}

This code is used in section 4.

10. We need another header for isalpha(), etc.

(Headers 6) +=
#include <cctype>

11. When we encounter a letter we need to force it to lower case and add it in to the current word.

(Process an alphabetic character 11) =
word [++wordLen]| = tolower (inChar);

This code is used in section 9.

12. When we encounter a space we need to do a bit more. First we record the word, if there is one, in the
AVL tree and then we reset wordLen ready to continue. Multiple spaces will not cause a problem as we will
only do something when we have a word we have not yet dealt with.
{ Process a space character 12) =
if (wordLen > 0) {
root = AVLinsert(root, word, wordLen);
wordLen = 0;

}

This code is used in section 9.

813 Ass1 AVL FUNCTIONS 5

13. AVL Functions. We will deal with the functions that are used to maintain the AVL-balanced tree
before proceding with the rest of main. Apart from AVLinsert we will also define the functions that it calls.
For each will we define both the prototype and the implementation.

14. Let us start with AVLinsert
(Prototypes for functions 14) =

int AVLinsert(int, char[],int);
See also sections 19, 21, 23, 27, 29, 31, and 34.

This code is used in section 1.

15. This function takes a word of specified length and inserts it into the AVL tree. If the curent node
is empty we create a new one and store the word in it. Otherwise we check to see whether word is is
alphabetically before, after or equal to the contents of node and proceed accordingly.

The implementation of the AVLinsert function is as follows:
(Implementation of functions 15) =

int AVLinsert(int node,char word[],int length)

if (node =0) {
(Add a word to the tree 16)

}

int test = compare Word (node, word, length);

if (test <0) {
treeLeft[node] = AVLinsert(treeLeft[node], word, length);
(Left insertion balance check 17);

else if (test >0) {
treeRight[node] = AVLinsert(treeRight [node], word, length);
(Right insertion balance check 18);

else {
wordCount[node]|++;

}

treeHeight [node] = maz (treeHeight [treeLeft[node]|, treeHeight [tree Right [node]]) + 1;
return node;

}

See also sections 20, 22, 24, 28, 30, 32, and 35.

This code is used in section 1.

6 AVL FUNCTIONS ASS1 816

16. When we add a new word to the tree we must set up an additional word in our int arrays and add
the word to the end of the sring pool. The new index is used as the return value of the AVLinsert function.
(Add a word to the tree 16) =

node = +numWords;

wordStart[node] = numChars + 1;

wordEnd [node] = numChars + length;

wordCount[node] = 1;

treeLeft[node] = 0;

treeRight [node] = 0;

treeHeight [node] = 0;

for (int i = 1; i < length; i++) pool[numChars + i) = word [i];

numChars += length;

return node;

This code is used in section 15.

17. After inserting a word we need to check and, if needed, restore the AVL balance. We start with the
left subtree insertion.

(Left insertion balance check 17) =
if ((treeHeight[treeLeft[node]] — treeHeight[treeRight[node]]) = 2) {
int test = compare Word (treeLeft[node], word, length);

if (test < 0) node = rotate_right(node);
else node = double_right (node);

}

This code is used in section 15.

18. And then the right subtree insertion.

(Right insertion balance check 18) =
if ((treeHeight [treeRight[node]| — treeHeight [treeLeft[node]]) = 2) {
int test = compare Word (treeRight [node], word, length);

if (test < 0) node = double_left (node);
else node = rotate_left(node);

}

This code is used in section 15.

19. The compareWord function has not yet been defined. Its prototype is as follows.

(Prototypes for functions 14) +=
int compareWord (int, char[], int);

820 Ass1 AVL FUNCTIONS 7

20. This function compares the word stored at the current node with the word and returns —1, 0 or 1
depending in this comparison.

(Implementation of functions 15) +=
int compareWord (int current,char word[],int length)
{
int clen = wordEnd[current] — wordStart[current] + 1;
int shorter = min(clen, length);
int offset = wordStart[current] — 1;
for (int ¢ = 1; i < shorter; i++)
if (word[i] < pool|offset +i]) return —1;
else if (wordl[i] > pool|offset + i]) return 1,
if (clen > length) return —1,
else if (clen < length) return 1;
return 0;

8 ROTATION ASS1 §21

21. Rotation. We now need the rotation functions, starting with the single rotations. First the proto-
types.
(Prototypes for functions 14) +=

int rotate_right (int);

int rotate_left (int);

22. In each of the single rotations the child of the current node replaces it as the local root and the current
node moves down to become one of its children. One child of the new local root is detached and reattached as
a child of the old root. Once the rotation has been completed we need to recompute the value of treeHeight
for the two nodes that we have changed.

(Implementation of functions 15) +=
int rotate_right (int node)

{

int k1 = treeLeft|node]; /* set k1 to the index of the currrent node’s left child */

treeLeft[node] = treeRight [k1]; /* move the right child of k1 to be the left child of node x/
treeRight [k1] = node; /* now attach the old root as the right child of k1 =/
treeHeight [node] = maz (treeHeight [treeLeft[node]|, treeHeight [tree Right [node]]) + 1;
treeHeight k1] = max (treeHeight [treeLeft[k1]], treeHeight [treeRight [k1]]) + 1;
return kiI; /* link the left child back up the tree. */

}

int rotate_left (int node)

{
int kI = treeRight[node];
treeRight [node] = treeLeft[k1];
treeLeft[k1] = node;
treeHeight [node] = maz (treeHeight [treeLeft|node]|, treeHeight [tree Right [node]]) + 1;
treeHeight k1] = max (treeHeight [treeLeft[k1]], treeHeight [treeRight [k1]]) + 1;
return k1 ;

}

23. We also need the double rotations. Prototypes, first.
(Prototypes for functions 14) +=

int double_right (int);

int double_left(int);

24. Double rotation is used when a single rotation is not enough to reinstate the AVL balance property.
The mechanics of double rotation should be clear from the implementation.

(Implementation of functions 15) +=
int double_right (int node)

treeLeft [node] = rotate_left (treeLeft[node]);
node = rotate_right (node);
return node;

}
int double_left (int node)

{
treeRight [node] = rotate_right (treeRight|node]);
node = rotate_left (node);
return node;

}

825 Ass1 ROTATION 9

25. we need another header file for strncmp.

(Headers 6) +=
#include <cstring>

10 SORTING THE WORDS ASS1 §26

26. Sorting the Words. This is a two-step process. First we perform an in-order traversal of our BST
tree to obtain a list of indices in alphabetical order. Then we perform a merge sort of this resulting array
in ascending order by wordCount. I use merge sort as it will preserve the existing alphabetical order we
obtained from the tree traversal.

Now the tree is finished with, we can use treeHeight[] to store the in-order traversal and, once we have
performed this step, we can use treeLeft|] as the scratch array for the merge sort.

This hack of reusing these, now redundant, arrays will save us a bit of memory.

(Sort the words 26) =
inOrder (root);
mergeSort (1, numWords);

This code is used in section 4.

27. The in-order traversal of the tree is accomplished by the inOrder function. This has a prototype of:

(Prototypes for functions 14) +=
void inOrder(int);

28. This recursive function traverses the tree and notes the node of the traversal order sequentially into
the treeHeight array. We will use the static int variable index to keep track of where we are storing the
index.

(Implementation of functions 15) +=

void inOrder(int node)

{
static int inder = 0;
if (node =0) return;
inOrder (treeLeft[node));
treeHeight [++indez] = node;
inOrder (treeRight [node));

}

29. We also need to code the mergeSort function. We start with the prototype.

(Prototypes for functions 14) +=
void mergeSort (int, int);

30. The implementation of mergeSort splits the array in two, recursively calling mergeSort on the halves.
It then calls merge to combine the two sorted halves into a sorted whole. The implementation proceeds as
follows:

(Implementation of functions 15) +=
void mergeSort(int left,int right)

if (left < right) {
int mid = (left + right)/2;
mergeSort (left, mid);
mergeSort(mid + 1, right);
merge (left, mid, mid + 1, right);
}

return;

}

831 Ass1 SORTING THE WORDS 11

31. We also need the merge function. Its prototype is:

(Prototypes for functions 14) +=
void merge(int, int, int, int);

32. This function takes two contiguous sorted sub arrays and merges them into the same piece of a scratch
array. It then copies the merged result back into the starting array.

As noted earlier we are using treeHeight as our data array and treeLeft as the scratch array.

The sections of the array to be merged are nominated by the two pairs of integers in the calling sequence.
We assume that treeHeight[l1 .. 2] and treeHeight[r1 .. r2] are sorted on entry and that treeHeight[l1 .. r2]
will be sorted on return.

The variables apos, bpos and cpos are used to track the current character postions in the left, right and
scratch arrays.

(Implementation of functions 15) +=
void merge(int [1,int [2,int r!, int r2)
{
int apos = 11;
int bpos = r1;
int cpos = 11;
while (apos < 12 A bpos < r2)
if (wordCount[treeHeight[apos]] > wordCount[tree Height[bpos]])
treeLeft [cpos++] = treeHeight[apos++];
else treeLeft[cpos++| = treeHeight [bpos++];
while (apos < 12) treeLeft[cpos++] = treeHeight [apos++];
while (bpos < r2) treeLeft[cpos++] = treeHeight [bpos++];
for (cpos = 11; cpos < r2; cpos++) treeHeight[cpos| = treeLeft[cpos];
return;

12 ouTpUT ASS1 833

33. Output. It is now time to write the results. We need the words and counts pointed to by the first
and last 10 entries in our sorted treeHeight array. I will use a function printWord to accomplish this for
each individual word.
(Write the results 33) =

cout < endl;

cout < "The first,10 words sorted alphabetically within frequency:" < endl;

for (int i =1; i <10; i++) printWord (i);

cout < endl;

cout < "The_last 10, words sorted alphabetically within frequency:" < endl;

for (int i = numWords — 9; ¢ < numWords; i++) printWord (i);

This code is used in section 4.

34. The printWord function is next, starting with the prototype.

(Prototypes for functions 14) +=
void printWord (int);

35. This function outputs a word from the string pool accompanied by its count.

(Implementation of functions 15) +=
void printWord (int word)

word = treeHeight[word];

cout < "The word:";

for (int ¢ = wordStart[word]; i < wordEnd[word]; i++) cout < poolli];
cout K "occurs,";

cout < wordCount[word] < " times." < endl;

836 AsSs1 ALL DONE 13

36. All Done. All that remains is to close the input file.

(Finish up 36) =
fin.close();

This code is used in section 4.

14 INDEX ASS1 8§37

37. Index. This index is automatically created. It lists all the variables used in the program and the
section(s) in which they are used. Underlined entries indicate where a variable is defined. The remaining
sections of this document are also created automatically.

apos: 32. rotate_left: 18, 21, 22, 24.

AVLinsert: 12, 13, 14, 15, 16. rotate_right: 17, 21, 22, 24.

bpos: 32. ri: 32.

cerr: 1. r2: 32.

cin: 7. shorter: 20.

clen: 20. std: 1.

close: 36. strnemp: 25.

coding hacks: 3, 26. test: 15, 17, 18.

compareWord: 15, 17, 18, 19, 20. tolower: 11.

cout: 33, 35. treeHeight: 3, 15, 16, 17, 18, 22, 26, 28, 32, 33, 35.
cpos: 32. treeLeft: 3, 15, 16, 17, 18, 22, 24, 26, 28, 32.
current: 20. treeRighht: 3.

double_left: 18, 23, 24. treeRight: 3, 15, 16, 17, 18, 22, 24, 28.
double_right: 17, 23, 24. word: 8, 11, 12, 15, 16, 17, 18, 20, 35.
endl: 7, 33, 35. WORD_SIZE: 8.

filename: 5, 7. wordCount: 2, 15, 16, 26, 32, 35.

fin: 5, 7,9, 36. wordEnd: 2, 16, 20, 35.

fstream: 6. wordLen: 9, 11, 12.

get: 9 wordStart: 2, 16, 20, 35.

i 16, 20, 33, 35.
ifstream: 5.

inChar: 9, 11.

index: 28.

inOrder: 26, 27, 28.
iostream: 6.

isalpha: 9, 10.

isspace: 9.

ki: 22.

left: 30.

length: 15, 16, 17, 18, 20.
1: 32.

2: 32.

main: 4, 13.

mazx: 15, 22.
MAX_WORD_COUNT: 2, 3.
merge: 30, 31, 32.
mergeSort: 26, 29, 30.
mid: 30.

min: 20.

node: 3, 15, 16, 17, 18, 22, 24, 28.
numChars: 3, 16.
numWords: 3, 16, 26, 33.
offset: 20.

open: 7.

pool: 2, 3, 16, 20, 35.
POOL_SIZE: 2.
printWord: 33, 34, 35.
right: 30.

root: 3, 12, 26.

ASS1 NAMES OF THE SECTIONS 15

(Add a word to the tree 16) Used in section 15.

(Finish up 36) Used in section 4.

(Global data 2,3) Used in section 1.

<Headers 6, 10, 25> Used in section 1.

(Implementation of functions 15, 20, 22, 24, 28, 30, 32, 35) Used in section 1.
(Left insertion balance check 17) Used in section 15.

(Open and validate the input file 7) Used in section 4.

(Process a space character 12) Used in section 9.

(Process an alphabetic character 11) Used in section 9.

(Prototypes for functions 14, 19, 21, 23, 27, 29, 31, 34) Used in section 1.
(Read the words 9) Used in section 4.

(Right insertion balance check 18) Used in section 15.

(Sort the words 26) Used in section 4.

<The main program 4> Used in section 1.

<Variables of main 5, 8> Used in section 4.

(Write the results 33) Used in section 4.

	Introduction
	Main
	Reading Words
	AVL Functions
	Rotation
	Sorting the Words
	Output
	All Done
	Index
	Names of the sections
	Add a word to the tree
	Finish up
	Global data
	Headers
	Implementation of functions
	Left insertion balance check
	Open and validate the input file
	Process a space character
	Process an alphabetic character
	Prototypes for functions
	Read the words
	Right insertion balance check
	Sort the words
	The main program
	Variables of main
	Write the results

