EXS8

Section Page

Introduction

Main

FUNCEIONS .

Index

1

T N

81 EXS8 INTRODUCTION 1

1. Introduction. This is a literate program which solves the problem set in lab eight—Dynamic stack
management.

We will start with the, by now familiar, outline of the program. The stack, along with its size and the
number of valid entries will be made global.

(Headers 4)

using namespace std;

int xstack;

int stackSize = 0;

int stackPointer = 0;
(Prototypes for functions 10)
('The main program 2)
(Implementation of functions 11)

2 MAIN EX8 §2

2. Main. OK, let’s start writing main. The skeleton of the main program is as follows.
(The main program 2) =
int main()
{
(Variables of main 3)
(Open the input file 5)
(Set up the initial stack 6)
(Do the main loop 7)
(Finish and clean up 9)

}

This code is used in section 1.

3. The first thing we need to do is declare the variables we need to input data. Let’s start with the
character array filename and the input stream fin.
(Variables of main 3) =
char filename[20];
ifstream fin;
See also section 8.

This code is used in section 2.

4.

(Headers 4) =
#include <iostream>
#include <fstream>
See also section 12.

This code is used in section 1.

5. Right—mnow we can get the file opened, ready for input. We will prompt for the input file name using
cerr so that we can redirect the output without getting the prompt in the output file and so that we can see
the prompt even when we redirect standard output. We will then read in the file name and open an input
stream. We should test for errors too, I guess.
(Open the input file 5) =
cerr <K "Please enter the name of the input file:";
cin > filename;
fin.open(filename);
if (=fin) {
cerr < "Error opening file " < filename < ". Program will exit." < endl;
return 0;

}

This code is used in section 2.

6. Before we start looping over the input we need to create an initial stack. The size of the stack will be
read from fin.
(Set up the initial stack 6) =

fin > stackSize;

stack = new int|[stackSize];

This code is used in section 2.

87 EXS MAIN 3

7. We can now proceed with the main loop. Each time round we read a command which will be either
“push” followed by an integer value or “pop”.
Note: The input command is identified by the simple expedient of looking at the second character of the
command—if this is a u’ we assume that command contains the word “push”, otherwise we assume it
contains “pop”. This hack saves doing a complete string comparison but runs the slight risk that it may
interpret erroneous input as a call to pop.
(Do the main loop 7) =
while (fin > command) {
if (command[l] = ’u’) {
fin > wvalue;
push (value);

}

else {
value = pop();
}

}

cout < "Stack_contains" < stackPointer < "_entries." < endl;

This code is used in section 2.

8. We need to declare command and value.

(Variables of main 3) +=
char command [20];
int value;

9. We should also close our input file.

(Finish and clean up 9) =
fin.close();
return 0;

This code is used in section 2.

4 FUNCTIONS EX8 8§10

10. Functions. There are only two functions required for this exercise, push and pop. We will declare
the prototypes first:

{ Prototypes for functions 10) =
void push (int);
int pop();

This code is used in section 1.

11. Now comes the implementation: The push function adds a value to the top of the stack and increments
stackPointer. If the stack is now full we double its size before we return.
Note: Rather than copy the entries in stack one at a time we can use memcpy to shift the values in one
go. This hack will result in a faster copy. The last parameter to memcpy is a byte count which is why the
multipler of 4 is used.
(Implementation of functions 11) =
void push (int value)
{
stack [stackPointer ++] = value;
if (stackPointer = stackSize) {
stackSize x= 2;
int xtemp = new int[stackSize];
memcepy (temp, stack, 4 x stackPointer);
delete[] stack;
stack = temp;
cout < "Stack_doubled, from " < stackPointer < " to," < stackSize < endl;

}

return;

}

See also section 13.

This code is used in section 1.

12. We need to add a header for memepy/().

(Headers 4) +=
#include <cstring>

13. The pop function decrements stackPointer and returns the value popped from the top of the stack. If
the stack is empty when pop is called we simply return 0.

(Implementation of functions 11) +=
int pop()

{

if (stackPointer = 0) return 0;
return stack|[—— stackPointer];

}

814 EXS8 INDEX 5

14. Index. This index is automatically created. It lists all the variables used in the program and the
section(s) in which they are used. Underlined entries indicate where a variable is defined. The remaining
sections of this document are also created automatically.

cerr: 9.

cn: o.

close: 9.
command: 7, 8.
cout: 7, 11.
endl: 5, 7, 11.

filename: 3, 5.
fin: 3,5,6, 7, 9.

hack: 7, 11.
ifstream: 3.
main: 2.
memcpy: 11, 12.
open: 5.

pop: 7, 10, 13.

push: 7, 10, 11.

stack: 1, 6, 11, 13.
stackPointer: 1, 7, 11, 13.
stackSize: 1, 6, 11.

std: 1.

temp: 11.
value: 7, 8, 11.

6 NAMES OF THE SECTIONS EXS8

(Do the main loop 7) Used in section 2.

(Finish and clean up 9) Used in section 2.

<Headers 4, 12> Used in section 1.

(Implementation of functions 11, 13) Used in section 1.
(Open the input file 5) Used in section 2.

(Prototypes for functions 10) Used in section 1.

(Set up the initial stack 6) Used in section 2.

(The main program 2) Used in section 1.

<Variables of main 3, 8> Used in section 2.

	Introduction
	Main
	Functions
	Index
	Names of the sections
	Do the main loop
	Finish and clean up
	Headers
	Implementation of functions
	Open the input file
	Prototypes for functions
	Set up the initial stack
	The main program
	Variables of main

