
EX2

Section Page
Introduction . 1 1
Main . 3 2
Functions . 11 4
Index . 17 5

§1 EX2 INTRODUCTION 1

1. Introduction. This is a literate program which solves the problem set in lab two—implementing a
heap.

We will start with the outline of the program. You may note that this is not much different from the first
example.

〈Headers 5 〉
using namespace std;

〈Prototypes for functions 12 〉
〈Global data 2 〉
〈The main program 3 〉
〈 Implementation of functions 13 〉

2. To start with we need to declare the heap , which will be an array of int. To avoid extra parameters
on the makeHeap and siftUp functions we will make the heap global. We also declare an integer value size
which will contain the current nimber of values in the heap, initially it will be zero. To make the program a
little more flexible we will use integer constants HEAP_SIZE for the size of the heap array.

〈Global data 2 〉 ≡
const int HEAP_SIZE = 100;
int heap [HEAP_SIZE];
int size = 0;

This code is used in section 1.

2 MAIN EX2 §3

3. Main. Ok, let’s start writing main . The skeleton of the main program is as follows.

〈The main program 3 〉 ≡
int main ()
{
〈Variables of main 4 〉
〈Open and validate the input file 6 〉
〈Read the file into the heap 7 〉
〈Convert the array into a heap 8 〉
〈Print the first five elements on the heap 9 〉
〈Finish and clean up 10 〉
}

This code is used in section 1.

4. The first thing we need to do is declare the variables we need to input words. Let’s start with the
character array filename and the input stream fin .

〈Variables of main 4 〉 ≡
char filename [20];

ifstreamfin ;

This code is used in section 3.

5. Hang on—we need a couple of header files iostream for stream-based input and fstream for managing
files.

〈Headers 5 〉 ≡
#include <iostream>

#include <fstream>

This code is used in section 1.

6. Right—now we can get the file opened, ready for input. We will prompt for the input file name using
cerr so that we can redirect the output without getting the prompt in the output file and so that we can see
the prompt even when we redirect standard output. We will then read in the file name and open an input
stream. We should test for errors too, I guess.

〈Open and validate the input file 6 〉 ≡
cerr � "Please enter the name of the input file: ";
cin � filename ;
fin .open (filename);
if (¬fin) {

cerr � "Error opening file " � filename � ". Program will exit." � endl ;
return 0;
}

This code is used in section 3.

7. We are now ready to do the main input loop. we can read the integer values from the input file straight
into the heap array, changing size as we go. Note that the loop has an empty body as we do all the processing
in the termination condition.

〈Read the file into the heap 7 〉 ≡
while (fin � heap [size ++]) ;

This code is used in section 3.

§8 EX2 MAIN 3

8. On with the main program. At this point we have stored everything in the heap array, Now we must
do the necesary work required to order the array into a heap. We do this via the function makeHeap .

〈Convert the array into a heap 8 〉 ≡
makeHeap();

This code is used in section 3.

9. Now that the heap array actually contains a heap, it only remains to print out the first five values.

〈Print the first five elements on the heap 9 〉 ≡
for (int i = 0; i < 5; i++) cout � heap [i]� " ";
cout � endl ;

This code is used in section 3.

10. To finish up we should close the input stream.

〈Finish and clean up 10 〉 ≡
fin .close ();

This code is used in section 3.

4 FUNCTIONS EX2 §11

11. Functions. We will declare our functions, including the prototypes, here.

12. Let’s start with makeHeap—first the prototype.

〈Prototypes for functions 12 〉 ≡
void makeHeap();

See also section 14.

This code is used in section 1.

13. And the implementation. makeHeap calls siftDown on each non-leaf member of the heap array,
working backwards towards heap [0], the top of the heap.

〈 Implementation of functions 13 〉 ≡
void makeHeap()
{
int i;

cerr � "In makeHeap " � size � endl ;
for (i = size/2; i ≥ 0; i−−) {

cerr � "siftDown " � i� " " � heap [i]� endl ;
siftDown (i);

}
return;
}

See also section 15.

This code is used in section 1.

14. All we need to do now is to code siftDown, a recursive function which puts element i into the correct
location in the heap array.

〈Prototypes for functions 12 〉 +≡
void siftDown (int);

15. siftDown works by comparing the value of the current element with those of its children, if any. If the
larger child value is greater than the value of its parent we swap the values and call siftDown, once again, on
the child. For arrays starting at zero the children of element i are stored in locations 2 ∗ i + 1 and 2 ∗ i + 2.
If, when siftDown is called we are already at a leaf then we simply return.

〈 Implementation of functions 13 〉 +≡
void siftDown (int current)
{
int child = 2 ∗ current + 1;

if (child ≥ size) return;
if (child + 1 < size ∧ heap [child] < heap [child + 1]) child ++;
if (heap [current] < heap [child]) {
〈Swap elements current and child 16 〉
siftDown (child);

}
return;
}

16. All that remains is to do the swap.

〈Swap elements current and child 16 〉 ≡
int temp = heap [current];

heap [current] = heap [child];
heap [child] = temp ;

This code is used in section 15.

§17 EX2 INDEX 5

17. Index. This index is automatically created. It lists all the variables used in the program and the
section(s) in which they are used. Underlined entries indicate where a variable is defined. The remaining
sections of this document are also created automatically.

cerr : 6, 13.
child : 15, 16.
cin : 6.
close : 10.
cout : 9.
current : 15, 16.
endl : 6, 9, 13.
filename : 4, 6.
fin : 4, 6, 7, 10.
fstream : 5.
heap : 2, 7, 8, 9, 13, 14, 15, 16.
HEAP_SIZE: 2.
i: 9, 13.
ifstream : 4.
iostream : 5.
main : 3.
makeHeap : 2, 8, 12, 13.
open : 6.
siftDown : 13, 14, 15.
siftUp : 2.
size : 2, 7, 13, 15.
std: 1.
temp : 16.

6 NAMES OF THE SECTIONS EX2

〈Convert the array into a heap 8 〉 Used in section 3.

〈Finish and clean up 10 〉 Used in section 3.

〈Global data 2 〉 Used in section 1.

〈Headers 5 〉 Used in section 1.

〈 Implementation of functions 13, 15 〉 Used in section 1.

〈Open and validate the input file 6 〉 Used in section 3.

〈Print the first five elements on the heap 9 〉 Used in section 3.

〈Prototypes for functions 12, 14 〉 Used in section 1.

〈Read the file into the heap 7 〉 Used in section 3.

〈Swap elements current and child 16 〉 Used in section 15.

〈The main program 3 〉 Used in section 1.

〈Variables of main 4 〉 Used in section 3.

	Introduction
	Main
	Functions
	Index
	Names of the sections
	Convert the array into a heap
	Finish and clean up
	Global data
	Headers
	Implementation of functions
	Open and validate the input file
	Print the first five elements on the heap
	Prototypes for functions
	Read the file into the heap
	Swap elements current and child
	The main program
	Variables of main

