EX5

Section Page

Introduction 1 1
D1 I 3 2 2
Store values in the table 7 4
Follow the chain e 11 5
Back to main 13 6
Index .o e 15 7

81 EX5 INTRODUCTION 1

1. Introduction. This is a literate program which solves the problem set in lab five—Hashing with
chaining.

We will start with the, by now familiar, outline of the program.

(Headers 4)

using namespace std;

(Global variables and types 6)

(Prototypes for the functions 9)
('The main program 2)
(Implementation of the functions 10)

2 MAIN EX5 §2

2. Main. Ok, let’s start writing main. The skeleton of the main program is as follows.
(The main program 2) =
int main()
{
(Variables of main 3)
{Open and validate the input file 5)
(Store values into the hash table 7)
(Report the results 13)
(Finish and clean up 14)

}

This code is used in section 1.

3. The first thing we need to do is declare the variables we need to input data. Let’s start with the
character array filename and the input stream fin.

(Variables of main 3) =
char filename[20];

ifstream fin;
See also section 8.

This code is used in section 2.

4.

(Headers 4) =
#include <iostream>
#include <fstream>

This code is used in section 1.

5. Right—mnow we can get the file opened, ready for input. We will prompt for the input file name using
cerr so that we can redirect the output without getting the prompt in the output file and so that we can see
the prompt even when we redirect standard output. We will then read in the file name and open an input
stream. We should test for errors too, I guess.

(Open and validate the input file 5) =
cerr K "Please_enter the name of the input file:";
cin > filename;
fin.open(filename);
if (~fin) {
cerr < "Error opening file " < filename < ". Program will exit." < endl;
return 0;

}

This code is used in section 2.

86 EX5 MAIN 3

6. Before we start reading the file we need to declare the data structure we are going to use to store our
hash table nodes. The bool variable, empty is used to track whether there is data stored in the current
node. If empty is false when we attempt to store a value in our hash table we wil need to use overflow chains
to enable us to store the extra data.

While we are here we will also define some global variables. We start with an array of hashNode which is the
starting hashArray and has size HASH_SIZE. In addition to this we need a couple of counters; emptyCount,
which will track the number of unused entries in hashArray, and longest which will record the length of the
longest chain.

(Global variables and types 6) =

struct hashNode {
int value;

bool empty
{true};
hashNode xnezt
{nullptr};
b
const int HASH_SIZE = 100;
hashNode hashTable[HASH_SIZE];
int emptyCount = HASH_SIZE;

int longest = 0;

This code is used in section 1.

4 STORE VALUES IN THE TABLE EX5 87

7. Store values in the table. We are now ready to do the main input loop. we can read the integer
values from the input file and store them in the hash table using the function, tableInsert.
(Store values into the hash table 7) =
while (fin > input) {
tableInsert (input);

}

This code is used in section 2.

8. We need to add input to our variables.

(Variables of main 3) +=
int input;

9. Ok—let’s actually implement the functions as we need them this time. First the prototype.

(Prototypes for the functions 9) =
void tablelnsert(int);
See also section 11.

This code is used in section 1.

10. And then the implementation. The function should determine the appropriate storage location and,
if this is empty store the incoming value.

In the event that this entry is already used we need to follow the chain to store the incoming value. We
will do this using the recursive function chainlnsert. The 1 as the last argument of chainlnsert is used to
track the length of the chain at this hash value.

(Implementation of the functions 10) =
void tablelnsert(int incoming)
{
int hash = incoming % HASH_SIZE;
if (hashTable[hash].empty) {
hashTable[hash].value = incoming;
hashTable[hash].empty = false;
emptyCount ——;
if (longest =0) longest = 1;
}
else hashTable[hash].next = chainInsert(incoming, hashTable[hash].next, 1);
return;
}
See also section 12.

This code is used in section 1.

811 EX5 FOLLOW THE CHAIN 5

11. Follow the chain. This is where things get interesting (and inefficient) as we are goint to use a linked
list of hashNode to store the overflow values. We implement this process with the recursive chainlInsert
function.

(Prototypes for the functions 9) +=
hashNode *chainInsert(int, hashNode x, int);

12. The implementation of the function involves following the chain down until the current node is empty.
At this point we create a new node, and store the incoming value into it. Note: we do not need to mess
with empty as any non-null hashNode will contain valid data automatically.

(Implementation of the functions 10) +=
hashNode *chainInsert(int incoming, hashNode xcurrent,int chainLength)
{
if (current = nullptr) {
current = new hashNode;
current-value = incoming;
if (chainLength = longest) longest++;
}
else current-next = chainlnsert(incoming, current-next, ++ chainLength);
return current;

6 BACK TO MAIN EX5 8§13

13. Back to main. All that remains is to report the statistics fot the hash table:

(Report the results 13) =
cout < "The number of empty slots,in the hash array =" < emptyCount < endl;
cout < "The_longest chain has a length o0f " < longest < endl;

This code is used in section 2.

14. We should also close our input file.

(Finish and clean up 14) =
fin.close();
return 0;

This code is used in section 2.

815 EX5 INDEX 7

15. Index. This index is automatically created. It lists all the variables used in the program and the
section(s) in which they are used. Underlined entries indicate where a variable is defined. The remaining
sections of this document are also created automatically.

cerr: b.
chainInsert: 10, 11, 12.
chainLength: 12.

cin: b.
close: 14.
cout: 13.

current: 12.

empty: 6, 10, 12.
emptyCount: 6, 10, 13.
endl: 5, 13.

false: 6, 10.
filename: 3, 5.

fin: 3,5, 7, 14.
hash: 10.
HASH_SIZE: 6, 10.
hashArray: 6.
hashNode: 6, 11, 12.
hashTable: 6, 10.
ifstream: 3.

incoming: 10, 12.

input: 7, 8.
longest: 6, 10, 12, 13.
main: 2.

nert: 6, 10, 12.
nullptr: 6, 12.
open: 5.

std: 1.

tableInsert: 7, 9, 10.
true: 6.

value: 6, 10, 12.

8 NAMES OF THE SECTIONS EX5

Finish and clean up 14) Used in section 2.

Global variables and types 6) Used in section 1.

Headers 4> Used in section 1.

Implementation of the functions 10, 12) Used in section 1.
Open and validate the input file 5) Used in section 2.
Prototypes for the functions 9, 11) Used in section 1.
Report the results 13) Used in section 2.

Store values into the hash table 7) Used in section 2.
The main program 2> Used in section 1.

Variables of main 3,8) Used in section 2.

o~~~ o~~~ o~~~

	Introduction
	Main
	Store values in the table
	Follow the chain
	Back to main
	Index
	Names of the sections
	Finish and clean up
	Global variables and types
	Headers
	Implementation of the functions
	Open and validate the input file
	Prototypes for the functions
	Report the results
	Store values into the hash table
	The main program
	Variables of main

