From ec3894ea380f694144c88219edbc5054e7ed2360 Mon Sep 17 00:00:00 2001 From: Manish Date: Sun, 23 Jul 2023 18:58:31 +1000 Subject: [PATCH] Solution --- Graphing Calculator.ipynb | 2226 +++++++++++++++++++++++++++++++++++++ Graphing Calculator.md | 1333 ++++++++++++++++++++++ output_11_0.png | Bin 0 -> 8905 bytes output_14_0.png | Bin 0 -> 9713 bytes output_17_0.png | Bin 0 -> 11105 bytes output_20_0.png | Bin 0 -> 11244 bytes output_23_0.png | Bin 0 -> 11599 bytes output_26_0.png | Bin 0 -> 12530 bytes output_29_1.png | Bin 0 -> 9293 bytes output_29_4.png | Bin 0 -> 9289 bytes output_29_7.png | Bin 0 -> 9278 bytes output_32_0.png | Bin 0 -> 19593 bytes output_38_0.png | Bin 0 -> 24943 bytes output_50_4.png | Bin 0 -> 19898 bytes output_53_0.png | Bin 0 -> 16381 bytes output_59_3.png | Bin 0 -> 14747 bytes output_62_2.png | Bin 0 -> 16752 bytes output_65_1.png | Bin 0 -> 90185 bytes output_71_0.png | Bin 0 -> 11154 bytes output_74_0.png | Bin 0 -> 23978 bytes output_80_2.png | Bin 0 -> 18616 bytes output_8_0.png | Bin 0 -> 7510 bytes 22 files changed, 3559 insertions(+) create mode 100644 Graphing Calculator.ipynb create mode 100644 Graphing Calculator.md create mode 100644 output_11_0.png create mode 100644 output_14_0.png create mode 100644 output_17_0.png create mode 100644 output_20_0.png create mode 100644 output_23_0.png create mode 100644 output_26_0.png create mode 100644 output_29_1.png create mode 100644 output_29_4.png create mode 100644 output_29_7.png create mode 100644 output_32_0.png create mode 100644 output_38_0.png create mode 100644 output_50_4.png create mode 100644 output_53_0.png create mode 100644 output_59_3.png create mode 100644 output_62_2.png create mode 100644 output_65_1.png create mode 100644 output_71_0.png create mode 100644 output_74_0.png create mode 100644 output_80_2.png create mode 100644 output_8_0.png diff --git a/Graphing Calculator.ipynb b/Graphing Calculator.ipynb new file mode 100644 index 0000000..ed6a73a --- /dev/null +++ b/Graphing Calculator.ipynb @@ -0,0 +1,2226 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "EsfO5Q92tL-6" + }, + "source": [ + "[![freeCodeCamp](https://cdn.freecodecamp.org/testable-projects-fcc/images/fcc_secondary.svg)](https://freecodecamp.org/)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "7ECUmRBSGOb4" + }, + "source": [ + "**Learn Foundational Math 2 by Building Cartesian Graphs**
\n", + "Each of these steps will lead you toward the Certification Project. Once you complete a step, click to expand the next step." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "szp5flp1fA8-" + }, + "source": [ + "# ↓ **Do this first** ↓\n", + "Copy this notebook to your own account by clicking the `File` button at the top, and then click `Save a copy in Drive`. You will need to be logged in to Google. The file will be in a folder called \"Colab Notebooks\" in your Google Drive." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "iNcDJ45bGtYk" + }, + "source": [ + "# Step 0 - Acquire the testing library" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "2_U7sdv4zaww" + }, + "source": [ + "Please run this code to get the library file from FreeCodeCamp. Each step will use this library to test your code. You do not need to edit anything; just run this code cell and wait a few seconds until it tells you to go on to the next step." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "id": "aDuDRHETG3Oy" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Requirement already satisfied: requests in /usr/local/lib/python3.8/dist-packages (2.31.0)\n", + "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.8/dist-packages (from requests) (3.2.0)\n", + "Requirement already satisfied: idna<4,>=2.5 in /usr/lib/python3/dist-packages (from requests) (2.8)\n", + "Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/lib/python3/dist-packages (from requests) (1.25.8)\n", + "Requirement already satisfied: certifi>=2017.4.17 in /usr/lib/python3/dist-packages (from requests) (2019.11.28)\n", + "\u001b[33mWARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv\u001b[0m\u001b[33m\n", + "\u001b[0m\n", + "\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip is available: \u001b[0m\u001b[31;49m23.1.2\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m23.2.1\u001b[0m\n", + "\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpython3 -m pip install --upgrade pip\u001b[0m\n", + "Code test Passed\n", + "Go on to the next step\n" + ] + } + ], + "source": [ + "# You may need to run this cell at the beginning of each new session\n", + "\n", + "!pip install requests\n", + "\n", + "# This will just take a few seconds\n", + "\n", + "import requests\n", + "\n", + "# Get the library from GitHub\n", + "url = 'https://raw.githubusercontent.com/edatfreecodecamp/python-math/main/math-code-test-b.py'\n", + "r = requests.get(url)\n", + "\n", + "# Save the library in a local working directory\n", + "with open('math_code_test_b.py', 'w') as f:\n", + " f.write(r.text)\n", + "\n", + "# Now you can import the library\n", + "import math_code_test_b as test\n", + "\n", + "# This will tell you if the code works\n", + "test.step01()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "ZWDxpIPUFfda" + }, + "source": [ + "# Step 1 - Cartesian Coordinates" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "eTWzFpChFltm" + }, + "source": [ + "Learn Cartesian coordinates by building a scatterplot game. The Cartesian plane is the classic x-y coordinate grid (invented by Ren$\\acute{e}$ DesCartes) where \"x\" is the horizontal axis and \"y\" is the vertical axis. Each (x,y) coordinate pair is a point on the graph. The point (0,0) is the \"origin.\" The x value tells how much to move right (positive) or left (negative) from the origin. The y value tells you how much you move up (positive) or down (negative) from the origin. Notice that you are importing `matplotlib` to create the graph. The following code just displays one quadrant of the Cartesian graph. Just run this code to see how Python displays a graph.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "id": "OGdjnZw0Fmf7" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi4AAAGiCAYAAADA0E3hAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAcw0lEQVR4nO3db2zdVf3A8U/b0VsItEzn2m0WKyiiAhturBYkiKk2gUz3wDjBbHPhj+AkuEZlY7CK6DoRyKIrLkwQH6ibEDDGLUOsLgapWdjWBGSDwMBNYwsT184iLWu/vweG+qvrYLf0z077eiX3wY7n3O+5Hkbf3H8tyLIsCwCABBSO9QYAAI6VcAEAkiFcAIBkCBcAIBnCBQBIhnABAJIhXACAZAgXACAZwgUASIZwAQCSkXe4/OEPf4h58+bF9OnTo6CgIH75y1++5Zpt27bFRz7ykcjlcvG+970v7r///iFsFQCY6PIOl66urpg5c2Y0NTUd0/wXXnghLrvssrjkkkuitbU1vvrVr8ZVV10VjzzySN6bBQAmtoK380sWCwoK4uGHH4758+cfdc6NN94Ymzdvjqeeeqp/7POf/3wcPHgwtm7dOtRLAwAT0KSRvkBLS0vU1tYOGKurq4uvfvWrR13T3d0d3d3d/X/u6+uLV155Jd75zndGQUHBSG0VABhGWZbFoUOHYvr06VFYODxvqx3xcGlra4vy8vIBY+Xl5dHZ2Rn//ve/48QTTzxiTWNjY9x6660jvTUAYBTs378/3v3udw/LfY14uAzFihUror6+vv/PHR0dcdppp8X+/fujtLR0DHcGAByrzs7OqKysjFNOOWXY7nPEw6WioiLa29sHjLW3t0dpaemgz7ZERORyucjlckeMl5aWChcASMxwvs1jxL/HpaamJpqbmweMPfroo1FTUzPSlwYAxpm8w+Vf//pXtLa2Rmtra0T85+POra2tsW/fvoj4z8s8ixYt6p9/7bXXxt69e+Mb3/hG7NmzJ+6+++74xS9+EcuWLRueRwAATBh5h8sTTzwR5513Xpx33nkREVFfXx/nnXderFq1KiIi/v73v/dHTETEe9/73ti8eXM8+uijMXPmzLjzzjvjRz/6UdTV1Q3TQwAAJoq39T0uo6WzszPKysqio6PDe1wAIBEj8fPb7yoCAJIhXACAZAgXACAZwgUASIZwAQCSIVwAgGQIFwAgGcIFAEiGcAEAkiFcAIBkCBcAIBnCBQBIhnABAJIhXACAZAgXACAZwgUASIZwAQCSIVwAgGQIFwAgGcIFAEiGcAEAkiFcAIBkCBcAIBnCBQBIhnABAJIhXACAZAgXACAZwgUASIZwAQCSIVwAgGQIFwAgGcIFAEiGcAEAkiFcAIBkCBcAIBnCBQBIhnABAJIhXACAZAgXACAZwgUASIZwAQCSIVwAgGQIFwAgGcIFAEiGcAEAkiFcAIBkCBcAIBnCBQBIhnABAJIhXACAZAgXACAZwgUASIZwAQCSIVwAgGQIFwAgGcIFAEiGcAEAkiFcAIBkCBcAIBnCBQBIhnABAJIhXACAZAgXACAZQwqXpqamqKqqipKSkqiuro7t27e/6fy1a9fGBz7wgTjxxBOjsrIyli1bFq+99tqQNgwATFx5h8umTZuivr4+GhoaYufOnTFz5syoq6uLl156adD5P/vZz2L58uXR0NAQu3fvjnvvvTc2bdoUN91009vePAAwseQdLnfddVdcffXVsWTJkvjQhz4U69evj5NOOinuu+++Qec//vjjceGFF8YVV1wRVVVV8alPfSouv/zyt3yWBgDgf+UVLj09PbFjx46ora397x0UFkZtbW20tLQMuuaCCy6IHTt29IfK3r17Y8uWLXHppZce9Trd3d3R2dk54AYAMCmfyQcOHIje3t4oLy8fMF5eXh579uwZdM0VV1wRBw4ciI997GORZVkcPnw4rr322jd9qaixsTFuvfXWfLYGAEwAI/6pom3btsXq1avj7rvvjp07d8ZDDz0Umzdvjttuu+2oa1asWBEdHR39t/3794/0NgGABOT1jMuUKVOiqKgo2tvbB4y3t7dHRUXFoGtuueWWWLhwYVx11VUREXHOOedEV1dXXHPNNbFy5cooLDyynXK5XORyuXy2BgBMAHk941JcXByzZ8+O5ubm/rG+vr5obm6OmpqaQde8+uqrR8RJUVFRRERkWZbvfgGACSyvZ1wiIurr62Px4sUxZ86cmDt3bqxduza6urpiyZIlERGxaNGimDFjRjQ2NkZExLx58+Kuu+6K8847L6qrq+O5556LW265JebNm9cfMAAAxyLvcFmwYEG8/PLLsWrVqmhra4tZs2bF1q1b+9+wu2/fvgHPsNx8881RUFAQN998c/ztb3+Ld73rXTFv3rz4zne+M3yPAgCYEAqyBF6v6ezsjLKysujo6IjS0tKx3g4AcAxG4ue331UEACRDuAAAyRAuAEAyhAsAkAzhAgAkQ7gAAMkQLgBAMoQLAJAM4QIAJEO4AADJEC4AQDKECwCQDOECACRDuAAAyRAuAEAyhAsAkAzhAgAkQ7gAAMkQLgBAMoQLAJAM4QIAJEO4AADJEC4AQDKECwCQDOECACRDuAAAyRAuAEAyhAsAkAzhAgAkQ7gAAMkQLgBAMoQLAJAM4QIAJEO4AADJEC4AQDKECwCQDOECACRDuAAAyRAuAEAyhAsAkAzhAgAkQ7gAAMkQLgBAMoQLAJAM4QIAJEO4AADJEC4AQDKECwCQDOECACRDuAAAyRAuAEAyhAsAkAzhAgAkQ7gAAMkQLgBAMoQLAJAM4QIAJEO4AADJEC4AQDKECwCQDOECACRDuAAAyRAuAEAyhhQuTU1NUVVVFSUlJVFdXR3bt29/0/kHDx6MpUuXxrRp0yKXy8WZZ54ZW7ZsGdKGAYCJa1K+CzZt2hT19fWxfv36qK6ujrVr10ZdXV0888wzMXXq1CPm9/T0xCc/+cmYOnVqPPjggzFjxoz4y1/+Eqeeeupw7B8AmEAKsizL8llQXV0d559/fqxbty4iIvr6+qKysjKuv/76WL58+RHz169fH9/73vdiz549ccIJJwxpk52dnVFWVhYdHR1RWlo6pPsAAEbXSPz8zuulop6entixY0fU1tb+9w4KC6O2tjZaWloGXfOrX/0qampqYunSpVFeXh5nn312rF69Onp7e496ne7u7ujs7BxwAwDIK1wOHDgQvb29UV5ePmC8vLw82traBl2zd+/eePDBB6O3tze2bNkSt9xyS9x5553x7W9/+6jXaWxsjLKysv5bZWVlPtsEAMapEf9UUV9fX0ydOjXuueeemD17dixYsCBWrlwZ69evP+qaFStWREdHR/9t//79I71NACABeb05d8qUKVFUVBTt7e0Dxtvb26OiomLQNdOmTYsTTjghioqK+sc++MEPRltbW/T09ERxcfERa3K5XORyuXy2BgBMAHk941JcXByzZ8+O5ubm/rG+vr5obm6OmpqaQddceOGF8dxzz0VfX1//2LPPPhvTpk0bNFoAAI4m75eK6uvrY8OGDfGTn/wkdu/eHdddd110dXXFkiVLIiJi0aJFsWLFiv751113Xbzyyitxww03xLPPPhubN2+O1atXx9KlS4fvUQAAE0Le3+OyYMGCePnll2PVqlXR1tYWs2bNiq1bt/a/YXffvn1RWPjfHqqsrIxHHnkkli1bFueee27MmDEjbrjhhrjxxhuH71EAABNC3t/jMhZ8jwsApGfMv8cFAGAsCRcAIBnCBQBIhnABAJIhXACAZAgXACAZwgUASIZwAQCSIVwAgGQIFwAgGcIFAEiGcAEAkiFcAIBkCBcAIBnCBQBIhnABAJIhXACAZAgXACAZwgUASIZwAQCSIVwAgGQIFwAgGcIFAEiGcAEAkiFcAIBkCBcAIBnCBQBIhnABAJIhXACAZAgXACAZwgUASIZwAQCSIVwAgGQIFwAgGcIFAEiGcAEAkiFcAIBkCBcAIBnCBQBIhnABAJIhXACAZAgXACAZwgUASIZwAQCSIVwAgGQIFwAgGcIFAEiGcAEAkiFcAIBkCBcAIBnCBQBIhnABAJIhXACAZAgXACAZwgUASIZwAQCSIVwAgGQIFwAgGcIFAEiGcAEAkiFcAIBkCBcAIBnCBQBIxpDCpampKaqqqqKkpCSqq6tj+/btx7Ru48aNUVBQEPPnzx/KZQGACS7vcNm0aVPU19dHQ0ND7Ny5M2bOnBl1dXXx0ksvvem6F198Mb72ta/FRRddNOTNAgATW97hctddd8XVV18dS5YsiQ996EOxfv36OOmkk+K+++476pre3t74whe+ELfeemucfvrpb3mN7u7u6OzsHHADAMgrXHp6emLHjh1RW1v73zsoLIza2tpoaWk56rpvfetbMXXq1LjyyiuP6TqNjY1RVlbWf6usrMxnmwDAOJVXuBw4cCB6e3ujvLx8wHh5eXm0tbUNuuaxxx6Le++9NzZs2HDM11mxYkV0dHT03/bv35/PNgGAcWrSSN75oUOHYuHChbFhw4aYMmXKMa/L5XKRy+VGcGcAQIryCpcpU6ZEUVFRtLe3Dxhvb2+PioqKI+Y///zz8eKLL8a8efP6x/r6+v5z4UmT4plnnokzzjhjKPsGACagvF4qKi4ujtmzZ0dzc3P/WF9fXzQ3N0dNTc0R888666x48skno7W1tf/26U9/Oi655JJobW313hUAIC95v1RUX18fixcvjjlz5sTcuXNj7dq10dXVFUuWLImIiEWLFsWMGTOisbExSkpK4uyzzx6w/tRTT42IOGIcAOCt5B0uCxYsiJdffjlWrVoVbW1tMWvWrNi6dWv/G3b37dsXhYW+kBcAGH4FWZZlY72Jt9LZ2RllZWXR0dERpaWlY70dAOAYjMTPb0+NAADJEC4AQDKECwCQDOECACRDuAAAyRAuAEAyhAsAkAzhAgAkQ7gAAMkQLgBAMoQLAJAM4QIAJEO4AADJEC4AQDKECwCQDOECACRDuAAAyRAuAEAyhAsAkAzhAgAkQ7gAAMkQLgBAMoQLAJAM4QIAJEO4AADJEC4AQDKECwCQDOECACRDuAAAyRAuAEAyhAsAkAzhAgAkQ7gAAMkQLgBAMoQLAJAM4QIAJEO4AADJEC4AQDKECwCQDOECACRDuAAAyRAuAEAyhAsAkAzhAgAkQ7gAAMkQLgBAMoQLAJAM4QIAJEO4AADJEC4AQDKECwCQDOECACRDuAAAyRAuAEAyhAsAkAzhAgAkQ7gAAMkQLgBAMoQLAJAM4QIAJEO4AADJEC4AQDKECwCQjCGFS1NTU1RVVUVJSUlUV1fH9u3bjzp3w4YNcdFFF8XkyZNj8uTJUVtb+6bzAQCOJu9w2bRpU9TX10dDQ0Ps3LkzZs6cGXV1dfHSSy8NOn/btm1x+eWXx+9///toaWmJysrK+NSnPhV/+9vf3vbmAYCJpSDLsiyfBdXV1XH++efHunXrIiKir68vKisr4/rrr4/ly5e/5fre3t6YPHlyrFu3LhYtWjTonO7u7uju7u7/c2dnZ1RWVkZHR0eUlpbms10AYIx0dnZGWVnZsP78zusZl56entixY0fU1tb+9w4KC6O2tjZaWlqO6T5effXVeP311+Md73jHUec0NjZGWVlZ/62ysjKfbQIA41Re4XLgwIHo7e2N8vLyAePl5eXR1tZ2TPdx4403xvTp0wfEz/9asWJFdHR09N/279+fzzYBgHFq0mhebM2aNbFx48bYtm1blJSUHHVeLpeLXC43ijsDAFKQV7hMmTIlioqKor29fcB4e3t7VFRUvOnaO+64I9asWRO//e1v49xzz81/pwDAhJfXS0XFxcUxe/bsaG5u7h/r6+uL5ubmqKmpOeq622+/PW677bbYunVrzJkzZ+i7BQAmtLxfKqqvr4/FixfHnDlzYu7cubF27dro6uqKJUuWRETEokWLYsaMGdHY2BgREd/97ndj1apV8bOf/Syqqqr63wtz8sknx8knnzyMDwUAGO/yDpcFCxbEyy+/HKtWrYq2traYNWtWbN26tf8Nu/v27YvCwv8+kfPDH/4wenp64rOf/eyA+2loaIhvfvObb2/3AMCEkvf3uIyFkfgcOAAwssb8e1wAAMaScAEAkiFcAIBkCBcAIBnCBQBIhnABAJIhXACAZAgXACAZwgUASIZwAQCSIVwAgGQIFwAgGcIFAEiGcAEAkiFcAIBkCBcAIBnCBQBIhnABAJIhXACAZAgXACAZwgUASIZwAQCSIVwAgGQIFwAgGcIFAEiGcAEAkiFcAIBkCBcAIBnCBQBIhnABAJIhXACAZAgXACAZwgUASIZwAQCSIVwAgGQIFwAgGcIFAEiGcAEAkiFcAIBkCBcAIBnCBQBIhnABAJIhXACAZAgXACAZwgUASIZwAQCSIVwAgGQIFwAgGcIFAEiGcAEAkiFcAIBkCBcAIBnCBQBIhnABAJIhXACAZAgXACAZwgUASIZwAQCSIVwAgGQIFwAgGcIFAEiGcAEAkiFcAIBkDClcmpqaoqqqKkpKSqK6ujq2b9/+pvMfeOCBOOuss6KkpCTOOeec2LJly5A2CwBMbHmHy6ZNm6K+vj4aGhpi586dMXPmzKirq4uXXnpp0PmPP/54XH755XHllVfGrl27Yv78+TF//vx46qmn3vbmAYCJpSDLsiyfBdXV1XH++efHunXrIiKir68vKisr4/rrr4/ly5cfMX/BggXR1dUVv/71r/vHPvrRj8asWbNi/fr1g16ju7s7uru7+//c0dERp512Wuzfvz9KS0vz2S4AMEY6OzujsrIyDh48GGVlZcNyn5PymdzT0xM7duyIFStW9I8VFhZGbW1ttLS0DLqmpaUl6uvrB4zV1dXFL3/5y6Nep7GxMW699dYjxisrK/PZLgBwHPjHP/4xNuFy4MCB6O3tjfLy8gHj5eXlsWfPnkHXtLW1DTq/ra3tqNdZsWLFgNg5ePBgvOc974l9+/YN2wNnaN6oZ89+jT1ncfxwFscX53H8eOMVk3e84x3Ddp95hctoyeVykcvljhgvKyvzD+FxorS01FkcJ5zF8cNZHF+cx/GjsHD4PsSc1z1NmTIlioqKor29fcB4e3t7VFRUDLqmoqIir/kAAEeTV7gUFxfH7Nmzo7m5uX+sr68vmpubo6amZtA1NTU1A+ZHRDz66KNHnQ8AcDR5v1RUX18fixcvjjlz5sTcuXNj7dq10dXVFUuWLImIiEWLFsWMGTOisbExIiJuuOGGuPjii+POO++Myy67LDZu3BhPPPFE3HPPPcd8zVwuFw0NDYO+fMTochbHD2dx/HAWxxfncfwYibPI++PQERHr1q2L733ve9HW1hazZs2K73//+1FdXR0RER//+Mejqqoq7r///v75DzzwQNx8883x4osvxvvf//64/fbb49JLLx22BwEATAxDChcAgLHgdxUBAMkQLgBAMoQLAJAM4QIAJOO4CZempqaoqqqKkpKSqK6uju3bt7/p/AceeCDOOuusKCkpiXPOOSe2bNkySjsd//I5iw0bNsRFF10UkydPjsmTJ0dtbe1bnh3HLt+/F2/YuHFjFBQUxPz580d2gxNIvmdx8ODBWLp0aUybNi1yuVyceeaZ/j01TPI9i7Vr18YHPvCBOPHEE6OysjKWLVsWr7322ijtdvz6wx/+EPPmzYvp06dHQUHBm/4Owjds27YtPvKRj0Qul4v3ve99Az6BfMyy48DGjRuz4uLi7L777sv+/Oc/Z1dffXV26qmnZu3t7YPO/+Mf/5gVFRVlt99+e/b0009nN998c3bCCSdkTz755CjvfPzJ9yyuuOKKrKmpKdu1a1e2e/fu7Itf/GJWVlaW/fWvfx3lnY8/+Z7FG1544YVsxowZ2UUXXZR95jOfGZ3NjnP5nkV3d3c2Z86c7NJLL80ee+yx7IUXXsi2bduWtba2jvLOx598z+KnP/1plsvlsp/+9KfZCy+8kD3yyCPZtGnTsmXLlo3yzsefLVu2ZCtXrsweeuihLCKyhx9++E3n7927NzvppJOy+vr67Omnn85+8IMfZEVFRdnWrVvzuu5xES5z587Nli5d2v/n3t7ebPr06VljY+Og8z/3uc9ll1122YCx6urq7Etf+tKI7nMiyPcs/tfhw4ezU045JfvJT34yUlucMIZyFocPH84uuOCC7Ec/+lG2ePFi4TJM8j2LH/7wh9npp5+e9fT0jNYWJ4x8z2Lp0qXZJz7xiQFj9fX12YUXXjii+5xojiVcvvGNb2Qf/vCHB4wtWLAgq6ury+taY/5SUU9PT+zYsSNqa2v7xwoLC6O2tjZaWloGXdPS0jJgfkREXV3dUedzbIZyFv/r1Vdfjddff31YfxPoRDTUs/jWt74VU6dOjSuvvHI0tjkhDOUsfvWrX0VNTU0sXbo0ysvL4+yzz47Vq1dHb2/vaG17XBrKWVxwwQWxY8eO/peT9u7dG1u2bPElqGNguH52j/lvhz5w4ED09vZGeXn5gPHy8vLYs2fPoGva2toGnd/W1jZi+5wIhnIW/+vGG2+M6dOnH/EPJ/kZylk89thjce+990Zra+so7HDiGMpZ7N27N373u9/FF77whdiyZUs899xz8eUvfzlef/31aGhoGI1tj0tDOYsrrrgiDhw4EB/72Mciy7I4fPhwXHvttXHTTTeNxpb5f472s7uzszP+/e9/x4knnnhM9zPmz7gwfqxZsyY2btwYDz/8cJSUlIz1diaUQ4cOxcKFC2PDhg0xZcqUsd7OhNfX1xdTp06Ne+65J2bPnh0LFiyIlStXxvr168d6axPOtm3bYvXq1XH33XfHzp0746GHHorNmzfHbbfdNtZbY4jG/BmXKVOmRFFRUbS3tw8Yb29vj4qKikHXVFRU5DWfYzOUs3jDHXfcEWvWrInf/va3ce65547kNieEfM/i+eefjxdffDHmzZvXP9bX1xcREZMmTYpnnnkmzjjjjJHd9Dg1lL8X06ZNixNOOCGKior6xz74wQ9GW1tb9PT0RHFx8YjuebwaylnccsstsXDhwrjqqqsiIuKcc86Jrq6uuOaaa2LlypVRWOi/30fL0X52l5aWHvOzLRHHwTMuxcXFMXv27Ghubu4f6+vri+bm5qipqRl0TU1NzYD5ERGPPvroUedzbIZyFhERt99+e9x2222xdevWmDNnzmhsddzL9yzOOuusePLJJ6O1tbX/9ulPfzouueSSaG1tjcrKytHc/rgylL8XF154YTz33HP98RgR8eyzz8a0adNEy9swlLN49dVXj4iTN4Iy86v6RtWw/ezO733DI2Pjxo1ZLpfL7r///uzpp5/OrrnmmuzUU0/N2trasizLsoULF2bLly/vn//HP/4xmzRpUnbHHXdku3fvzhoaGnwcepjkexZr1qzJiouLswcffDD7+9//3n87dOjQWD2EcSPfs/hfPlU0fPI9i3379mWnnHJK9pWvfCV75plnsl//+tfZ1KlTs29/+9tj9RDGjXzPoqGhITvllFOyn//859nevXuz3/zmN9kZZ5yRfe5znxurhzBuHDp0KNu1a1e2a9euLCKyu+66K9u1a1f2l7/8JcuyLFu+fHm2cOHC/vlvfBz661//erZ79+6sqakp3Y9DZ1mW/eAHP8hOO+20rLi4OJs7d272pz/9qf9/u/jii7PFixcPmP+LX/wiO/PMM7Pi4uLswx/+cLZ58+ZR3vH4lc9ZvOc978ki4ohbQ0PD6G98HMr378X/J1yGV75n8fjjj2fV1dVZLpfLTj/99Ow73/lOdvjw4VHe9fiUz1m8/vrr2Te/+c3sjDPOyEpKSrLKysrsy1/+cvbPf/5z9Dc+zvz+978f9N//b/z/v3jx4uziiy8+Ys2sWbOy4uLi7PTTT89+/OMf533dgizzXBkAkIYxf48LAMCxEi4AQDKECwCQDOECACRDuAAAyRAuAEAyhAsAkAzhAgAkQ7gAAMkQLgBAMoQLAJCM/wM9kKRvAVrZIAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Code test Passed\n", + "Go on to the next step\n" + ] + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "fig, ax = plt.subplots()\n", + "plt.show()\n", + "\n", + "# Just run this code to see a blank graph\n", + "import math_code_test_b as test\n", + "test.step01()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "i1mBd8gGFvBV" + }, + "source": [ + "# Step 2 - Cartesian Coordinates (Part 2)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "aylg20IGFvBW" + }, + "source": [ + "Here you will create a standard window but still not highlight each axis. Run this code once, then change the window size to 20 in each direction and run it again." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "id": "EKfFo4_EFvBX" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAGiCAYAAAASgEe5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAiNklEQVR4nO3de2xUdf7/8VeBdqDQToFehmoLrWhRUQRWavESkIa2YV1RlqjrKnUJrlggUFTACze/WC4uurII7kYLZiO4/gGuRo1YucSloCJdhAUCCJbbFEQ7AyhTaD+/P/w5caRcamd6+inPR3ISz5lPZ96HEeaZuTXKGGMEAABgqVZODwAAANAYxAwAALAaMQMAAKxGzAAAAKsRMwAAwGrEDAAAsBoxAwAArEbMAAAAqxEzAADAasQMAACwWkRjpqSkRDfeeKPi4uKUnJysoUOHaufOnSFrTp06paKiInXu3FkdOnTQsGHDVFVVFcmxAABACxLRmFm7dq2Kioq0YcMGrVq1SqdPn9bgwYN18uTJ4JoJEybonXfe0VtvvaW1a9fq0KFDuvvuuyM5FgAAaEGimvIXTR49elTJyclau3atbrvtNvl8PiUlJemNN97Q73//e0nSjh07dPXVV6u8vFw33XRTU40GAAAs1aYpb8zn80mSOnXqJEnatGmTTp8+rdzc3OCaHj16KD09/ZwxEwgEFAgEgvt1dXX69ttv1blzZ0VFRUX4DAAAQDgYY3T8+HGlpqaqVavGvVDUZDFTV1en8ePH6+abb1bPnj0lSV6vVzExMUpISAhZm5KSIq/XW+/1lJSUaMaMGZEeFwAANIH9+/fr8ssvb9R1NFnMFBUVaevWrfrkk08adT1TpkxRcXFxcN/n8yk9PV379+9XfHx8Y8cEAABNwO/3Ky0tTXFxcY2+riaJmTFjxujdd9/VunXrQurL4/GopqZG1dXVIc/OVFVVyePx1HtdLpdLLpfrrOPx8fHEDAAAlgnHW0Qi+mkmY4zGjBmjFStW6OOPP1ZGRkbI5X379lV0dLTKysqCx3bu3KnKykrl5OREcjQAANBCRPSZmaKiIr3xxht6++23FRcXF3wfjNvtVrt27eR2uzVy5EgVFxerU6dOio+P19ixY5WTk8MnmQAAwEWJ6Eezz/XUUWlpqQoLCyX9+KV5EydO1LJlyxQIBJSXl6eXX375nC8z/ZLf75fb7ZbP5+NlJgAALBHOx+8m/Z6ZSCBmAACwTzgfv/ndTAAAwGrEDAAAsBoxAwAArEbMAAAAqxEzAADAasQMAACwGjEDAACsRswAAACrETMAAMBqxAwAALAaMQMAAKxGzAAAAKsRMwAAwGrEDAAAsBoxAwAArEbMAAAAqxEzAADAasQMAACwGjEDAACsRswAAACrETMAAMBqxAwAALAaMQMAAKxGzAAAAKsRMwAAwGrEDAAAsBoxAwAArEbMAAAAqxEzAADAasQMAACwGjEDAACsRswAAACrETMAAMBqxAwAALAaMQMAAKwW0ZhZt26d7rjjDqWmpioqKkorV64MubywsFBRUVEhW35+fiRHAgAALUxEY+bkyZPq1auXFi5ceM41+fn5Onz4cHBbtmxZJEcCAAAtTJtIXnlBQYEKCgrOu8blcsnj8URyDAAA0II5/p6ZNWvWKDk5WVlZWRo9erSOHTt23vWBQEB+vz9kAwAAly5HYyY/P1+vv/66ysrKNGfOHK1du1YFBQWqra0958+UlJTI7XYHt7S0tCacGAAANDdRxhjTJDcUFaUVK1Zo6NCh51zz1Vdf6YorrtBHH32kQYMG1bsmEAgoEAgE9/1+v9LS0uTz+RQfHx/usQEAQAT4/X653e6wPH47/jLTz2VmZioxMVG7d+8+5xqXy6X4+PiQDQAAXLqaVcwcOHBAx44dU5cuXZweBQAAWCKin2Y6ceJEyLMse/fuVUVFhTp16qROnTppxowZGjZsmDwej/bs2aMnnnhC3bt3V15eXiTHAgAALUhEY+bzzz/XwIEDg/vFxcWSpBEjRmjRokXasmWLli5dqurqaqWmpmrw4MF69tln5XK5IjkWAABoQZrsDcCREs43EAEAgKbRYt8ADAAA0FDEDAAAsBoxAwAArEbMAAAAqxEzAADAasQMAACwGjEDAACsRswAAACrETMAAMBqxAwAALAaMQMAAKxGzAAAAKsRMwAAwGrEDAAAsBoxAwAArEbMAAAAqxEzAADAasQMAACwGjEDAACsRswAAACrETMAAMBqxAwAALAaMQMAAKxGzAAAAKsRMwAAwGrEDAAAsBoxAwAArEbMAAAAqxEzAADAasQMAACwGjEDAACsRswAAACrETMAAMBqxAwAALAaMQMAAKwW0ZhZt26d7rjjDqWmpioqKkorV64MudwYo6lTp6pLly5q166dcnNztWvXrkiOBAAAWpiIxszJkyfVq1cvLVy4sN7L586dq5deekmLFy/Wxo0b1b59e+Xl5enUqVORHAsAALQgbSJ55QUFBSooKKj3MmOMXnzxRT399NO68847JUmvv/66UlJStHLlSt17772RHA0AALQQjr1nZu/evfJ6vcrNzQ0ec7vdys7OVnl5+Tl/LhAIyO/3h2wAAODS5VjMeL1eSVJKSkrI8ZSUlOBl9SkpKZHb7Q5uaWlpEZ0TAAA0b9Z9mmnKlCny+XzBbf/+/U6PBAAAHORYzHg8HklSVVVVyPGqqqrgZfVxuVyKj48P2QAAwKXLsZjJyMiQx+NRWVlZ8Jjf79fGjRuVk5Pj1FgAAMAyEf0004kTJ7R79+7g/t69e1VRUaFOnTopPT1d48eP1//93//pyiuvVEZGhp555hmlpqZq6NChkRwLAAC0IBGNmc8//1wDBw4M7hcXF0uSRowYoSVLluiJJ57QyZMn9fDDD6u6ulq33HKLPvjgA7Vt2zaSYwEAgBYkyhhjnB6iMfx+v9xut3w+H++fAQDAEuF8/Lbu00wAAAA/R8wAAACrETMAAMBqxAwAALAaMQMAAKxGzAAAAKsRMwAAwGrEDAAAsBoxAwAArEbMAAAAqxEzAADAasQMAACwGjEDAACsRswAAACrETMAAMBqxAwAALAaMQMAAKxGzAAAAKsRMwAAwGrEDAAAsBoxAwAArEbMAAAAqxEzAADAasQMAACwGjEDAACsRswAAACrETMAAMBqxAwAALAaMQMAAKxGzAAAAKsRMwAAwGrEDAAAsBoxAwAArEbMAAAAqxEzAADAasQMAACwmuMxM336dEVFRYVsPXr0cHosAABgiTZODyBJ1157rT766KPgfps2zWIsAABggWZRDW3atJHH47motYFAQIFAILjv9/sjNRYAALCA4y8zSdKuXbuUmpqqzMxM3X///aqsrDzn2pKSErnd7uCWlpbWhJMCAIDmJsoYY5wc4P3339eJEyeUlZWlw4cPa8aMGTp48KC2bt2quLi4s9bX98xMWlqafD6f4uPjm3J0AADwK/n9frnd7rA8fjseM79UXV2trl27av78+Ro5cuQF14fzDwMAADSNcD5+N4uXmX4uISFBV111lXbv3u30KAAAwALNLmZOnDihPXv2qEuXLk6PAgAALOB4zDz22GNau3at9u3bp/Xr1+uuu+5S69atdd999zk9GgAAsIDjH80+cOCA7rvvPh07dkxJSUm65ZZbtGHDBiUlJTk9GgAAsIDjMbN8+XKnRwAAABZz/GUmAACAxiBmAACA1YgZAABgNWIGAABYjZgBAABWI2YAAIDViBkAAGA1YgYAAFiNmAEAAFYjZgAAgNWIGQAAYDViBgAAWI2YAQAAViNmAACA1YgZAABgNWIGAABYjZgBAABWI2YAAIDViBkAAGA1YgYAAFiNmAEAAFYjZgAAgNWIGQAAYDViBgAAWI2YAQAAViNmAACA1YgZAABgNWIGAABYjZgBAABWI2YAAIDViBkAAGA1YgYAAFiNmAEAAFYjZgAAgNWIGQAAYLVmETMLFy5Ut27d1LZtW2VnZ+vTTz91eiQAAGAJx2PmzTffVHFxsaZNm6YvvvhCvXr1Ul5eno4cOeL0aAAAwAJRxhjj5ADZ2dm68cYb9be//U2SVFdXp7S0NI0dO1aTJ08+a30gEFAgEAju+/1+paWlyefzKT4+vsnmBgAAv57f75fb7Q7L47ejz8zU1NRo06ZNys3NDR5r1aqVcnNzVV5eXu/PlJSUyO12B7e0tLSmGhcAADRDjsbMN998o9raWqWkpIQcT0lJkdfrrfdnpkyZIp/PF9z279/fFKMCAIBmqo3TAzSUy+WSy+VyegwAANBMOPrMTGJiolq3bq2qqqqQ41VVVfJ4PA5NBQAAbOJozMTExKhv374qKysLHqurq1NZWZlycnIcnAwAANjC8ZeZiouLNWLECP3mN79Rv3799OKLL+rkyZN66KGHnB4NAABYwPGYueeee3T06FFNnTpVXq9XN9xwgz744IOz3hQMAABQH8e/Z6axwvk5dQAA0DRazPfMAAAANBYxAwAArEbMAAAAqxEzAADAasQMAACwGjEDAACsRswAAACrETMAAMBqxAwAALAaMQMAAKxGzAAAAKsRMwAAwGrEDAAAsBoxAwAArEbMAAAAqxEzAADAasQMAACwGjEDAACsRswAAACrETMAAMBqxAwAALAaMQMAAKxGzAAAAKsRMwAAwGrEDAAAsBoxAwAArEbMAAAAqxEzAADAasQMAACwGjEDAACsRswAAACrETMAAMBqxAwAALAaMQMAAKxGzAAAAKs5GjPdunVTVFRUyDZ79mwnRwIAAJZp4/QAM2fO1KhRo4L7cXFxDk4DAABs43jMxMXFyePxOD0GAACwlOPvmZk9e7Y6d+6s3r17a968eTpz5sx51wcCAfn9/pANAABcuhx9ZmbcuHHq06ePOnXqpPXr12vKlCk6fPiw5s+ff86fKSkp0YwZM5pwSgAA0JxFGWNMOK9w8uTJmjNnznnXbN++XT169Djr+GuvvaY///nPOnHihFwuV70/GwgEFAgEgvt+v19paWny+XyKj49v3PAAAKBJ+P1+ud3usDx+hz1mjh49qmPHjp13TWZmpmJiYs46vm3bNvXs2VM7duxQVlbWRd1eOP8wAABA0wjn43fYX2ZKSkpSUlLSr/rZiooKtWrVSsnJyWGeCgAAtFSOvWemvLxcGzdu1MCBAxUXF6fy8nJNmDBBf/zjH9WxY0enxgIAAJZxLGZcLpeWL1+u6dOnKxAIKCMjQxMmTFBxcbFTIwEAAAs5FjN9+vTRhg0bnLp5AADQQjj+PTMAAACNQcwAAACrETMAAMBqxAwAALAaMQMAAKxGzAAAAKsRMwAAwGrEDAAAsBoxAwAArEbMAAAAqxEzAADAasQMAACwGjEDAACsRswAAACrETMAAMBqxAwAALAaMQMAAKxGzAAAAKsRMwAAwGrEDAAAsBoxAwAArEbMAAAAqxEzAADAasQMAACwGjEDAACsRswAAACrETMAAMBqxAwAALAaMQMAAKxGzAAAAKsRMwAAwGrEDAAAsBoxAwAArEbMAAAAqxEzAADAahGLmVmzZql///6KjY1VQkJCvWsqKys1ZMgQxcbGKjk5WY8//rjOnDkTqZEAAEAL1CZSV1xTU6Phw4crJydHr7766lmX19bWasiQIfJ4PFq/fr0OHz6sBx98UNHR0XruueciNRYAAGhhoowxJpI3sGTJEo0fP17V1dUhx99//3399re/1aFDh5SSkiJJWrx4sSZNmqSjR48qJibmoq7f7/fL7XbL5/MpPj4+3OMDAIAICOfjt2PvmSkvL9d1110XDBlJysvLk9/v17Zt2875c4FAQH6/P2QDAACXLsdixuv1hoSMpOC+1+s958+VlJTI7XYHt7S0tIjOCQAAmrcGxczkyZMVFRV13m3Hjh2RmlWSNGXKFPl8vuC2f//+iN4eAABo3hr0BuCJEyeqsLDwvGsyMzMv6ro8Ho8+/fTTkGNVVVXBy87F5XLJ5XJd1G0AAICWr0Exk5SUpKSkpLDccE5OjmbNmqUjR44oOTlZkrRq1SrFx8frmmuuCcttAACAli9iH82urKzUt99+q8rKStXW1qqiokKS1L17d3Xo0EGDBw/WNddcowceeEBz586V1+vV008/raKiIp55AQAAFy1iH80uLCzU0qVLzzq+evVqDRgwQJL09ddfa/To0VqzZo3at2+vESNGaPbs2WrT5uIbi49mAwBgn3A+fkf8e2YijZgBAMA+LeJ7ZgAAAMKBmAEAAFYjZgAAgNWIGQAAYDViBgAAWI2YAQAAViNmAACA1YgZAABgNWIGAABYjZgBAABWI2YAAIDViBkAAGA1YgYAAFiNmAEAAFYjZgAAgNWIGQAAYDViBgAAWI2YAQAAViNmAACA1YgZAABgNWIGAABYjZgBAABWI2YAAIDViBkAAGA1YgYAAFiNmAEAAFYjZgAAgNWIGQAAYDViBgAAWI2YAQAAViNmAACA1YgZAABgNWIGAABYjZgBAABWI2YAAIDVIhYzs2bNUv/+/RUbG6uEhIR610RFRZ21LV++PFIjAQCAFqhNpK64pqZGw4cPV05Ojl599dVzristLVV+fn5w/1zhAwAAUJ+IxcyMGTMkSUuWLDnvuoSEBHk8nkiNAQAAWjjH3zNTVFSkxMRE9evXT6+99pqMMeddHwgE5Pf7QzYAAHDpitgzMxdj5syZuv322xUbG6sPP/xQjz76qE6cOKFx48ad82dKSkqCz/oAAABEmQs9FfIzkydP1pw5c867Zvv27erRo0dwf8mSJRo/fryqq6sveP1Tp05VaWmp9u/ff841gUBAgUAguO/3+5WWliafz6f4+PgLnwQAAHCc3++X2+0Oy+N3g56ZmThxogoLC8+7JjMz81cPk52drWeffVaBQEAul6veNS6X65yXAQCAS0+DYiYpKUlJSUmRmkUVFRXq2LEjsQIAAC5axN4zU1lZqW+//VaVlZWqra1VRUWFJKl79+7q0KGD3nnnHVVVVemmm25S27ZttWrVKj333HN67LHHIjUSAABogSIWM1OnTtXSpUuD+71795YkrV69WgMGDFB0dLQWLlyoCRMmyBij7t27a/78+Ro1alSkRgIAAC1Qg94A3ByF8w1EAACgaYTz8dvx75kBAABoDGIGAABYjZgBAABWI2YAAIDViBkAAGA1YgYAAFiNmAEAAFYjZgAAgNWIGQAAYDViBgAAWI2YAQAAViNmAACA1YgZAABgNWIGAABYjZgBAABWI2YAAIDViBkAAGA1YgYAAFiNmAEAAFYjZgAAgNWIGQAAYDViBgAAWI2YAQAAViNmAACA1YgZAABgNWIGAABYjZgBAABWI2YAAIDViBkAAGA1YgYAAFiNmAEAAFYjZgAAgNWIGQAAYDViBgAAWI2YAQAAViNmAACA1SIWM/v27dPIkSOVkZGhdu3a6YorrtC0adNUU1MTsm7Lli269dZb1bZtW6WlpWnu3LmRGgkAALRAbSJ1xTt27FBdXZ1eeeUVde/eXVu3btWoUaN08uRJPf/885Ikv9+vwYMHKzc3V4sXL9aXX36pP/3pT0pISNDDDz8cqdEAAEALEmWMMU11Y/PmzdOiRYv01VdfSZIWLVqkp556Sl6vVzExMZKkyZMna+XKldqxY0e91xEIBBQIBIL7Pp9P6enp2r9/v+Lj4yN/EgAAoNH8fr/S0tJUXV0tt9vdqOuK2DMz9fH5fOrUqVNwv7y8XLfddlswZCQpLy9Pc+bM0XfffaeOHTuedR0lJSWaMWPGWcfT0tIiMzQAAIiYY8eO2RMzu3fv1oIFC4IvMUmS1+tVRkZGyLqUlJTgZfXFzJQpU1RcXBzcr66uVteuXVVZWdnoPwyb/FS0l9ozUpw3530p4Lw570vBT6+s/PxJjl+rwTEzefJkzZkz57xrtm/frh49egT3Dx48qPz8fA0fPlyjRo1q+JQ/43K55HK5zjrudrsvqf8JfhIfH895X0I470sL531puVTPu1Wrxn8WqcExM3HiRBUWFp53TWZmZvC/Dx06pIEDB6p///76+9//HrLO4/Goqqoq5NhP+x6Pp6GjAQCAS1CDYyYpKUlJSUkXtfbgwYMaOHCg+vbtq9LS0rPqKycnR0899ZROnz6t6OhoSdKqVauUlZVV70tMAAAAvxSx75k5ePCgBgwYoPT0dD3//PM6evSovF6vvF5vcM0f/vAHxcTEaOTIkdq2bZvefPNN/fWvfw15T8yFuFwuTZs2rd6XnloyzpvzvhRw3pz3pYDzbvx5R+yj2UuWLNFDDz1U72U/v8ktW7aoqKhIn332mRITEzV27FhNmjQpEiMBAIAWqEm/ZwYAACDc+N1MAADAasQMAACwGjEDAACsRswAAACrWRsz+/bt08iRI5WRkaF27drpiiuu0LRp01RTUxOybsuWLbr11lvVtm1bpaWlae7cuQ5NHD6zZs1S//79FRsbq4SEhHrXREVFnbUtX768aQcNs4s578rKSg0ZMkSxsbFKTk7W448/rjNnzjTtoBHWrVu3s+7b2bNnOz1W2C1cuFDdunVT27ZtlZ2drU8//dTpkSJu+vTpZ923P/829ZZi3bp1uuOOO5SamqqoqCitXLky5HJjjKZOnaouXbqoXbt2ys3N1a5du5wZNowudN6FhYVn3f/5+fnODBsmJSUluvHGGxUXF6fk5GQNHTpUO3fuDFlz6tQpFRUVqXPnzurQoYOGDRt21hfqXoi1MbNjxw7V1dXplVde0bZt2/TCCy9o8eLFevLJJ4Nr/H6/Bg8erK5du2rTpk2aN2+epk+fftY3EdumpqZGw4cP1+jRo8+7rrS0VIcPHw5uQ4cObZoBI+RC511bW6shQ4aopqZG69ev19KlS7VkyRJNnTq1iSeNvJkzZ4bct2PHjnV6pLB68803VVxcrGnTpumLL75Qr169lJeXpyNHjjg9WsRde+21IfftJ5984vRIYXfy5En16tVLCxcurPfyuXPn6qWXXtLixYu1ceNGtW/fXnl5eTp16lQTTxpeFzpvScrPzw+5/5ctW9aEE4bf2rVrVVRUpA0bNmjVqlU6ffq0Bg8erJMnTwbXTJgwQe+8847eeustrV27VocOHdLdd9/dsBsyLcjcuXNNRkZGcP/ll182HTt2NIFAIHhs0qRJJisry4nxwq60tNS43e56L5NkVqxY0aTzNJVznfd7771nWrVqZbxeb/DYokWLTHx8fMj/A7br2rWreeGFF5weI6L69etnioqKgvu1tbUmNTXVlJSUODhV5E2bNs306tXL6TGa1C//raqrqzMej8fMmzcveKy6utq4XC6zbNkyByaMjPr+jR4xYoS58847HZmnqRw5csRIMmvXrjXG/HjfRkdHm7feeiu4Zvv27UaSKS8vv+jrtfaZmfr4fL6Q375ZXl6u2267TTExMcFjeXl52rlzp7777jsnRmxSRUVFSkxMVL9+/fTaa6+FfFlhS1ReXq7rrrsu+JvXpR/vb7/fr23btjk4WfjNnj1bnTt3Vu/evTVv3rwW9VJaTU2NNm3apNzc3OCxVq1aKTc3V+Xl5Q5O1jR27dql1NRUZWZm6v7771dlZaXTIzWpvXv3yuv1htz/brdb2dnZl8T9v2bNGiUnJysrK0ujR4/WsWPHnB4prHw+nyQFH6s3bdqk06dPh9zfPXr0UHp6eoPu7wb/bqbmavfu3VqwYIGef/754DGv16uMjIyQdT890Hm93hb9+59mzpyp22+/XbGxsfrwww/16KOP6sSJExo3bpzTo0WM1+sNCRkp9P5uKcaNG6c+ffqoU6dOWr9+vaZMmaLDhw9r/vz5To8WFt98841qa2vrvS937Njh0FRNIzs7W0uWLFFWVpYOHz6sGTNm6NZbb9XWrVsVFxfn9HhN4qe/q/Xd/y3p73F98vPzdffddysjI0N79uzRk08+qYKCApWXl6t169ZOj9dodXV1Gj9+vG6++Wb17NlT0o/3d0xMzFnvg2zo/d3snpmZPHlyvW9e/fn2y3/QDh48qPz8fA0fPlyjRo1yaPLG+TXnfT7PPPOMbr75ZvXu3VuTJk3SE088oXnz5kXwDH6dcJ+3rRry51BcXKwBAwbo+uuv1yOPPKK//OUvWrBggQKBgMNngcYqKCjQ8OHDdf311ysvL0/vvfeeqqur9a9//cvp0dAE7r33Xv3ud7/Tddddp6FDh+rdd9/VZ599pjVr1jg9WlgUFRVp69atEfkwSrN7ZmbixIkqLCw875rMzMzgfx86dEgDBw5U//79z3pjr8fjOesd0T/tezye8AwcJg0974bKzs7Ws88+q0Ag0Kx+mVk4z9vj8Zz1iZfmen//UmP+HLKzs3XmzBnt27dPWVlZEZiuaSUmJqp169b1/t1t7vdjuCUkJOiqq67S7t27nR6lyfx0H1dVValLly7B41VVVbrhhhscmsoZmZmZSkxM1O7duzVo0CCnx2mUMWPG6N1339W6det0+eWXB497PB7V1NSouro65NmZhv59b3Yxk5SUpKSkpItae/DgQQ0cOFB9+/ZVaWmpWrUKfaIpJydHTz31lE6fPq3o6GhJ0qpVq5SVldXsXmJqyHn/GhUVFerYsWOzChkpvOedk5OjWbNm6ciRI0pOTpb04/0dHx+va665Jiy3ESmN+XOoqKhQq1atgudsu5iYGPXt21dlZWXBT+DV1dWprKxMY8aMcXa4JnbixAnt2bNHDzzwgNOjNJmMjAx5PB6VlZUF48Xv92vjxo0X/ARnS3PgwAEdO3YsJOpsY4zR2LFjtWLFCq1Zs+ast3707dtX0dHRKisr07BhwyRJO3fuVGVlpXJychp0Q1Y6cOCA6d69uxk0aJA5cOCAOXz4cHD7SXV1tUlJSTEPPPCA2bp1q1m+fLmJjY01r7zyioOTN97XX39tNm/ebGbMmGE6dOhgNm/ebDZv3myOHz9ujDHm3//+t/nHP/5hvvzyS7Nr1y7z8ssvm9jYWDN16lSHJ2+cC533mTNnTM+ePc3gwYNNRUWF+eCDD0xSUpKZMmWKw5OHz/r1680LL7xgKioqzJ49e8w///lPk5SUZB588EGnRwur5cuXG5fLZZYsWWL+97//mYcfftgkJCSEfFKtJZo4caJZs2aN2bt3r/nPf/5jcnNzTWJiojly5IjTo4XV8ePHg39/JZn58+ebzZs3m6+//toYY8zs2bNNQkKCefvtt82WLVvMnXfeaTIyMswPP/zg8OSNc77zPn78uHnsscdMeXm52bt3r/noo49Mnz59zJVXXmlOnTrl9Oi/2ujRo43b7TZr1qwJeZz+/vvvg2seeeQRk56ebj7++GPz+eefm5ycHJOTk9Og27E2ZkpLS42keref++9//2tuueUW43K5zGWXXWZmz57t0MThM2LEiHrPe/Xq1cYYY95//31zww03mA4dOpj27dubXr16mcWLF5va2lpnB2+kC523Mcbs27fPFBQUmHbt2pnExEQzceJEc/r0aeeGDrNNmzaZ7Oxs43a7Tdu2bc3VV19tnnvuOav/sTuXBQsWmPT0dBMTE2P69etnNmzY4PRIEXfPPfeYLl26mJiYGHPZZZeZe+65x+zevdvpscJu9erV9f5dHjFihDHmx49nP/PMMyYlJcW4XC4zaNAgs3PnTmeHDoPznff3339vBg8ebJKSkkx0dLTp2rWrGTVqlPUBf67H6dLS0uCaH374wTz66KOmY8eOJjY21tx1110hT0xcjKj/f2MAAABWanafZgIAAGgIYgYAAFiNmAEAAFYjZgAAgNWIGQAAYDViBgAAWI2YAQAAViNmAACA1YgZAABgNWIGAABYjZgBAABW+39cpCOHTOFskAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " \n", + "Code test passed\n", + "Go on to the next step\n" + ] + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "fig, ax = plt.subplots()\n", + "\n", + "# Only change the numbers in the next line:\n", + "plt.axis([-20,20,-20,20])\n", + "\n", + "plt.show()\n", + "\n", + "\n", + "# Only change code above this line\n", + "import math_code_test_b as test\n", + "test.step02(In[-1].split('# Only change code above this line')[0])" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "MYQL57cD2ejS" + }, + "source": [ + "# Step 3 - Graph Dimensions" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "b2k229tOz9YQ" + }, + "source": [ + "When you look at this code, you can see how Python sets up window dimensions. You will also notice that it is easier and more organized to define the dimensions as variables. Run the code, then change just the `xmax` value to 20 and run it again to see the difference." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "id": "uXvHo-5a2Zi_" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAGiCAYAAAAP/nkiAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAlXklEQVR4nO3df3DU9YH/8dcGyIZIdiGQZBMJIUFLoAhokBCuVThyBI+zohkHqUqwSE8u0ErQShx+CNQL/mo5ldO7OS/xpqVVZhR/jOUOg8B4CaChuRYGMoQC4Uc2IDa7JR6bkHzuD79svwtJJGWTTzbv52PmM8Pns+/P7ns/s8M+57Of3Tgsy7IEAABgkCi7JwAAANDTCCAAAGAcAggAABiHAAIAAMYhgAAAgHEIIAAAYBwCCAAAGIcAAgAAxiGAAACAcQggAABgnG4NoN27d+vuu+9WSkqKHA6Htm7dGnK7ZVlavXq1kpOTNXDgQOXm5urIkSPfeL+bNm3SyJEjFRMTo+zsbO3bt6+bngEAAOiLujWAmpqaNGHCBG3atKnd259//nm9/PLLev3117V3717dcMMNysvL08WLFzu8z7feektFRUVas2aN9u/frwkTJigvL09nz57trqcBAAD6GEdP/TFUh8Ohd999V3PmzJH09dmflJQULV++XE888YQkyefzKSkpSWVlZXrggQfavZ/s7GzdfvvtevXVVyVJbW1tSk1N1dKlS7VixYqeeCoAACDC9bfrgY8dOyav16vc3NzgNrfbrezsbFVWVrYbQM3NzaqqqlJxcXFwW1RUlHJzc1VZWdnhYwUCAQUCgeB6W1ubvvzySw0dOlQOhyNMzwgAAHQny7L0pz/9SSkpKYqKur4PsWwLIK/XK0lKSkoK2Z6UlBS87UpffPGFWltb293n8OHDHT5WSUmJ1q5de50zBgAAvcHJkyc1fPjw67oP2wKoJxUXF6uoqCi47vP5NGLECJ08eVIul8vGmQEAgGvl9/uVmpqquLi4674v2wLI4/FIkhoaGpScnBzc3tDQoIkTJ7a7z7Bhw9SvXz81NDSEbG9oaAjeX3ucTqecTudV210uFwEEAECECcflK7b9DlB6ero8Ho/Ky8uD2/x+v/bu3aucnJx294mOjlZWVlbIPm1tbSovL+9wHwAAgCt16xmgCxcuqLa2Nrh+7NgxVVdXKz4+XiNGjNDjjz+un/70p7r55puVnp6uVatWKSUlJfhNMUmaMWOG7r33Xi1ZskSSVFRUpIKCAk2aNEmTJ0/Wxo0b1dTUpEceeaQ7nwoAAOhDujWAPv/8c02fPj24fvk6nIKCApWVleknP/mJmpqa9MMf/lCNjY36zne+o23btikmJia4z9GjR/XFF18E1+fOnatz585p9erV8nq9mjhxorZt23bVhdEAAAAd6bHfAepN/H6/3G63fD4f1wABABAhwvn+zd8CAwAAxiGAAACAcQggAABgHAIIAAAYhwACAADGIYAAAIBxCCAAAGAcAggAABiHAAIAAMYhgAAAgHEIIAAAYBwCCAAAGIcAAgAAxiGAAACAcQggAABgHAIIAAAYhwACAADGIYAAAIBxCCAAAGAcAggAABiHAAIAAMYhgAAAgHEIIAAAYBwCCAAAGIcAAgAAxiGAAACAcQggAABgHAIIAAAYhwACAADGIYAAAIBxCCAAAGAcAggAABiHAAIAAMYhgAAAgHEIIAAAYBzbA2jkyJFyOBxXLYWFhe2OLysru2psTExMD88aAABEsv52T+Czzz5Ta2trcP3AgQP6m7/5G91///0d7uNyuVRTUxNcdzgc3TpHAADQt9geQAkJCSHrGzZs0KhRo3TnnXd2uI/D4ZDH4+nuqQEAgD7K9o/A/n/Nzc36xS9+oR/84AedntW5cOGC0tLSlJqaqnvuuUcHDx7s9H4DgYD8fn/IAgAAzNWrAmjr1q1qbGzUggULOhwzevRo/fu//7vee+89/eIXv1BbW5umTp2qU6dOdbhPSUmJ3G53cElNTe2G2QMAgEjhsCzLsnsSl+Xl5Sk6OloffPDBNe/T0tKiMWPGaN68eVq/fn27YwKBgAKBQHDd7/crNTVVPp9PLpfruucNAAC6n9/vl9vtDsv7t+3XAF124sQJffzxx3rnnXe6tN+AAQN06623qra2tsMxTqdTTqfzeqcIAAD6iF7zEVhpaakSExM1e/bsLu3X2tqq3//+90pOTu6mmQEAgL6mVwRQW1ubSktLVVBQoP79Q09KzZ8/X8XFxcH1devW6b/+67/0hz/8Qfv379dDDz2kEydO6NFHH+3paQMAgAjVKz4C+/jjj1VXV6cf/OAHV91WV1enqKg/d9of//hHLVq0SF6vV0OGDFFWVpYqKio0duzYnpwyAACIYL3qIuieEs6LqAAAQM8I5/t3r/gIDAAAoCcRQAAAwDgEEAAAMA4BBAAAjEMAAQAA4xBAAADAOAQQAAAwDgEEAACMQwABAADjEEAAAMA4BBAAADAOAQQAAIxDAAEAAOMQQAAAwDgEEAAAMA4BBAAAjEMAAQAA4xBAAADAOAQQAAAwDgEEAACMQwABAADjEEAAAMA4BBAAADAOAQQAAIxDAAEAAOMQQAAAwDgEEAAAMA4BBAAAjEMAAQAA4xBAAADAOAQQAAAwDgEEAACMQwABAADjEEAAAMA4BBAAADCO7QH0zDPPyOFwhCyZmZmd7rNlyxZlZmYqJiZGt9xyiz766KMemi0AAOgLbA8gSfr2t7+t+vr64PLpp592OLaiokLz5s3TwoUL9dvf/lZz5szRnDlzdODAgR6cMQAAiGS9IoD69+8vj8cTXIYNG9bh2H/6p3/SrFmz9OSTT2rMmDFav369brvtNr366qs9OGMAABDJekUAHTlyRCkpKcrIyNCDDz6ourq6DsdWVlYqNzc3ZFteXp4qKys73CcQCMjv94csAADAXLYHUHZ2tsrKyrRt2za99tprOnbsmL773e/qT3/6U7vjvV6vkpKSQrYlJSXJ6/V2+BglJSVyu93BJTU1NazPAQAARBbbA+iuu+7S/fffr/HjxysvL08fffSRGhsb9fbbb4ftMYqLi+Xz+YLLyZMnw3bfAAAg8vS3ewJXGjx4sL71rW+ptra23ds9Ho8aGhpCtjU0NMjj8XR4n06nU06nM6zzBAAAkcv2M0BXunDhgo4ePark5OR2b8/JyVF5eXnItu3btysnJ6cnpgcAAPoA2wPoiSee0K5du3T8+HFVVFTo3nvvVb9+/TRv3jxJ0vz581VcXBwc/+Mf/1jbtm3TSy+9pMOHD+uZZ57R559/riVLltj1FAAAQISx/SOwU6dOad68eTp//rwSEhL0ne98R3v27FFCQoIkqa6uTlFRf+60qVOnavPmzVq5cqWefvpp3Xzzzdq6davGjRtn11MAAAARxmFZlmX3JHqa3++X2+2Wz+eTy+WyezoAAOAahPP92/aPwAAAAHoaAQQAAIxDAAEAAOMQQAAAwDgEEAAAMA4BBAAAjEMAAQAA4xBAAADAOAQQAAAwDgEEAACMQwABAADjEEAAAMA4BBAAADAOAQQAAIxDAAEAAOMQQAAAwDgEEAAAMA4BBAAAjEMAAQAA4xBAAADAOAQQAAAwDgEEAACMQwABAADjEEAAAMA4BBAAADAOAQQAAIxDAAEAAOMQQAAAwDgEEAAAMA4BBAAAjEMAAQAA4xBAAADAOAQQAAAwDgEEAACMQwABAADjEEAAAMA4tgdQSUmJbr/9dsXFxSkxMVFz5sxRTU1Np/uUlZXJ4XCELDExMT00YwAAEOlsD6Bdu3apsLBQe/bs0fbt29XS0qKZM2eqqamp0/1cLpfq6+uDy4kTJ3poxgAAINL1t3sC27ZtC1kvKytTYmKiqqqqdMcdd3S4n8PhkMfjuabHCAQCCgQCwXW/3/+XTRYAAPQJtp8BupLP55MkxcfHdzruwoULSktLU2pqqu655x4dPHiww7ElJSVyu93BJTU1NaxzBgAAkcVhWZZl9yQua2tr0/e+9z01Njbq008/7XBcZWWljhw5ovHjx8vn8+nFF1/U7t27dfDgQQ0fPvyq8e2dAUpNTZXP55PL5eqW5wIAAMLL7/fL7XaH5f27VwXQ4sWL9Zvf/EaffvppuyHTkZaWFo0ZM0bz5s3T+vXrv3F8OA8gAADoGeF8/7b9GqDLlixZog8//FC7d+/uUvxI0oABA3Trrbeqtra2m2YHAAD6EtuvAbIsS0uWLNG7776rHTt2KD09vcv30draqt///vdKTk7uhhkCAIC+xvYzQIWFhdq8ebPee+89xcXFyev1SpLcbrcGDhwoSZo/f75uvPFGlZSUSJLWrVunKVOm6KabblJjY6NeeOEFnThxQo8++qhtzwMAAEQO2wPotddekyRNmzYtZHtpaakWLFggSaqrq1NU1J9PVv3xj3/UokWL5PV6NWTIEGVlZamiokJjx47tqWkDAIAI1qsugu4pXAQNAEDkCef7t+3XAAEAAPQ0AggAABiHAAIAAMYhgAAAgHEIIAAAYBwCCAAAGIcAAgAAxiGAAACAcQggAABgHAIIAAAYhwACAADGIYAAAIBxCCAAAGAcAggAABiHAAIAAMYhgAAAgHEIIAAAYBwCCAAAGIcAAgAAxiGAAACAcQggAABgHAIIAAAYhwACAADGIYAAAIBxCCAAAGAcAggAABiHAAIAAMYhgAAAgHEIIAAAYBwCCAAAGIcAAgAAxiGAAACAcQggAABgHAIIAAAYhwACAADG6RUBtGnTJo0cOVIxMTHKzs7Wvn37Oh2/ZcsWZWZmKiYmRrfccos++uijHpopAADoC2wPoLfeektFRUVas2aN9u/frwkTJigvL09nz55td3xFRYXmzZunhQsX6re//a3mzJmjOXPm6MCBAz08cwAAEKkclmVZdk4gOztbt99+u1599VVJUltbm1JTU7V06VKtWLHiqvFz585VU1OTPvzww+C2KVOmaOLEiXr99dfbfYxAIKBAIBBc9/v9Sk1Nlc/nk8vlCvMzAgAA3cHv98vtdofl/dvWM0DNzc2qqqpSbm5ucFtUVJRyc3NVWVnZ7j6VlZUh4yUpLy+vw/GSVFJSIrfbHVxSU1PD8wQAAEBEsjWAvvjiC7W2tiopKSlke1JSkrxeb7v7eL3eLo2XpOLiYvl8vuBy8uTJ6588AACIWP3tnkBPcDqdcjqddk8DAAD0EraeARo2bJj69eunhoaGkO0NDQ3yeDzt7uPxeLo0HgAA4Eq2BlB0dLSysrJUXl4e3NbW1qby8nLl5OS0u09OTk7IeEnavn17h+MBAACuZPtHYEVFRSooKNCkSZM0efJkbdy4UU1NTXrkkUckSfPnz9eNN96okpISSdKPf/xj3XnnnXrppZc0e/Zs/frXv9bnn3+uf/3Xf7XzaQAAgAhiewDNnTtX586d0+rVq+X1ejVx4kRt27YteKFzXV2doqL+fKJq6tSp2rx5s1auXKmnn35aN998s7Zu3apx48bZ9RQAAECEsf13gOwQzt8RAAAAPaPP/A4QAACAHQggAABgHAIIAAAYhwACAADGIYAAAIBxCCAAAGAcAggAABiHAAIAAMYhgAAAgHEIIAAAYBwCCAAAGIcAAgAAxiGAAACAcQggAABgHAIIAAAYhwACAADGIYAAAIBxCCAAAGAcAggAABiHAAIAAMYhgAAAgHEIIAAAYBwCCAAAGIcAAgAAxiGAAACAcQggAABgHAIIAAAYhwACAADGIYAAAIBxCCAAAGAcAggAABiHAAIAAMYhgAAAgHEIIAAAYBwCCAAAGMe2ADp+/LgWLlyo9PR0DRw4UKNGjdKaNWvU3Nzc6X7Tpk2Tw+EIWR577LEemjUAAOgL+tv1wIcPH1ZbW5v+5V/+RTfddJMOHDigRYsWqampSS+++GKn+y5atEjr1q0LrsfGxnb3dAEAQB9iWwDNmjVLs2bNCq5nZGSopqZGr7322jcGUGxsrDweT3dPEQAA9FG96hogn8+n+Pj4bxz3y1/+UsOGDdO4ceNUXFysr776qtPxgUBAfr8/ZAEAAOay7QzQlWpra/XKK69849mf73//+0pLS1NKSop+97vf6amnnlJNTY3eeeedDvcpKSnR2rVrwz1lAAAQoRyWZVnhvMMVK1boueee63TMoUOHlJmZGVw/ffq07rzzTk2bNk3/9m//1qXH27Fjh2bMmKHa2lqNGjWq3TGBQECBQCC47vf7lZqaKp/PJ5fL1aXHAwAA9vD7/XK73WF5/w57AJ07d07nz5/vdExGRoaio6MlSWfOnNG0adM0ZcoUlZWVKSqqa5/KNTU1adCgQdq2bZvy8vKuaZ9wHkAAANAzwvn+HfaPwBISEpSQkHBNY0+fPq3p06crKytLpaWlXY4fSaqurpYkJScnd3lfAABgJtsugj59+rSmTZumESNG6MUXX9S5c+fk9Xrl9XpDxmRmZmrfvn2SpKNHj2r9+vWqqqrS8ePH9f7772v+/Pm64447NH78eLueCgAAiDC2XQS9fft21dbWqra2VsOHDw+57fKnci0tLaqpqQl+yys6Oloff/yxNm7cqKamJqWmpio/P18rV67s8fkDAIDIFfZrgCIB1wABABB5wvn+3at+BwgAAKAnEEAAAMA4BBAAADAOAQQAAIxDAAEAAOMQQAAAwDgEEAAAMA4BBAAAjEMAAQAA4xBAAADAOAQQAAAwDgEEAACMQwABAADjEEAAAMA4BBAAADAOAQQAAIxDAAEAAOMQQAAAwDgEEAAAMA4BBAAAjEMAAQAA4xBAAADAOAQQAAAwDgEEAACMQwABAADjEEAAAMA4BBAAADAOAQQAAIxDAAEAAOMQQAAAwDgEEAAAMA4BBAAAjEMAAQAA4xBAAADAOAQQAAAwjq0BNHLkSDkcjpBlw4YNne5z8eJFFRYWaujQoRo0aJDy8/PV0NDQQzMGAAB9ge1ngNatW6f6+vrgsnTp0k7HL1u2TB988IG2bNmiXbt26cyZM7rvvvt6aLYAAKAv6G/3BOLi4uTxeK5prM/n0xtvvKHNmzfrr//6ryVJpaWlGjNmjPbs2aMpU6Z051QBAEAfYfsZoA0bNmjo0KG69dZb9cILL+jSpUsdjq2qqlJLS4tyc3OD2zIzMzVixAhVVlZ2uF8gEJDf7w9ZAACAuWw9A/SjH/1It912m+Lj41VRUaHi4mLV19frZz/7WbvjvV6voqOjNXjw4JDtSUlJ8nq9HT5OSUmJ1q5dG86pAwCACBb2M0ArVqy46sLmK5fDhw9LkoqKijRt2jSNHz9ejz32mF566SW98sorCgQCYZ1TcXGxfD5fcDl58mRY7x8AAESWsJ8BWr58uRYsWNDpmIyMjHa3Z2dn69KlSzp+/LhGjx591e0ej0fNzc1qbGwMOQvU0NDQ6XVETqdTTqfzmuYPAAD6vrAHUEJCghISEv6ifaurqxUVFaXExMR2b8/KytKAAQNUXl6u/Px8SVJNTY3q6uqUk5PzF88ZAACYxbZrgCorK7V3715Nnz5dcXFxqqys1LJly/TQQw9pyJAhkqTTp09rxowZ+o//+A9NnjxZbrdbCxcuVFFRkeLj4+VyubR06VLl5OTwDTAAAHDNbAsgp9OpX//613rmmWcUCASUnp6uZcuWqaioKDimpaVFNTU1+uqrr4Lbfv7znysqKkr5+fkKBALKy8vTP//zP9vxFAAAQIRyWJZl2T2Jnub3++V2u+Xz+eRyueyeDgAAuAbhfP+2/XeAAAAAehoBBAAAjEMAAQAA4xBAAADAOAQQAAAwDgEEAACMQwABAADjEEAAAMA4BBAAADAOAQQAAIxDAAEAAOMQQAAAwDgEEAAAMA4BBAAAjEMAAQAA4xBAAADAOAQQAAAwDgEEAACMQwABAADjEEAAAMA4BBAAADAOAQQAAIxDAAEAAOMQQAAAwDgEEAAAMA4BBAAAjEMAAQAA4xBAAADAOAQQAAAwDgEEAACMQwABAADjEEAAAMA4BBAAADAOAQQAAIxDAAEAAOPYFkA7d+6Uw+Fod/nss8863G/atGlXjX/sscd6cOYAACDS9bfrgadOnar6+vqQbatWrVJ5ebkmTZrU6b6LFi3SunXrguuxsbHdMkcAANA32RZA0dHR8ng8wfWWlha99957Wrp0qRwOR6f7xsbGhuwLAADQFb3mGqD3339f58+f1yOPPPKNY3/5y19q2LBhGjdunIqLi/XVV191Oj4QCMjv94csAADAXLadAbrSG2+8oby8PA0fPrzTcd///veVlpamlJQU/e53v9NTTz2lmpoavfPOOx3uU1JSorVr14Z7ygAAIEI5LMuywnmHK1as0HPPPdfpmEOHDikzMzO4furUKaWlpentt99Wfn5+lx5vx44dmjFjhmprazVq1Kh2xwQCAQUCgeC63+9XamqqfD6fXC5Xlx4PAADYw+/3y+12h+X9O+xngJYvX64FCxZ0OiYjIyNkvbS0VEOHDtX3vve9Lj9edna2JHUaQE6nU06ns8v3DQAA+qawB1BCQoISEhKuebxlWSotLdX8+fM1YMCALj9edXW1JCk5ObnL+wIAADPZfhH0jh07dOzYMT366KNX3Xb69GllZmZq3759kqSjR49q/fr1qqqq0vHjx/X+++9r/vz5uuOOOzR+/PienjoAAIhQtl8E/cYbb2jq1Kkh1wRd1tLSopqamuC3vKKjo/Xxxx9r48aNampqUmpqqvLz87Vy5cqenjYAAIhgYb8IOhKE8yIqAADQM8L5/m37R2AAAAA9jQACAADGIYAAAIBxCCAAAGAcAggAABiHAAIAAMYhgAAAgHEIIAAAYBwCCAAAGIcAAgAAxiGAAACAcQggAABgHAIIAAAYhwACAADGIYAAAIBxCCAAAGAcAggAABiHAAIAAMYhgAAAgHEIIAAAYBwCCAAAGIcAAgAAxiGAAACAcQggAABgHAIIAAAYhwACAADGIYAAAIBxCCAAAGAcAggAABiHAAIAAMYhgAAAgHEIIAAAYBwCCAAAGIcAAgAAxiGAAACAcQggAABgnG4LoGeffVZTp05VbGysBg8e3O6Yuro6zZ49W7GxsUpMTNSTTz6pS5cudXq/X375pR588EG5XC4NHjxYCxcu1IULF7rhGQAAgL6q2wKoublZ999/vxYvXtzu7a2trZo9e7aam5tVUVGhN998U2VlZVq9enWn9/vggw/q4MGD2r59uz788EPt3r1bP/zhD7vjKQAAgD7KYVmW1Z0PUFZWpscff1yNjY0h23/zm9/o7/7u73TmzBklJSVJkl5//XU99dRTOnfunKKjo6+6r0OHDmns2LH67LPPNGnSJEnStm3b9Ld/+7c6deqUUlJS2p1DIBBQIBAIrvt8Po0YMUInT56Uy+UK0zMFAADdye/3KzU1VY2NjXK73dd3Z1Y3Ky0ttdxu91XbV61aZU2YMCFk2x/+8AdLkrV///527+uNN96wBg8eHLKtpaXF6tevn/XOO+90OIc1a9ZYklhYWFhYWFj6wHL06NEu98iV+ssmXq83eObnssvrXq+3w30SExNDtvXv31/x8fEd7iNJxcXFKioqCq43NjYqLS1NdXV111+Qhrtc45xNuz4cx/DhWIYPxzI8OI7hc/kTnPj4+Ou+ry4F0IoVK/Tcc891OubQoUPKzMy8rkmFm9PplNPpvGq72+3mxRgmLpeLYxkGHMfw4ViGD8cyPDiO4RMVdf2XMHcpgJYvX64FCxZ0OiYjI+Oa7svj8Wjfvn0h2xoaGoK3dbTP2bNnQ7ZdunRJX375ZYf7AAAAXKlLAZSQkKCEhISwPHBOTo6effZZnT17Nvix1vbt2+VyuTR27NgO92lsbFRVVZWysrIkSTt27FBbW5uys7PDMi8AAND3ddvX4Ovq6lRdXa26ujq1traqurpa1dXVwd/smTlzpsaOHauHH35Y//M//6P//M//1MqVK1VYWBj8uGrfvn3KzMzU6dOnJUljxozRrFmztGjRIu3bt0///d//rSVLluiBBx7o8Btg7XE6nVqzZk27H4uhaziW4cFxDB+OZfhwLMOD4xg+4TyW3fY1+AULFujNN9+8avsnn3yiadOmSZJOnDihxYsXa+fOnbrhhhtUUFCgDRs2qH//r09M7dy5U9OnT9exY8c0cuRISV//EOKSJUv0wQcfKCoqSvn5+Xr55Zc1aNCg7ngaAACgD+r23wECAADobfhbYAAAwDgEEAAAMA4BBAAAjEMAAQAA4xgXQM8++6ymTp2q2NhYDR48uN0xdXV1mj17tmJjY5WYmKgnn3xSly5d6tmJRqCRI0fK4XCELBs2bLB7WhFh06ZNGjlypGJiYpSdnX3Vj4Timz3zzDNXvf5626/S91a7d+/W3XffrZSUFDkcDm3dujXkdsuytHr1aiUnJ2vgwIHKzc3VkSNH7JlsL/ZNx3HBggVXvUZnzZplz2R7sZKSEt1+++2Ki4tTYmKi5syZo5qampAxFy9eVGFhoYYOHapBgwYpPz8/+GPK18q4AGpubtb999+vxYsXt3t7a2urZs+erebmZlVUVOjNN99UWVmZVq9e3cMzjUzr1q1TfX19cFm6dKndU+r13nrrLRUVFWnNmjXav3+/JkyYoLy8vKt+9Rzf7Nvf/nbI6+/TTz+1e0oRoampSRMmTNCmTZvavf3555/Xyy+/rNdff1179+7VDTfcoLy8PF28eLGHZ9q7fdNxlKRZs2aFvEZ/9atf9eAMI8OuXbtUWFioPXv2aPv27WppadHMmTPV1NQUHLNs2TJ98MEH2rJli3bt2qUzZ87ovvvu69oDXfefU41QHf2V+o8++siKioqyvF5vcNtrr71muVwuKxAI9OAMI09aWpr185//3O5pRJzJkydbhYWFwfXW1lYrJSXFKikpsXFWkWfNmjXWhAkT7J5GxJNkvfvuu8H1trY2y+PxWC+88EJwW2Njo+V0Oq1f/epXNswwMlx5HC3LsgoKCqx77rnHlvlEsrNnz1qSrF27dlmW9fXrb8CAAdaWLVuCYw4dOmRJsiorK6/5fo07A/RNKisrdcstt4T8pfq8vDz5/X4dPHjQxplFhg0bNmjo0KG69dZb9cILL/DR4Tdobm5WVVWVcnNzg9uioqKUm5uryspKG2cWmY4cOaKUlBRlZGTowQcfVF1dnd1TinjHjh2T1+sNeY263W5lZ2fzGv0L7Ny5U4mJiRo9erQWL16s8+fP2z2lXs/n80lS8C/AV1VVqaWlJeQ1mZmZqREjRnTpNdmlvwVmAq/XGxI/koLrXq/XjilFjB/96Ee67bbbFB8fr4qKChUXF6u+vl4/+9nP7J5ar/XFF1+otbW13dfc4cOHbZpVZMrOzlZZWZlGjx6t+vp6rV27Vt/97nd14MABxcXF2T29iHX5/732XqP8n9g1s2bN0n333af09HQdPXpUTz/9tO666y5VVlaqX79+dk+vV2pra9Pjjz+uv/qrv9K4ceMkff2ajI6Ovuo63q6+JvtEAK1YsULPPfdcp2MOHTrEBZF/ga4c26KiouC28ePHKzo6Wn//93+vkpIS/gYOut1dd90V/Pf48eOVnZ2ttLQ0vf3221q4cKGNMwO+9sADDwT/fcstt2j8+PEaNWqUdu7cqRkzZtg4s96rsLBQBw4c6Jbr+fpEAC1fvlwLFizodExGRsY13ZfH47nqGziXryz3eDx/0fwi2fUc2+zsbF26dEnHjx/X6NGju2F2kW/YsGHq16/fVd9eaGhoMPL1Fk6DBw/Wt771LdXW1to9lYh2+XXY0NCg5OTk4PaGhgZNnDjRpln1DRkZGRo2bJhqa2sJoHYsWbJEH374oXbv3q3hw4cHt3s8HjU3N6uxsTHkLFBX/9/sEwGUkJCghISEsNxXTk6Onn32WZ09e1aJiYmSpO3bt8vlcmns2LFheYxIcj3Htrq6WlFRUcHjiKtFR0crKytL5eXlmjNnjqSvT/mWl5dryZIl9k4uwl24cEFHjx7Vww8/bPdUIlp6ero8Ho/Ky8uDweP3+7V3794Ov02La3Pq1CmdP38+JCzx9c8uLF26VO+++6527typ9PT0kNuzsrI0YMAAlZeXKz8/X5JUU1Ojuro65eTkXPPj9IkA6oq6ujp9+eWXqqurU2trq6qrqyVJN910kwYNGqSZM2dq7Nixevjhh/X888/L6/Vq5cqVKiws5GOcTlRWVmrv3r2aPn264uLiVFlZqWXLlumhhx7SkCFD7J5er1ZUVKSCggJNmjRJkydP1saNG9XU1KRHHnnE7qlFlCeeeEJ333230tLSdObMGa1Zs0b9+vXTvHnz7J5ar3fhwoWQM2XHjh1TdXW14uPjNWLECD3++OP66U9/qptvvlnp6elatWqVUlJSgtGOr3V2HOPj47V27Vrl5+fL4/Ho6NGj+slPfqKbbrpJeXl5Ns669yksLNTmzZv13nvvKS4uLnhdj9vt1sCBA+V2u7Vw4UIVFRUpPj5eLpdLS5cuVU5OjqZMmXLtDxTur6v1dgUFBZakq5ZPPvkkOOb48ePWXXfdZQ0cONAaNmyYtXz5cqulpcW+SUeAqqoqKzs723K73VZMTIw1ZswY6x//8R+tixcv2j21iPDKK69YI0aMsKKjo63Jkydbe/bssXtKEWfu3LlWcnKyFR0dbd14443W3LlzrdraWrunFRE++eSTdv9fLCgosCzr66/Cr1q1ykpKSrKcTqc1Y8YMq6amxt5J90KdHcevvvrKmjlzppWQkGANGDDASktLsxYtWhTykyv4WnvHUJJVWloaHPO///u/1j/8wz9YQ4YMsWJjY617773Xqq+v79LjOP7fgwEAABiD3wECAADGIYAAAIBxCCAAAGAcAggAABiHAAIAAMYhgAAAgHEIIAAAYBwCCAAAGIcAAgAAxiGAAACAcQggAABgnP8DWeQbJ+6XjUsAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " \n", + "Code test passed\n", + "Go on to the next step\n" + ] + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "xmin = -10\n", + "xmax = 20\n", + "ymin = -10\n", + "ymax = 10\n", + "\n", + "fig, ax = plt.subplots()\n", + "plt.axis([xmin,xmax,ymin,ymax]) # window size\n", + "plt.show()\n", + "\n", + "# Only change code above this line\n", + "import math_code_test_b as test\n", + "test.step03(In[-1].split('# Only change code above this line')[0])" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "jIHKROStFMcR" + }, + "source": [ + "# Step 4 - Displaying Axis Lines" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "NhrHvY1YEndp" + }, + "source": [ + "Notice the code to `plot` a line for the x axis and a line for the y axis. The `'b'` makes the line blue. Run the code, then change each 'b' to 'g' to make the lines green." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "id": "mgWhRLtwFGOd" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkcAAAGiCAYAAADtImJbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAqzklEQVR4nO3de3CUVZ7G8acDpAOE7giEXDSEi0pQBBElJjOjMGQNDs6IQ7GKzACKOLqBUcO4EktBYN2g4mW8rGgtJm4hq7KloK6Dy0WwNJFLgFEYyBoGCAE6Xph0mzh0QnL2D4veE5IOBpPu0Pl+qt4q3vOe876/w4HOU2+/6XYYY4wAAAAgSYoKdwEAAAAdCeEIAADAQjgCAACwEI4AAAAshCMAAAAL4QgAAMBCOAIAALAQjgAAACyEIwAAAAvhCAAAwNKu4eijjz7SL3/5SyUnJ8vhcGj16tWNjhtjNH/+fCUlJal79+7KysrSF198ccbzvvDCCxowYIBiYmKUnp6urVu3ttMMAABAZ9Ou4aimpkYjRozQCy+80Ozxxx9/XM8++6yWLVumLVu2qGfPnsrOztaJEyeCnvONN95Qbm6uFixYoB07dmjEiBHKzs7Wl19+2V7TAAAAnYgjVF8863A49Pbbb2vixImSvr9rlJycrLlz5+oPf/iDJMnr9SohIUGFhYW65ZZbmj1Penq6rrrqKj3//POSpIaGBqWkpGjOnDmaN29eKKYCAAAiWNdwXfjAgQPyeDzKysoKtLndbqWnp6u4uLjZcFRbW6uSkhLl5eUF2qKiopSVlaXi4uKg1/L7/fL7/YH9hoYGHT9+XH369JHD4WijGQEAgPZkjNG3336r5ORkRUW135tfYQtHHo9HkpSQkNCoPSEhIXDsdF9//bXq6+ubHbNv376g18rPz9fChQt/ZMUAAKAjOHz4sC644IJ2O3/YwlEo5eXlKTc3N7Dv9XrVv39/HT58WC6XK4yVAWhLNbU1Sn4yWZJ0dO5R9YzuGeaKALQln8+nlJQU9erVq12vE7ZwlJiYKEmqrKxUUlJSoL2yslKXX355s2P69u2rLl26qLKyslF7ZWVl4HzNcTqdcjqdTdpdLhfhCIggXWq7SDHf/9nlchGOgAjV3o/EhO1zjgYOHKjExERt2LAh0Obz+bRlyxZlZGQ0OyY6OlqjRo1qNKahoUEbNmwIOgYAAKA12vXOUXV1tcrKygL7Bw4c0K5du9S7d2/1799f9957r/7lX/5FF110kQYOHKiHH35YycnJgd9ok6Rx48bppptu0uzZsyVJubm5mj59uq688kqNHj1azzzzjGpqanTbbbe151QAAEAn0a7haPv27Ro7dmxg/9RzP9OnT1dhYaH++Z//WTU1NbrzzjtVVVWln/70p1q7dq1iYmICY/bv36+vv/46sH/zzTfrq6++0vz58+XxeHT55Zdr7dq1TR7SBgAAOBsh+5yjjsTn88ntdsvr9fLMERBBamprFJsfK0mqzqvmmSMgwoTq5zffrQYAAGAhHAEAAFgIRwAAABbCEQAAgIVwBAAAYCEcAQAAWAhHAAAAFsIRAACAhXAEAABgIRwBAABYCEcAAAAWwhEAAICFcAQAAGAhHAEAAFgIRwAAABbCEQAAgIVwBAAAYCEcAQAAWAhHAAAAFsIRAACAhXAEAABgIRwBAABYCEcAAAAWwhEAAICFcAQAAGAhHAEAAFgIRwAAABbCEQAAgIVwBAAAYCEcAQAAWAhHAAAAFsIRAACAhXAEAABgIRwBAABYCEcAAACWsIejAQMGyOFwNNlycnKa7V9YWNikb0xMTIirBgAAkapruAvYtm2b6uvrA/u7d+/WP/zDP2jy5MlBx7hcLpWWlgb2HQ5Hu9YIAAA6j7CHo/j4+Eb7S5Ys0eDBg3XttdcGHeNwOJSYmNjepQEAgE4o7G+r2Wpra7VixQrdfvvtLd4Nqq6uVmpqqlJSUnTjjTdqz549LZ7X7/fL5/M12gAAAJrTocLR6tWrVVVVpRkzZgTtM2TIEL3yyitas2aNVqxYoYaGBmVmZqqioiLomPz8fLnd7sCWkpLSDtUDAIBI4DDGmHAXcUp2draio6P17rvv/uAxdXV1Gjp0qKZMmaLFixc328fv98vv9wf2fT6fUlJS5PV65XK5fnTdADqGmtoaxebHSpKq86rVM7pnmCsC0JZ8Pp/cbne7//wO+zNHpxw6dEjr16/XW2+91apx3bp108iRI1VWVha0j9PplNPp/LElAgCATqDDvK1WUFCgfv36acKECa0aV19fr88//1xJSUntVBkAAOhMOkQ4amhoUEFBgaZPn66uXRvfzJo2bZry8vIC+4sWLdL//M//6K9//at27Nih3/zmNzp06JDuuOOOUJcNAAAiUId4W239+vUqLy/X7bff3uRYeXm5oqL+P8P97W9/06xZs+TxeHTeeedp1KhRKioq0iWXXBLKkgEAQITqUA9kh0qoHugCEFo8kA1EtlD9/O4Qb6sBAAB0FIQjAAAAC+EIAADAQjgCAACwEI4AAAAshCMAAAAL4QgAAMBCOAIAALAQjgAAACyEIwAAAAvhCAAAwEI4AgAAsBCOAAAALIQjAAAAC+EIAADAQjgCAACwEI4AAAAshCMAAAAL4QgAAMBCOAIAALAQjgAAACyEIwAAAAvhCAAAwEI4AgAAsBCOAAAALIQjAAAAC+EIAADAQjgCAACwEI4AAAAshCMAAAAL4QgAAMBCOAIAALAQjgAAACyEIwAAAAvhCAAAwBL2cPTII4/I4XA02tLS0locs2rVKqWlpSkmJkaXXXaZ3n///RBVCwAAIl3Yw5EkXXrppTp27Fhg+/jjj4P2LSoq0pQpUzRz5kzt3LlTEydO1MSJE7V79+4QVgwAACJVhwhHXbt2VWJiYmDr27dv0L5//OMfNX78eN1///0aOnSoFi9erCuuuELPP/98CCsGAACRqkOEoy+++ELJyckaNGiQpk6dqvLy8qB9i4uLlZWV1agtOztbxcXFQcf4/X75fL5GGwAAQHPCHo7S09NVWFiotWvX6sUXX9SBAwf0s5/9TN9++22z/T0ejxISEhq1JSQkyOPxBL1Gfn6+3G53YEtJSWnTOQAAgMgR9nB0/fXXa/LkyRo+fLiys7P1/vvvq6qqSm+++WabXSMvL09erzewHT58uM3ODQAAIkvXcBdwuri4OF188cUqKytr9nhiYqIqKysbtVVWVioxMTHoOZ1Op5xOZ5vWCQAAIlPY7xydrrq6Wvv371dSUlKzxzMyMrRhw4ZGbevWrVNGRkYoygMAABEu7OHoD3/4gzZv3qyDBw+qqKhIN910k7p06aIpU6ZIkqZNm6a8vLxA/3vuuUdr167Vk08+qX379umRRx7R9u3bNXv27HBNAQAARJCwv61WUVGhKVOm6JtvvlF8fLx++tOf6tNPP1V8fLwkqby8XFFR/5/hMjMztXLlSj300EN68MEHddFFF2n16tUaNmxYuKYAAAAiiMMYY8JdRKj5fD653W55vV65XK5wlwOgjdTU1ig2P1aSVJ1XrZ7RPcNcEYC2FKqf32F/Ww0AAKAjIRwBAABYCEcAAAAWwhEAAICFcAQAAGAhHAEAAFgIRwAAABbCEQAAgIVwBAAAYCEcAQAAWAhHAAAAFsIRAACAhXAEAABgIRwBAABYCEcAAAAWwhEAAICFcAQAAGAhHAEAAFgIRwAAABbCEQAAgIVwBAAAYCEcAQAAWAhHAAAAFsIRAACAhXAEAABgIRwBAABYCEcAAAAWwhEAAICFcAQAAGAhHAEAAFgIRwAAABbCEQAAgIVwBAAAYCEcAQAAWAhHAAAAFsIRAACAJezhKD8/X1dddZV69eqlfv36aeLEiSotLW1xTGFhoRwOR6MtJiYmRBUDAIBIFvZwtHnzZuXk5OjTTz/VunXrVFdXp+uuu041NTUtjnO5XDp27FhgO3ToUIgqBgAAkaxruAtYu3Zto/3CwkL169dPJSUluuaaa4KOczgcSkxM/EHX8Pv98vv9gX2fz3d2xQIAgIgX9jtHp/N6vZKk3r17t9ivurpaqampSklJ0Y033qg9e/YE7Zufny+32x3YUlJS2rRmAAAQOTpUOGpoaNC9996rn/zkJxo2bFjQfkOGDNErr7yiNWvWaMWKFWpoaFBmZqYqKiqa7Z+Xlyev1xvYDh8+3F5TAAAA57iwv61my8nJ0e7du/Xxxx+32C8jI0MZGRmB/czMTA0dOlQvvfSSFi9e3KS/0+mU0+ls83oBAEDk6TDhaPbs2Xrvvff00Ucf6YILLmjV2G7dumnkyJEqKytrp+oAAEBnEfa31Ywxmj17tt5++21t3LhRAwcObPU56uvr9fnnnyspKakdKgQAAJ1J2O8c5eTkaOXKlVqzZo169eolj8cjSXK73erevbskadq0aTr//POVn58vSVq0aJGuvvpqXXjhhaqqqtITTzyhQ4cO6Y477gjbPAAAQGQIezh68cUXJUljxoxp1F5QUKAZM2ZIksrLyxUV9f83uf72t79p1qxZ8ng8Ou+88zRq1CgVFRXpkksuCVXZAAAgQjmMMSbcRYSaz+eT2+2W1+uVy+UKdzkA2khNbY1i82MlSdV51eoZ3TPMFQFoS6H6+R32Z44AAAA6EsIRAACAhXAEAABgIRwBAABYCEcAAAAWwhEAAICFcAQAAGAhHAEAAFgIRwAAABbCEQAAgIVwBAAAYCEcAQAAWAhHAAAAFsIRAACAhXAEAABgIRwBAABYCEcAAAAWwhEAAICFcAQAAGAhHAEAAFgIRwAAABbCEQAAgIVwBAAAYCEcAQAAWAhHAAAAFsIRAACAhXAEAABgIRwBAABYCEcAAAAWwhEAAICFcAQAAGAhHAEAAFgIRwAAABbCEQAAgIVwBAAAYOkQ4eiFF17QgAEDFBMTo/T0dG3durXF/qtWrVJaWppiYmJ02WWX6f333w9RpQAAINJ1DXcBb7zxhnJzc7Vs2TKlp6frmWeeUXZ2tkpLS9WvX78m/YuKijRlyhTl5+frhhtu0MqVKzVx4kTt2LFDw4YNa9W1a2pr1KW2S1tNBUCY1dTWNPtnAJEhVP+vHcYYE5IrBZGenq6rrrpKzz//vCSpoaFBKSkpmjNnjubNm9ek/80336yamhq99957gbarr75al19+uZYtW9bsNfx+v/x+f2Df5/MpJSVFmicppm3nAwAA2skJSUskr9crl8vVbpcJ69tqtbW1KikpUVZWVqAtKipKWVlZKi4ubnZMcXFxo/6SlJ2dHbS/JOXn58vtdge2lJSUtpkAAACIOGF9W+3rr79WfX29EhISGrUnJCRo3759zY7xeDzN9vd4PEGvk5eXp9zc3MD+qTtHR+cebdfkCSC0amprlPDk968PlXMr1TO6Z5grAtCWfD6fkpckt/t1wv7MUSg4nU45nc4m7T2je/LiCUQo/n8Dkac+uj4k1wnr22p9+/ZVly5dVFlZ2ai9srJSiYmJzY5JTExsVX8AAIDWCGs4io6O1qhRo7Rhw4ZAW0NDgzZs2KCMjIxmx2RkZDTqL0nr1q0L2h8AAKA1wv62Wm5urqZPn64rr7xSo0eP1jPPPKOamhrddtttkqRp06bp/PPPV35+viTpnnvu0bXXXqsnn3xSEyZM0Ouvv67t27fr5ZdfDuc0AABAhAh7OLr55pv11Vdfaf78+fJ4PLr88su1du3awEPX5eXlior6/xtcmZmZWrlypR566CE9+OCDuuiii7R69epWf8YRAABAc8L+OUfh4PP55Ha72/1zEgCEVk1tjWLzYyVJ1XnVPJANRJhQ/fzuEF8fAgAA0FEQjgAAACyEIwAAAAvhCAAAwEI4AgAAsBCOAAAALIQjAAAAC+EIAADAQjgCAACwEI4AAAAshCMAAAAL4QgAAMBCOAIAALAQjgAAACyEIwAAAAvhCAAAwEI4AgAAsBCOAAAALIQjAAAAC+EIAADAQjgCAACwEI4AAAAshCMAAAAL4QgAAMBCOAIAALAQjgAAACyEIwAAAAvhCAAAwEI4AgAAsBCOAAAALIQjAAAAC+EIAADAQjgCAACwEI4AAAAshCMAAABL2MLRwYMHNXPmTA0cOFDdu3fX4MGDtWDBAtXW1rY4bsyYMXI4HI22u+66K0RVAwCASNc1XBfet2+fGhoa9NJLL+nCCy/U7t27NWvWLNXU1Gjp0qUtjp01a5YWLVoU2O/Ro0d7lwsAADqJsIWj8ePHa/z48YH9QYMGqbS0VC+++OIZw1GPHj2UmJjY3iUCAIBOqEM9c+T1etW7d+8z9nvttdfUt29fDRs2THl5efruu+9a7O/3++Xz+RptAAAAzQnbnaPTlZWV6bnnnjvjXaNbb71VqampSk5O1meffaYHHnhApaWleuutt4KOyc/P18KFC9u6ZAAAEIEcxhjTliecN2+eHnvssRb77N27V2lpaYH9I0eO6Nprr9WYMWP07//+76263saNGzVu3DiVlZVp8ODBzfbx+/3y+/2BfZ/Pp5SUFHm9XrlcrlZdD0DHVVNbo9j8WElSdV61ekb3DHNFANqSz+eT2+1u95/fbX7naO7cuZoxY0aLfQYNGhT489GjRzV27FhlZmbq5ZdfbvX10tPTJanFcOR0OuV0Olt9bgAA0Pm0eTiKj49XfHz8D+p75MgRjR07VqNGjVJBQYGiolr/CNSuXbskSUlJSa0eCwAAcLqwPZB95MgRjRkzRv3799fSpUv11VdfyePxyOPxNOqTlpamrVu3SpL279+vxYsXq6SkRAcPHtQ777yjadOm6ZprrtHw4cPDNRUAABBBwvZA9rp161RWVqaysjJdcMEFjY6degyqrq5OpaWlgd9Gi46O1vr16/XMM8+opqZGKSkpmjRpkh566KGQ1w8AACJTmz+QfS4I1QNdAEKLB7KByBaqn98d6nOOAAAAwo1wBAAAYCEcAQAAWAhHAAAAFsIRAACAhXAEAABgIRwBAABYCEcAAAAWwhEAAICFcAQAAGAhHAEAAFgIRwAAABbCEQAAgIVwBAAAYCEcAQAAWAhHAAAAFsIRAACAhXAEAABgIRwBAABYCEcAAAAWwhEAAICFcAQAAGAhHAEAAFgIRwAAABbCEQAAgIVwBAAAYCEcAQAAWAhHAAAAFsIRAACAhXAEAABgIRwBAABYCEcAAAAWwhEAAICFcAQAAGAhHAEAAFjCGo4GDBggh8PRaFuyZEmLY06cOKGcnBz16dNHsbGxmjRpkiorK0NUMQAAiHRhv3O0aNEiHTt2LLDNmTOnxf733Xef3n33Xa1atUqbN2/W0aNH9etf/zpE1QIAgEjXNdwF9OrVS4mJiT+or9fr1fLly7Vy5Ur9/Oc/lyQVFBRo6NCh+vTTT3X11Ve3Z6kAAKATCPudoyVLlqhPnz4aOXKknnjiCZ08eTJo35KSEtXV1SkrKyvQlpaWpv79+6u4uDjoOL/fL5/P12gDAABoTljvHP3+97/XFVdcod69e6uoqEh5eXk6duyYnnrqqWb7ezweRUdHKy4urlF7QkKCPB5P0Ovk5+dr4cKFbVk6AACIUG1+52jevHlNHrI+fdu3b58kKTc3V2PGjNHw4cN111136cknn9Rzzz0nv9/fpjXl5eXJ6/UGtsOHD7fp+QEAQORo8ztHc+fO1YwZM1rsM2jQoGbb09PTdfLkSR08eFBDhgxpcjwxMVG1tbWqqqpqdPeosrKyxeeWnE6nnE7nD6ofAAB0bm0ejuLj4xUfH39WY3ft2qWoqCj169ev2eOjRo1St27dtGHDBk2aNEmSVFpaqvLycmVkZJx1zQAAAKeE7Zmj4uJibdmyRWPHjlWvXr1UXFys++67T7/5zW903nnnSZKOHDmicePG6T/+4z80evRoud1uzZw5U7m5uerdu7dcLpfmzJmjjIwMflMNAAC0ibCFI6fTqddff12PPPKI/H6/Bg4cqPvuu0+5ubmBPnV1dSotLdV3330XaHv66acVFRWlSZMmye/3Kzs7W//2b/8WjikAAIAI5DDGmHAXEWo+n09ut1ter1culyvc5QBoIzW1NYrNj5UkVedVq2d0zzBXBKAthernd9g/5wgAAKAjIRwBAABYCEcAAAAWwhEAAICFcAQAAGAhHAEAAFgIRwAAABbCEQAAgIVwBAAAYCEcAQAAWAhHAAAAFsIRAACAhXAEAABgIRwBAABYCEcAAAAWwhEAAICFcAQAAGAhHAEAAFgIRwAAABbCEQAAgIVwBAAAYCEcAQAAWAhHAAAAFsIRAACAhXAEAABgIRwBAABYCEcAAAAWwhEAAICFcAQAAGAhHAEAAFgIRwAAABbCEQAAgIVwBAAAYCEcAQAAWAhHAAAAlrCFo02bNsnhcDS7bdu2Lei4MWPGNOl/1113hbByAAAQybqG68KZmZk6duxYo7aHH35YGzZs0JVXXtni2FmzZmnRokWB/R49erRLjQAAoPMJWziKjo5WYmJiYL+urk5r1qzRnDlz5HA4Whzbo0ePRmMBAADaSod55uidd97RN998o9tuu+2MfV977TX17dtXw4YNU15enr777rsW+/v9fvl8vkYbAABAc8J25+h0y5cvV3Z2ti644IIW+916661KTU1VcnKyPvvsMz3wwAMqLS3VW2+9FXRMfn6+Fi5c2NYlAwCACOQwxpi2POG8efP02GOPtdhn7969SktLC+xXVFQoNTVVb775piZNmtSq623cuFHjxo1TWVmZBg8e3Gwfv98vv98f2Pf5fEpJSZHX65XL5WrV9QB0XDW1NYrNj5UkVedVq2d0zzBXBKAt+Xw+ud3udv/53eZ3jubOnasZM2a02GfQoEGN9gsKCtSnTx/96le/avX10tPTJanFcOR0OuV0Olt9bgAA0Pm0eTiKj49XfHz8D+5vjFFBQYGmTZumbt26tfp6u3btkiQlJSW1eiwAAMDpwv5A9saNG3XgwAHdcccdTY4dOXJEaWlp2rp1qyRp//79Wrx4sUpKSnTw4EG98847mjZtmq655hoNHz481KUDAIAIFPYHspcvX67MzMxGzyCdUldXp9LS0sBvo0VHR2v9+vV65plnVFNTo5SUFE2aNEkPPfRQqMsGAAARKuzhaOXKlUGPDRgwQPbz4ikpKdq8eXMoygIAAJ1U2N9WAwAA6EgIRwAAABbCEQAAgIVwBAAAYCEcAQAAWAhHAAAAFsIRAACAhXAEAABgIRwBAABYCEcAAAAWwhEAAICFcAQAAGAhHAEAAFgIRwAAABbCEQAAgIVwBAAAYCEcAQAAWAhHAAAAFsIRAACAhXAEAABgIRwBAABYCEcAAAAWwhEAAICFcAQAAGAhHAEAAFgIRwAAABbCEQAAgIVwBAAAYCEcAQAAWAhHAAAAFsIRAACAhXAEAABgIRwBAABYCEcAAAAWwhEAAICFcAQAAGBpt3D06KOPKjMzUz169FBcXFyzfcrLyzVhwgT16NFD/fr10/3336+TJ0+2eN7jx49r6tSpcrlciouL08yZM1VdXd0OMwAAAJ1Ru4Wj2tpaTZ48WXfffXezx+vr6zVhwgTV1taqqKhIr776qgoLCzV//vwWzzt16lTt2bNH69at03vvvaePPvpId955Z3tMAQAAdEIOY4xpzwsUFhbq3nvvVVVVVaP2P/3pT7rhhht09OhRJSQkSJKWLVumBx54QF999ZWio6ObnGvv3r265JJLtG3bNl155ZWSpLVr1+oXv/iFKioqlJyc3GwNfr9ffr8/sO/1etW/f38dPnxYLperjWYKINxqamuU/OT3rwNH5x5Vz+ieYa4IQFvy+XxKSUlRVVWV3G53+13ItLOCggLjdrubtD/88MNmxIgRjdr++te/Gklmx44dzZ5r+fLlJi4urlFbXV2d6dKli3nrrbeC1rBgwQIjiY2NjY2NjS0Ctv3797c6j7RGV4WJx+MJ3DE65dS+x+MJOqZfv36N2rp27arevXsHHSNJeXl5ys3NDexXVVUpNTVV5eXl7Zs8O5hTibuz3TFj3sy7M2DezLszOPXOT+/evdv1Oq0KR/PmzdNjjz3WYp+9e/cqLS3tRxXV1pxOp5xOZ5N2t9vdqf5RneJyuZh3J8K8Oxfm3bl01nlHRbXvL9u3KhzNnTtXM2bMaLHPoEGDftC5EhMTtXXr1kZtlZWVgWPBxnz55ZeN2k6ePKnjx48HHQMAANAarQpH8fHxio+Pb5MLZ2Rk6NFHH9WXX34ZeKts3bp1crlcuuSSS4KOqaqqUklJiUaNGiVJ2rhxoxoaGpSent4mdQEAgM6t3e5LlZeXa9euXSovL1d9fb127dqlXbt2BT6T6LrrrtMll1yi3/72t/rzn/+sDz74QA899JBycnICb4Ft3bpVaWlpOnLkiCRp6NChGj9+vGbNmqWtW7fqk08+0ezZs3XLLbcE/U215jidTi1YsKDZt9oiGfNm3p0B82benQHzbt95t9uv8s+YMUOvvvpqk/YPP/xQY8aMkSQdOnRId999tzZt2qSePXtq+vTpWrJkibp2/f6G1qZNmzR27FgdOHBAAwYMkPT9h0DOnj1b7777rqKiojRp0iQ9++yzio2NbY9pAACATqbdP+cIAADgXMJ3qwEAAFgIRwAAABbCEQAAgIVwBAAAYInIcPToo48qMzNTPXr0UFxcXLN9ysvLNWHCBPXo0UP9+vXT/fffr5MnT7Z43uPHj2vq1KlyuVyKi4vTzJkzAx9N0BFt2rRJDoej2W3btm1Bx40ZM6ZJ/7vuuiuElf94AwYMaDKHJUuWtDjmxIkTysnJUZ8+fRQbG6tJkyYFPpj0XHDw4EHNnDlTAwcOVPfu3TV48GAtWLBAtbW1LY47F9f7hRde0IABAxQTE6P09PQmHyh7ulWrViktLU0xMTG67LLL9P7774eo0raRn5+vq666Sr169VK/fv00ceJElZaWtjimsLCwybrGxMSEqOK28cgjjzSZw5m+geFcX2up+dcvh8OhnJycZvufq2v90Ucf6Ze//KWSk5PlcDi0evXqRseNMZo/f76SkpLUvXt3ZWVl6YsvvjjjeVv7+tCciAxHtbW1mjx5su6+++5mj9fX12vChAmqra1VUVGRXn31VRUWFmr+/Pktnnfq1Knas2eP1q1bp/fee08fffSR7rzzzvaYQpvIzMzUsWPHGm133HGHBg4cqCuvvLLFsbNmzWo07vHHHw9R1W1n0aJFjeYwZ86cFvvfd999evfdd7Vq1Spt3rxZR48e1a9//esQVfvj7du3Tw0NDXrppZe0Z88ePf3001q2bJkefPDBM449l9b7jTfeUG5urhYsWKAdO3ZoxIgRys7ObvLp+acUFRVpypQpmjlzpnbu3KmJEydq4sSJ2r17d4grP3ubN29WTk6OPv30U61bt051dXW67rrrVFNT0+I4l8vVaF0PHToUoorbzqWXXtpoDh9//HHQvpGw1pK0bdu2RnNet26dJGny5MlBx5yLa11TU6MRI0bohRdeaPb4448/rmeffVbLli3Tli1b1LNnT2VnZ+vEiRNBz9na14eg2vVrbcOsoKDAuN3uJu3vv/++iYqKMh6PJ9D24osvGpfLZfx+f7Pn+stf/mIkmW3btgXa/vSnPxmHw2GOHDnS5rW3h9raWhMfH28WLVrUYr9rr73W3HPPPaEpqp2kpqaap59++gf3r6qqMt26dTOrVq0KtO3du9dIMsXFxe1QYWg8/vjjZuDAgS32OdfWe/To0SYnJyewX19fb5KTk01+fn6z/f/xH//RTJgwoVFbenq6+d3vfteudbanL7/80kgymzdvDton2OvfuWTBggVmxIgRP7h/JK61Mcbcc889ZvDgwaahoaHZ45Gw1pLM22+/HdhvaGgwiYmJ5oknngi0VVVVGafTaf7zP/8z6Hla+/oQTETeOTqT4uJiXXbZZUpISAi0ZWdny+fzac+ePUHHxMXFNbrjkpWVpaioKG3ZsqXda24L77zzjr755hvddtttZ+z72muvqW/fvho2bJjy8vL03XffhaDCtrVkyRL16dNHI0eO1BNPPNHi26YlJSWqq6tTVlZWoC0tLU39+/dXcXFxKMptF16v9wd9e/W5st61tbUqKSlptE5RUVHKysoKuk7FxcWN+kvf/38/19dV0hnXtrq6WqmpqUpJSdGNN94Y9PWtI/viiy+UnJysQYMGaerUqSovLw/aNxLXura2VitWrNDtt98uh8MRtF8krLXtwIED8ng8jdbT7XYrPT096HqezetDMK36brVI4fF4GgUjSYF9j8cTdMyp74A7pWvXrurdu3fQMR3N8uXLlZ2drQsuuKDFfrfeeqtSU1OVnJyszz77TA888IBKS0v11ltvhajSH+/3v/+9rrjiCvXu3VtFRUXKy8vTsWPH9NRTTzXb3+PxKDo6uskzagkJCefM+p6urKxMzz33nJYuXdpiv3Npvb/++mvV19c3+/933759zY4J9v/9XF3XhoYG3XvvvfrJT36iYcOGBe03ZMgQvfLKKxo+fLi8Xq+WLl2qzMxM7dmz54yvAR1Fenq6CgsLNWTIEB07dkwLFy7Uz372M+3evVu9evVq0j/S1lqSVq9eraqqqha/9D0S1vp0p9asNet5Nq8PwZwz4WjevHl67LHHWuyzd+/eMz6sFwnO5u+ioqJCH3zwgd58880znt9+juqyyy5TUlKSxo0bp/3792vw4MFnX/iP1Jp55+bmBtqGDx+u6Oho/e53v1N+fv45911EZ7PeR44c0fjx4zV58mTNmjWrxbEddb3RvJycHO3evbvFZ2+k77+oOyMjI7CfmZmpoUOH6qWXXtLixYvbu8w2cf311wf+PHz4cKWnpys1NVVvvvmmZs6cGcbKQmf58uW6/vrrW/z+0EhY647mnAlHc+fObTE5S9KgQYN+0LkSExObPL1+6reSEhMTg445/YGukydP6vjx40HHtJez+bsoKChQnz599Ktf/arV10tPT5f0/Z2IcP6w/DH/BtLT03Xy5EkdPHhQQ4YMaXI8MTFRtbW1qqqqanT3qLKyMuTre7rWzvvo0aMaO3asMjMz9fLLL7f6eh1lvZvTt29fdenSpclvEba0TomJia3q35HNnj078Msgrb0j0K1bN40cOVJlZWXtVF37i4uL08UXXxx0DpG01tL33z+6fv36Vt/FjYS1PrVmlZWVSkpKCrRXVlbq8ssvb3bM2bw+BNWqJ5TOMWd6ILuysjLQ9tJLLxmXy2VOnDjR7LlOPZC9ffv2QNsHH3xwTjyQ3dDQYAYOHGjmzp17VuM//vhjI8n8+c9/buPKQmfFihUmKirKHD9+vNnjpx7I/q//+q9A2759+865B7IrKirMRRddZG655RZz8uTJszpHR1/v0aNHm9mzZwf26+vrzfnnn9/iA9k33HBDo7aMjIxz6iHdhoYGk5OTY5KTk83//u//ntU5Tp48aYYMGWLuu+++Nq4udL799ltz3nnnmT/+8Y/NHo+EtbYtWLDAJCYmmrq6ulaNOxfXWkEeyF66dGmgzev1/qAHslvz+hC0nlb1PkccOnTI7Ny50yxcuNDExsaanTt3mp07d5pvv/3WGPP9P5xhw4aZ6667zuzatcusXbvWxMfHm7y8vMA5tmzZYoYMGWIqKioCbePHjzcjR440W7ZsMR9//LG56KKLzJQpU0I+v9Zav369kWT27t3b5FhFRYUZMmSI2bJlizHGmLKyMrNo0SKzfft2c+DAAbNmzRozaNAgc80114S67LNWVFRknn76abNr1y6zf/9+s2LFChMfH2+mTZsW6HP6vI0x5q677jL9+/c3GzduNNu3bzcZGRkmIyMjHFM4KxUVFebCCy8048aNMxUVFebYsWOBze5zrq/366+/bpxOpyksLDR/+ctfzJ133mni4uICv33629/+1sybNy/Q/5NPPjFdu3Y1S5cuNXv37jULFiww3bp1M59//nm4ptBqd999t3G73WbTpk2N1vW7774L9Dl93gsXLjQffPCB2b9/vykpKTG33HKLiYmJMXv27AnHFM7K3LlzzaZNm8yBAwfMJ598YrKyskzfvn3Nl19+aYyJzLU+pb6+3vTv39888MADTY5Fylp/++23gZ/PksxTTz1ldu7caQ4dOmSMMWbJkiUmLi7OrFmzxnz22WfmxhtvNAMHDjR///vfA+f4+c9/bp577rnA/pleH36oiAxH06dPN5KabB9++GGgz8GDB831119vunfvbvr27Wvmzp3bKJ1/+OGHRpI5cOBAoO2bb74xU6ZMMbGxscblcpnbbrstELg6silTppjMzMxmjx04cKDR3015ebm55pprTO/evY3T6TQXXnihuf/++43X6w1hxT9OSUmJSU9PN26328TExJihQ4eaf/3Xf210V/D0eRtjzN///nfzT//0T+a8884zPXr0MDfddFOjYNHRFRQUNPvv3r5BHCnr/dxzz5n+/fub6OhoM3r0aPPpp58Gjl177bVm+vTpjfq/+eab5uKLLzbR0dHm0ksvNf/93/8d4op/nGDrWlBQEOhz+rzvvffewN9RQkKC+cUvfmF27NgR+uJ/hJtvvtkkJSWZ6Ohoc/7555ubb77ZlJWVBY5H4lqf8sEHHxhJprS0tMmxSFnrUz9nT99Oza2hocE8/PDDJiEhwTidTjNu3Lgmfx+pqalmwYIFjdpaen34oRzGGNO6N+IAAAAiV6f8nCMAAIBgCEcAAAAWwhEAAICFcAQAAGAhHAEAAFgIRwAAABbCEQAAgIVwBAAAYCEcAQAAWAhHAAAAFsIRAACA5f8AdOe8D7xXMpcAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " \n", + "Code test passed\n", + "Go on to the next step\n" + ] + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "xmin = -10\n", + "xmax = 10\n", + "ymin = -10\n", + "ymax = 10\n", + "\n", + "fig, ax = plt.subplots()\n", + "plt.axis([xmin,xmax,ymin,ymax]) # window size\n", + "plt.plot([xmin,xmax],[0,0],'g') # blue x axis\n", + "plt.plot([0,0],[ymin,ymax], 'g') # blue y axis\n", + "\n", + "plt.show()\n", + "\n", + "# Only change code above this line\n", + "import math_code_test_b as test\n", + "test.step04(In[-1].split('# Only change code above this line')[0])" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "wLDO_IRrFw7z" + }, + "source": [ + "# Step 5 - Plotting a Point" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "iOZ8TJISFw71" + }, + "source": [ + "Now you will plot a point on the graph. Notice the `'ro'` makes the point a red dot. Run the code, then change the location of the point to (-5,1) and run it again. Keep the window size the same. Notice the difference between plotting a point and plotting a line." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "id": "N09NlV3DFw71" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkcAAAGiCAYAAADtImJbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAArWUlEQVR4nO3de3BUZZ7/8U8HSIdbdwRCLhLCRSUogogSkx0VhqzBwVGUH6vIDKCIoxsYNYwrsRQE1g0qKt5WtJZJ3FJXZQrxsg4uF4HVRC4BRmEgaxggBOh4YdJt4tgJyfP7g6LnCUlHg0l36LxfVaeqz3Oe55zvwyHdnzp9utthjDECAACAJCkq3AUAAAC0J4QjAAAAC+EIAADAQjgCAACwEI4AAAAshCMAAAAL4QgAAMBCOAIAALAQjgAAACyEIwAAAEubhqPNmzfrl7/8pZKSkuRwOLR69eoG240xmj9/vhITE9W1a1dlZmbqiy+++MH9vvDCCxowYIBiYmKUlpamrVu3ttEMAABAR9Om4ai6ulojRozQCy+80OT2xx9/XM8++6yWL1+uLVu2qHv37srKytL3338fdJ9vvvmmcnJytGDBAu3YsUMjRoxQVlaWvvzyy7aaBgAA6EAcofrhWYfDobffflsTJ06UdPKqUVJSkubOnavf/e53kiSv16v4+HgVFBTolltuaXI/aWlpuvzyy/X8889Lkurr65WcnKw5c+Zo3rx5oZgKAACIYJ3DdeADBw7I4/EoMzMz0OZ2u5WWlqaioqImw1FNTY2Ki4uVm5sbaIuKilJmZqaKioqCHsvv98vv9wfW6+vrdfz4cfXu3VsOh6OVZgQAANqSMUbffvutkpKSFBXVdm9+hS0ceTweSVJ8fHyD9vj4+MC203399deqq6trcsy+ffuCHisvL08LFy78iRUDAID24PDhw+rXr1+b7T9s4SiUcnNzlZOTE1j3er3q37+/Dh8+LJfLFcbKALSm6mopKenk46NHpe7dw1sPgNbl8/mUnJysnj17tulxwhaOEhISJEkVFRVKTEwMtFdUVOiSSy5pckyfPn3UqVMnVVRUNGivqKgI7K8pTqdTTqezUbvL5SIcARGkU6e/P3a5CEdApGrrW2LC9j1HAwcOVEJCgtavXx9o8/l82rJli9LT05scEx0drVGjRjUYU19fr/Xr1wcdAwAA0BJteuWoqqpKpaWlgfUDBw5o165d6tWrl/r37697771X//qv/6rzzz9fAwcO1MMPP6ykpKTAJ9okady4cbrxxhs1e/ZsSVJOTo6mT5+uyy67TKNHj9ayZctUXV2t2267rS2nAgAAOog2DUfbt2/X2LFjA+un7vuZPn26CgoK9C//8i+qrq7WnXfeqcrKSv3sZz/TmjVrFBMTExizf/9+ff3114H1m2++WV999ZXmz58vj8ejSy65RGvWrGl0kzYAAMCZCNn3HLUnPp9PbrdbXq+Xe46ACFJdLfXocfJxVRX3HAGRJlSv3/y2GgAAgIVwBAAAYCEcAQAAWAhHAAAAFsIRAACAhXAEAABgIRwBAABYCEcAAAAWwhEAAICFcAQAAGAhHAEAAFgIRwAAABbCEQAAgIVwBAAAYCEcAQAAWAhHAAAAFsIRAACAhXAEAABgIRwBAABYCEcAAAAWwhEAAICFcAQAAGAhHAEAAFgIRwAAABbCEQAAgIVwBAAAYCEcAQAAWAhHAAAAFsIRAACAhXAEAABgIRwBAABYCEcAAAAWwhEAAICFcAQAAGAhHAEAAFjCHo4GDBggh8PRaMnOzm6yf0FBQaO+MTExIa4aAABEqs7hLmDbtm2qq6sLrO/evVv/+I//qMmTJwcd43K5VFJSElh3OBxtWiMAAOg4wh6O4uLiGqwvWbJEgwcP1tVXXx10jMPhUEJCQluXBgAAOqCwv61mq6mp0auvvqrbb7+92atBVVVVSklJUXJysm644Qbt2bOn2f36/X75fL4GCwAAQFPaVThavXq1KisrNWPGjKB9hgwZot///vd655139Oqrr6q+vl4ZGRkqLy8POiYvL09utzuwJCcnt0H1AAAgEjiMMSbcRZySlZWl6Ohovffeez96TG1trYYOHaopU6Zo8eLFTfbx+/3y+/2BdZ/Pp+TkZHm9Xrlcrp9cN4D2obpa6tHj5OOqKql79/DWA6B1+Xw+ud3uNn/9Dvs9R6ccOnRI69at06pVq1o0rkuXLho5cqRKS0uD9nE6nXI6nT+1RAAA0AG0m7fV8vPz1bdvX02YMKFF4+rq6vT5558rMTGxjSoDAAAdSbsIR/X19crPz9f06dPVuXPDi1nTpk1Tbm5uYH3RokX6n//5H/3lL3/Rjh079Ktf/UqHDh3SHXfcEeqyAQBABGoXb6utW7dOZWVluv322xttKysrU1TU3zPcX//6V82aNUsej0fnnHOORo0apcLCQl144YWhLBkAAESodnVDdqiE6oYuAKHFDdlAZAvV63e7eFsNAACgvSAcAQAAWAhHAAAAFsIRAACAhXAEAABgIRwBAABYCEcAAAAWwhEAAICFcAQAAGAhHAEAAFgIRwAAABbCEQAAgIVwBAAAYCEcAQAAWAhHAAAAFsIRAACAhXAEAABgIRwBAABYCEcAAAAWwhEAAICFcAQAAGAhHAEAAFgIRwAAABbCEQAAgIVwBAAAYCEcAQAAWAhHAAAAFsIRAACAhXAEAABgIRwBAABYCEcAAAAWwhEAAICFcAQAAGAhHAEAAFgIRwAAAJawh6NHHnlEDoejwZKamtrsmJUrVyo1NVUxMTG6+OKL9cEHH4SoWgAAEOnCHo4k6aKLLtKxY8cCy8cffxy0b2FhoaZMmaKZM2dq586dmjhxoiZOnKjdu3eHsGIAABCp2kU46ty5sxISEgJLnz59gvZ95plnNH78eN1///0aOnSoFi9erEsvvVTPP/98CCsGAACRql2Eoy+++EJJSUkaNGiQpk6dqrKysqB9i4qKlJmZ2aAtKytLRUVFQcf4/X75fL4GCwAAQFPCHo7S0tJUUFCgNWvW6MUXX9SBAwd05ZVX6ttvv22yv8fjUXx8fIO2+Ph4eTyeoMfIy8uT2+0OLMnJya06BwAAEDnCHo6uvfZaTZ48WcOHD1dWVpY++OADVVZW6q233mq1Y+Tm5srr9QaWw4cPt9q+AQBAZOkc7gJOFxsbqwsuuEClpaVNbk9ISFBFRUWDtoqKCiUkJATdp9PplNPpbNU6AQBAZAr7laPTVVVVaf/+/UpMTGxye3p6utavX9+gbe3atUpPTw9FeQAAIMKFPRz97ne/06ZNm3Tw4EEVFhbqxhtvVKdOnTRlyhRJ0rRp05Sbmxvof88992jNmjV68skntW/fPj3yyCPavn27Zs+eHa4pAACACBL2t9XKy8s1ZcoUffPNN4qLi9PPfvYzffrpp4qLi5MklZWVKSrq7xkuIyNDr7/+uh566CE9+OCDOv/887V69WoNGzYsXFMAAAARxGGMMeEuItR8Pp/cbre8Xq9cLle4ywHQSqqrpR49Tj6uqpK6dw9vPQBaV6hev8P+thoAAEB7QjgCAACwEI4AAAAshCMAAAAL4QgAAMBCOAIAALAQjgAAACyEIwAAAAvhCAAAwEI4AgAAsBCOAAAALIQjAAAAC+EIAADAQjgCAACwEI4AAAAshCMAAAAL4QgAAMBCOAIAALAQjgAAACyEIwAAAAvhCAAAwEI4AgAAsBCOAAAALIQjAAAAC+EIAADAQjgCAACwEI4AAAAshCMAAAAL4QgAAMBCOAIAALAQjgAAACyEIwAAAAvhCAAAwEI4AgAAsBCOAAAALIQjAAAAS9jDUV5eni6//HL17NlTffv21cSJE1VSUtLsmIKCAjkcjgZLTExMiCoGAACRLOzhaNOmTcrOztann36qtWvXqra2Vtdcc42qq6ubHedyuXTs2LHAcujQoRBVDAAAIlnncBewZs2aBusFBQXq27eviouLddVVVwUd53A4lJCQ8KOO4ff75ff7A+s+n+/MigUAABEv7FeOTuf1eiVJvXr1arZfVVWVUlJSlJycrBtuuEF79uwJ2jcvL09utzuwJCcnt2rNAAAgcjiMMSbcRZxSX1+v66+/XpWVlfr444+D9isqKtIXX3yh4cOHy+v1aunSpdq8ebP27Nmjfv36Nerf1JWj5ORkeb1euVyuNpkLgNCrrpZ69Dj5uKpK6t49vPUAaF0+n09ut7vNX7/D/raaLTs7W7t37242GElSenq60tPTA+sZGRkaOnSoXnrpJS1evLhRf6fTKafT2er1AgCAyNNuwtHs2bP1/vvva/PmzU1e/WlOly5dNHLkSJWWlrZRdQAAoKMI+z1HxhjNnj1bb7/9tjZs2KCBAwe2eB91dXX6/PPPlZiY2AYVAgCAjiTsV46ys7P1+uuv65133lHPnj3l8XgkSW63W127dpUkTZs2Teeee67y8vIkSYsWLdIVV1yh8847T5WVlXriiSd06NAh3XHHHWGbBwAAiAxhD0cvvviiJGnMmDEN2vPz8zVjxgxJUllZmaKi/n6R669//atmzZolj8ejc845R6NGjVJhYaEuvPDCUJUNAAAiVLv6tFqohOpudwChxafVgMgWqtfvsN9zBAAA0J4QjgAAACyEIwAAAAvhCAAAwEI4AgAAsBCOAAAALIQjAAAAC+EIAADAQjgCAACwEI4AAAAshCMAAAAL4QgAAMBCOAIAALAQjgAAACyEIwAAAEvncBcAtKm6Oul//1c6dkxKTJSuvFLq1CncVQEA2jHCESLXqlXSPfdI5eV/b+vXT3rmGemmm8JXFwCgXeNtNUSmVauk//f/GgYjSTpy5GT7qlXhqQsA0O4RjhB56upOXjEypvG2U2333nuyHwAApyEcIfL87/82vmJkM0Y6fPhkPwAATkM4QuQ5dqx1+wEAOhTCESJPYmLr9gMAdCiEI0SeK688+ak0h6Pp7Q6HlJx8sh8AAKchHCHydOp08uP6UuOAdGp92TK+7wgA0CTCESLTTTdJf/iDdO65Ddv79TvZzvccAQCC4EsgEbluukm64Qa+IRsA0CKEI0S2Tp2kMWPCXQUA4CzC22oAAAAWwhEAAICFcAQAAGAhHAEAAFgIRwAAABbCEQAAgIVwBAAAYCEcAQAAWNpFOHrhhRc0YMAAxcTEKC0tTVu3bm22/8qVK5WamqqYmBhdfPHF+uCDD0JUKQAAiHRh/4bsN998Uzk5OVq+fLnS0tK0bNkyZWVlqaSkRH379m3Uv7CwUFOmTFFeXp6uu+46vf7665o4caJ27NihYcOGtejY1dX8kgQQSaqrm34MIDKE6u/aYYwxoTlU09LS0nT55Zfr+eeflyTV19crOTlZc+bM0bx58xr1v/nmm1VdXa33338/0HbFFVfokksu0fLly5s8ht/vl9/vD6z7fD4lJydL8kpytep8AABAW/FJcsvr9crlarvX77C+rVZTU6Pi4mJlZmYG2qKiopSZmamioqImxxQVFTXoL0lZWVlB+0tSXl6e3G53YDkZjAAAABoL69tqX3/9terq6hQfH9+gPT4+Xvv27WtyjMfjabK/x+MJepzc3Fzl5OQE1k9dOTp6VGrD4AkgxKqrpVNPDxUVUvfu4a0HQOvy+aSkpLY/TtjvOQoFp9Mpp9PZqL17d548gUjF3zcQeerqQnOcsL6t1qdPH3Xq1EkVFRUN2isqKpSQkNDkmISEhBb1BwAAaImwhqPo6GiNGjVK69evD7TV19dr/fr1Sk9Pb3JMenp6g/6StHbt2qD9AQAAWiLsb6vl5ORo+vTpuuyyyzR69GgtW7ZM1dXVuu222yRJ06ZN07nnnqu8vDxJ0j333KOrr75aTz75pCZMmKA33nhD27dv18svvxzOaQAAgAgR9nB0880366uvvtL8+fPl8Xh0ySWXaM2aNYGbrsvKyhQV9fcLXBkZGXr99df10EMP6cEHH9T555+v1atXt/g7jgAAAJoS9u85Cgefzye3u+2/JwFAaFVXSz16nHxcVcUN2UCkCdXrd7v4+RAAAID2gnAEAABgIRwBAABYCEcAAAAWwhEAAICFcAQAAGAhHAEAAFgIRwAAABbCEQAAgIVwBAAAYCEcAQAAWAhHAAAAFsIRAACAhXAEAABgIRwBAABYCEcAAAAWwhEAAICFcAQAAGAhHAEAAFgIRwAAABbCEQAAgIVwBAAAYCEcAQAAWAhHAAAAFsIRAACAhXAEAABgIRwBAABYCEcAAAAWwhEAAICFcAQAAGAhHAEAAFgIRwAAABbCEQAAgIVwBAAAYCEcAQAAWMIWjg4ePKiZM2dq4MCB6tq1qwYPHqwFCxaopqam2XFjxoyRw+FosNx1110hqhoAAES6zuE68L59+1RfX6+XXnpJ5513nnbv3q1Zs2apurpaS5cubXbsrFmztGjRosB6t27d2rpcAADQQYQtHI0fP17jx48PrA8aNEglJSV68cUXfzAcdevWTQkJCW1dIgAA6IDa1T1HXq9XvXr1+sF+r732mvr06aNhw4YpNzdX3333XbP9/X6/fD5fgwUAAKApYbtydLrS0lI999xzP3jV6NZbb1VKSoqSkpL02Wef6YEHHlBJSYlWrVoVdExeXp4WLlzY2iUDAIAI5DDGmNbc4bx58/TYY48122fv3r1KTU0NrB85ckRXX321xowZo//4j/9o0fE2bNigcePGqbS0VIMHD26yj9/vl9/vD6z7fD4lJyfL6/XK5XK16HgA2q/qaqlHj5OPq6qk7t3DWw+A1uXz+eR2u9v89bvVrxzNnTtXM2bMaLbPoEGDAo+PHj2qsWPHKiMjQy+//HKLj5eWliZJzYYjp9Mpp9PZ4n0DAICOp9XDUVxcnOLi4n5U3yNHjmjs2LEaNWqU8vPzFRXV8lugdu3aJUlKTExs8VgAAIDThe2G7CNHjmjMmDHq37+/li5dqq+++koej0cej6dBn9TUVG3dulWStH//fi1evFjFxcU6ePCg3n33XU2bNk1XXXWVhg8fHq6pAACACBK2G7LXrl2r0tJSlZaWql+/fg22nboNqra2ViUlJYFPo0VHR2vdunVatmyZqqurlZycrEmTJumhhx4Kef0AACAytfoN2WeDUN3QBSC0uCEbiGyhev1uV99zBAAAEG6EIwAAAAvhCAAAwEI4AgAAsBCOAAAALIQjAAAAC+EIAADAQjgCAACwEI4AAAAshCMAAAAL4QgAAMBCOAIAALAQjgAAACyEIwAAAAvhCAAAwEI4AgAAsBCOAAAALIQjAAAAC+EIAADAQjgCAACwEI4AAAAshCMAAAAL4QgAAMBCOAIAALAQjgAAACyEIwAAAAvhCAAAwEI4AgAAsBCOAAAALIQjAAAAC+EIAADAQjgCAACwEI4AAAAshCMAAAAL4QgAAMAS1nA0YMAAORyOBsuSJUuaHfP9998rOztbvXv3Vo8ePTRp0iRVVFSEqGIAABDpwn7laNGiRTp27FhgmTNnTrP977vvPr333ntauXKlNm3apKNHj+qmm24KUbUAACDSdQ53AT179lRCQsKP6uv1erVixQq9/vrr+vnPfy5Jys/P19ChQ/Xpp5/qiiuuaMtSAQBABxD2K0dLlixR7969NXLkSD3xxBM6ceJE0L7FxcWqra1VZmZmoC01NVX9+/dXUVFR0HF+v18+n6/BAgAA0JSwXjn67W9/q0svvVS9evVSYWGhcnNzdezYMT311FNN9vd4PIqOjlZsbGyD9vj4eHk8nqDHycvL08KFC1uzdAAAEKFa/crRvHnzGt1kffqyb98+SVJOTo7GjBmj4cOH66677tKTTz6p5557Tn6/v1Vrys3NldfrDSyHDx9u1f0DAIDI0epXjubOnasZM2Y022fQoEFNtqelpenEiRM6ePCghgwZ0mh7QkKCampqVFlZ2eDqUUVFRbP3LTmdTjmdzh9VPwAA6NhaPRzFxcUpLi7ujMbu2rVLUVFR6tu3b5PbR40apS5dumj9+vWaNGmSJKmkpERlZWVKT08/45oBAABOCds9R0VFRdqyZYvGjh2rnj17qqioSPfdd59+9atf6ZxzzpEkHTlyROPGjdN//ud/avTo0XK73Zo5c6ZycnLUq1cvuVwuzZkzR+np6XxSDQAAtIqwhSOn06k33nhDjzzyiPx+vwYOHKj77rtPOTk5gT61tbUqKSnRd999F2h7+umnFRUVpUmTJsnv9ysrK0v//u//Ho4pAACACOQwxphwFxFqPp9PbrdbXq9XLpcr3OUAaCXV1VKPHicfV1VJ3buHtx4ArStUr99h/54jAACA9oRwBAAAYCEcAQAAWAhHAAAAFsIRAACAhXAEAABgIRwBAABYCEcAAAAWwhEAAICFcAQAAGAhHAEAAFgIRwAAABbCEQAAgIVwBAAAYCEcAQAAWAhHAAAAFsIRAACAhXAEAABgIRwBAABYCEcAAAAWwhEAAICFcAQAAGAhHAEAAFgIRwAAABbCEQAAgIVwBAAAYCEcAQAAWAhHAAAAFsIRAACAhXAEAABgIRwBAABYCEcAAAAWwhEAAICFcAQAAGAhHAEAAFjCFo42btwoh8PR5LJt27ag48aMGdOo/1133RXCygEAQCTrHK4DZ2Rk6NixYw3aHn74Ya1fv16XXXZZs2NnzZqlRYsWBda7devWJjUCAICOJ2zhKDo6WgkJCYH12tpavfPOO5ozZ44cDkezY7t169ZgLAAAQGtpN/ccvfvuu/rmm2902223/WDf1157TX369NGwYcOUm5ur7777rtn+fr9fPp+vwQIAANCUsF05Ot2KFSuUlZWlfv36Ndvv1ltvVUpKipKSkvTZZ5/pgQceUElJiVatWhV0TF5enhYuXNjaJQMAgAjkMMaY1tzhvHnz9NhjjzXbZ+/evUpNTQ2sl5eXKyUlRW+99ZYmTZrUouNt2LBB48aNU2lpqQYPHtxkH7/fL7/fH1j3+XxKTk6W1+uVy+Vq0fEAtF/V1VKPHicfV1VJ3buHtx4Arcvn88ntdrf563erXzmaO3euZsyY0WyfQYMGNVjPz89X7969df3117f4eGlpaZLUbDhyOp1yOp0t3jcAAOh4Wj0cxcXFKS4u7kf3N8YoPz9f06ZNU5cuXVp8vF27dkmSEhMTWzwWAADgdGG/IXvDhg06cOCA7rjjjkbbjhw5otTUVG3dulWStH//fi1evFjFxcU6ePCg3n33XU2bNk1XXXWVhg8fHurSAQBABAr7DdkrVqxQRkZGg3uQTqmtrVVJSUng02jR0dFat26dli1bpurqaiUnJ2vSpEl66KGHQl02AACIUK1+Q/bZIFQ3dAEILW7IBiJbqF6/w/62GgAAQHtCOAIAALAQjgAAACyEIwAAAAvhCAAAwEI4AgAAsBCOAAAALIQjAAAAC+EIAADAQjgCAACwEI4AAAAshCMAAAAL4QgAAMBCOAIAALAQjgAAACyEIwAAAAvhCAAAwEI4AgAAsBCOAAAALIQjAAAAC+EIAADAQjgCAACwEI4AAAAshCMAAAAL4QgAAMBCOAIAALAQjgAAACyEIwAAAAvhCAAAwEI4AgAAsBCOAAAALIQjAAAAC+EIAADAQjgCAACwEI4AAAAshCMAAABLm4WjRx99VBkZGerWrZtiY2Ob7FNWVqYJEyaoW7du6tu3r+6//36dOHGi2f0eP35cU6dOlcvlUmxsrGbOnKmqqqo2mAEAAOiI2iwc1dTUaPLkybr77rub3F5XV6cJEyaopqZGhYWFeuWVV1RQUKD58+c3u9+pU6dqz549Wrt2rd5//31t3rxZd955Z1tMAQAAdEAOY4xpywMUFBTo3nvvVWVlZYP2P/7xj7ruuut09OhRxcfHS5KWL1+uBx54QF999ZWio6Mb7Wvv3r268MILtW3bNl122WWSpDVr1ugXv/iFysvLlZSU1GQNfr9ffr8/sO71etW/f38dPnxYLperlWYKINyqq6VTTwNHj0rdu4e3HgCty+fzKTk5WZWVlXK73W13INPG8vPzjdvtbtT+8MMPmxEjRjRo+8tf/mIkmR07djS5rxUrVpjY2NgGbbW1taZTp05m1apVQWtYsGCBkcTCwsLCwsISAcv+/ftbnEdaorPCxOPxBK4YnXJq3ePxBB3Tt2/fBm2dO3dWr169go6RpNzcXOXk5ATWKysrlZKSorKysrZNnu3MqcTd0a6YMW/m3REwb+bdEZx656dXr15tepwWhaN58+bpsccea7bP3r17lZqa+pOKam1Op1NOp7NRu9vt7lD/qU5xuVzMuwNh3h0L8+5YOuq8o6La9sP2LQpHc+fO1YwZM5rtM2jQoB+1r4SEBG3durVBW0VFRWBbsDFffvllg7YTJ07o+PHjQccAAAC0RIvCUVxcnOLi4lrlwOnp6Xr00Uf15ZdfBt4qW7t2rVwuly688MKgYyorK1VcXKxRo0ZJkjZs2KD6+nqlpaW1Sl0AAKBja7PrUmVlZdq1a5fKyspUV1enXbt2adeuXYHvJLrmmmt04YUX6te//rX+9Kc/6cMPP9RDDz2k7OzswFtgW7duVWpqqo4cOSJJGjp0qMaPH69Zs2Zp69at+uSTTzR79mzdcsstQT+p1hSn06kFCxY0+VZbJGPezLsjYN7MuyNg3m077zb7KP+MGTP0yiuvNGr/6KOPNGbMGEnSoUOHdPfdd2vjxo3q3r27pk+friVLlqhz55MXtDZu3KixY8fqwIEDGjBggKSTXwI5e/Zsvffee4qKitKkSZP07LPPqkePHm0xDQAA0MG0+fccAQAAnE34bTUAAAAL4QgAAMBCOAIAALAQjgAAACwRGY4effRRZWRkqFu3boqNjW2yT1lZmSZMmKBu3bqpb9++uv/++3XixIlm93v8+HFNnTpVLpdLsbGxmjlzZuCrCdqjjRs3yuFwNLls27Yt6LgxY8Y06n/XXXeFsPKfbsCAAY3msGTJkmbHfP/998rOzlbv3r3Vo0cPTZo0KfDFpGeDgwcPaubMmRo4cKC6du2qwYMHa8GCBaqpqWl23Nl4vl944QUNGDBAMTExSktLa/SFsqdbuXKlUlNTFRMTo4svvlgffPBBiCptHXl5ebr88svVs2dP9e3bVxMnTlRJSUmzYwoKChqd15iYmBBV3DoeeeSRRnP4oV9gONvPtdT085fD4VB2dnaT/c/Wc71582b98pe/VFJSkhwOh1avXt1guzFG8+fPV2Jiorp27arMzEx98cUXP7jflj4/NCUiw1FNTY0mT56su+++u8ntdXV1mjBhgmpqalRYWKhXXnlFBQUFmj9/frP7nTp1qvbs2aO1a9fq/fff1+bNm3XnnXe2xRRaRUZGho4dO9ZgueOOOzRw4EBddtllzY6dNWtWg3GPP/54iKpuPYsWLWowhzlz5jTb/7777tN7772nlStXatOmTTp69KhuuummEFX70+3bt0/19fV66aWXtGfPHj399NNavny5HnzwwR8cezad7zfffFM5OTlasGCBduzYoREjRigrK6vRt+efUlhYqClTpmjmzJnauXOnJk6cqIkTJ2r37t0hrvzMbdq0SdnZ2fr000+1du1a1dbW6pprrlF1dXWz41wuV4PzeujQoRBV3HouuuiiBnP4+OOPg/aNhHMtSdu2bWsw57Vr10qSJk+eHHTM2Xiuq6urNWLECL3wwgtNbn/88cf17LPPavny5dqyZYu6d++urKwsff/990H32dLnh6Da9Gdtwyw/P9+43e5G7R988IGJiooyHo8n0Pbiiy8al8tl/H5/k/v685//bCSZbdu2Bdr++Mc/GofDYY4cOdLqtbeFmpoaExcXZxYtWtRsv6uvvtrcc889oSmqjaSkpJinn376R/evrKw0Xbp0MStXrgy07d2710gyRUVFbVBhaDz++ONm4MCBzfY528736NGjTXZ2dmC9rq7OJCUlmby8vCb7/9M//ZOZMGFCg7a0tDTzm9/8pk3rbEtffvmlkWQ2bdoUtE+w57+zyYIFC8yIESN+dP9IPNfGGHPPPfeYwYMHm/r6+ia3R8K5lmTefvvtwHp9fb1JSEgwTzzxRKCtsrLSOJ1O81//9V9B99PS54dgIvLK0Q8pKirSxRdfrPj4+EBbVlaWfD6f9uzZE3RMbGxsgysumZmZioqK0pYtW9q85tbw7rvv6ptvvtFtt932g31fe+019enTR8OGDVNubq6+++67EFTYupYsWaLevXtr5MiReuKJJ5p927S4uFi1tbXKzMwMtKWmpqp///4qKioKRbltwuv1/qhfrz5bzndNTY2Ki4sbnKeoqChlZmYGPU9FRUUN+ksn/97P9vMq6QfPbVVVlVJSUpScnKwbbrgh6PNbe/bFF18oKSlJgwYN0tSpU1VWVha0bySe65qaGr366qu6/fbb5XA4gvaLhHNtO3DggDweT4Pz6Xa7lZaWFvR8nsnzQzAt+m21SOHxeBoEI0mBdY/HE3TMqd+AO6Vz587q1atX0DHtzYoVK5SVlaV+/fo12+/WW29VSkqKkpKS9Nlnn+mBBx5QSUmJVq1aFaJKf7rf/va3uvTSS9WrVy8VFhYqNzdXx44d01NPPdVkf4/Ho+jo6Eb3qMXHx5815/d0paWleu6557R06dJm+51N5/vrr79WXV1dk3+/+/bta3JMsL/3s/W81tfX695779U//MM/aNiwYUH7DRkyRL///e81fPhweb1eLV26VBkZGdqzZ88PPge0F2lpaSooKNCQIUN07NgxLVy4UFdeeaV2796tnj17NuofaedaklavXq3Kyspmf/Q9Es716U6ds5aczzN5fgjmrAlH8+bN02OPPdZsn7179/7gzXqR4Ez+LcrLy/Xhhx/qrbfe+sH92/dRXXzxxUpMTNS4ceO0f/9+DR48+MwL/4laMu+cnJxA2/DhwxUdHa3f/OY3ysvLO+t+i+hMzveRI0c0fvx4TZ48WbNmzWp2bHs932hadna2du/e3ey9N9LJH+pOT08PrGdkZGjo0KF66aWXtHjx4rYus1Vce+21gcfDhw9XWlqaUlJS9NZbb2nmzJlhrCx0VqxYoWuvvbbZ3w+NhHPd3pw14Wju3LnNJmdJGjRo0I/aV0JCQqO71099KikhISHomNNv6Dpx4oSOHz8edExbOZN/i/z8fPXu3VvXX399i4+XlpYm6eSViHC+WP6U/wNpaWk6ceKEDh48qCFDhjTanpCQoJqaGlVWVja4elRRURHy83u6ls776NGjGjt2rDIyMvTyyy+3+Hjt5Xw3pU+fPurUqVOjTxE2d54SEhJa1L89mz17duDDIC29ItClSxeNHDlSpaWlbVRd24uNjdUFF1wQdA6RdK6lk78/um7duhZfxY2Ec33qnFVUVCgxMTHQXlFRoUsuuaTJMWfy/BBUi+5QOsv80A3ZFRUVgbaXXnrJuFwu8/333ze5r1M3ZG/fvj3Q9uGHH54VN2TX19ebgQMHmrlz557R+I8//thIMn/6059aubLQefXVV01UVJQ5fvx4k9tP3ZD9hz/8IdC2b9++s+6G7PLycnP++eebW265xZw4ceKM9tHez/fo0aPN7NmzA+t1dXXm3HPPbfaG7Ouuu65BW3p6+ll1k259fb3Jzs42SUlJ5v/+7//OaB8nTpwwQ4YMMffdd18rVxc63377rTnnnHPMM8880+T2SDjXtgULFpiEhARTW1vbonFn47lWkBuyly5dGmjzer0/6obsljw/BK2nRb3PEocOHTI7d+40CxcuND169DA7d+40O3fuNN9++60x5uR/nGHDhplrrrnG7Nq1y6xZs8bExcWZ3NzcwD62bNlihgwZYsrLywNt48ePNyNHjjRbtmwxH3/8sTn//PPNlClTQj6/llq3bp2RZPbu3dtoW3l5uRkyZIjZsmWLMcaY0tJSs2jRIrN9+3Zz4MAB884775hBgwaZq666KtRln7HCwkLz9NNPm127dpn9+/ebV1991cTFxZlp06YF+pw+b2OMueuuu0z//v3Nhg0bzPbt2016erpJT08PxxTOSHl5uTnvvPPMuHHjTHl5uTl27Fhgsfuc7ef7jTfeME6n0xQUFJg///nP5s477zSxsbGBT5/++te/NvPmzQv0/+STT0znzp3N0qVLzd69e82CBQtMly5dzOeffx6uKbTY3Xffbdxut9m4cWOD8/rdd98F+pw+74ULF5oPP/zQ7N+/3xQXF5tbbrnFxMTEmD179oRjCmdk7ty5ZuPGjebAgQPmk08+MZmZmaZPnz7myy+/NMZE5rk+pa6uzvTv39888MADjbZFyrn+9ttvA6/PksxTTz1ldu7caQ4dOmSMMWbJkiUmNjbWvPPOO+azzz4zN9xwgxk4cKD529/+FtjHz3/+c/Pcc88F1n/o+eHHishwNH36dCOp0fLRRx8F+hw8eNBce+21pmvXrqZPnz5m7ty5DdL5Rx99ZCSZAwcOBNq++eYbM2XKFNOjRw/jcrnMbbfdFghc7dmUKVNMRkZGk9sOHDjQ4N+mrKzMXHXVVaZXr17G6XSa8847z9x///3G6/WGsOKfpri42KSlpRm3221iYmLM0KFDzb/92781uCp4+ryNMeZvf/ub+ed//mdzzjnnmG7dupkbb7yxQbBo7/Lz85v8f29fII6U8/3cc8+Z/v37m+joaDN69Gjz6aefBrZdffXVZvr06Q36v/XWW+aCCy4w0dHR5qKLLjL//d//HeKKf5pg5zU/Pz/Q5/R533vvvYF/o/j4ePOLX/zC7NixI/TF/wQ333yzSUxMNNHR0ebcc881N998syktLQ1sj8RzfcqHH35oJJmSkpJG2yLlXJ96nT19OTW3+vp68/DDD5v4+HjjdDrNuHHjGv17pKSkmAULFjRoa+754cdyGGNMy96IAwAAiFwd8nuOAAAAgiEcAQAAWAhHAAAAFsIRAACAhXAEAABgIRwBAABYCEcAAAAWwhEAAICFcAQAAGAhHAEAAFgIRwAAAJb/DxFJ8TPXxBgfAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " \n", + "Code test passed\n", + "Go on to the next step\n" + ] + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "xmin = -10\n", + "xmax = 10\n", + "ymin = -10\n", + "ymax = 10\n", + "\n", + "fig, ax = plt.subplots()\n", + "plt.axis([xmin,xmax,ymin,ymax]) # window size\n", + "plt.plot([xmin,xmax],[0,0],'b') # blue x axis\n", + "plt.plot([0,0],[ymin,ymax], 'b') # blue y axis\n", + "\n", + "# Change only the numbers in the following line:\n", + "plt.plot([-5],[1], 'ro')\n", + "\n", + "plt.show()\n", + "\n", + "\n", + "# Only change code above this line\n", + "import math_code_test_b as test\n", + "test.step05(In[-1].split('# Only change code above this line')[0])" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "ExVB2joZF0rk" + }, + "source": [ + "# Step 6 - Plotting Several Points" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "G48kO0jcF0rl" + }, + "source": [ + "You have actually been using arrays to plot each singular point so far. In this step, you will see an array of x values and an array of y values defined before the plot statement. Notice that these two short arrays create one point: (4,2). Add two numbers to each array so that it also plots points (1,1) and (2,5)." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "id": "YkRIMNimF0rm" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkcAAAGiCAYAAADtImJbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAsvElEQVR4nO3de3gUVYL+8bcDpMMtiUDIBUK4qARFLoMSk9+gMGSNDo4gDIvIDKCIoxsYNYwr8VEQXDeoqIyOK/osk7iPuio+iJd1cLkIqIncGYWBrGGAEEjihUnaxLETkvP7I096TpMLBDvdSef7eZ567Dp1TtU5FHS/Vp2udhhjjAAAACBJCgl0BwAAANoSwhEAAICFcAQAAGAhHAEAAFgIRwAAABbCEQAAgIVwBAAAYCEcAQAAWAhHAAAAFsIRAACApVXD0fbt2/WLX/xCcXFxcjgcWr9+vdd2Y4yWLFmi2NhYde3aVampqfryyy/Pud/nn39eAwcOVFhYmJKSkrRz585WGgEAAOhoWjUcVVZWauTIkXr++ecb3f7EE0/o2Wef1erVq7Vjxw51795daWlp+uGHH5rc5xtvvKGMjAwtXbpUe/fu1ciRI5WWlqavvvqqtYYBAAA6EIe/fnjW4XDo7bff1pQpUyTVXTWKi4vTokWL9Lvf/U6SVF5erujoaOXk5OiWW25pdD9JSUm66qqr9Ic//EGSVFtbq/j4eC1cuFCLFy/2x1AAAEAQ6xyoAx89elQlJSVKTU31lEVERCgpKUl5eXmNhqOqqirt2bNHmZmZnrKQkBClpqYqLy+vyWO53W653W7Pem1trU6fPq3evXvL4XD4aEQAAKA1GWP03XffKS4uTiEhrXfzK2DhqKSkRJIUHR3tVR4dHe3ZdrZvvvlGNTU1jbY5fPhwk8fKysrSsmXLfmSPAQBAW3DixAn179+/1fYfsHDkT5mZmcrIyPCsl5eXa8CAATpx4oTCw8MD2DMAvlRZKcXF1b0+dUrq3j2w/QHgWy6XS/Hx8erZs2erHidg4SgmJkaSVFpaqtjYWE95aWmpRo0a1WibPn36qFOnTiotLfUqLy0t9eyvMU6nU06ns0F5eHg44QgIIp06/eN1eDjhCAhWrT0lJmDPORo0aJBiYmK0efNmT5nL5dKOHTuUnJzcaJvQ0FCNGTPGq01tba02b97cZBsAAICWaNUrRxUVFSooKPCsHz16VPv371evXr00YMAA3Xvvvfq3f/s3XXLJJRo0aJAefvhhxcXFeb7RJkkTJ07UzTffrAULFkiSMjIyNGfOHF155ZUaO3asVq1apcrKSt12222tORQAANBBtGo42r17tyZMmOBZr5/3M2fOHOXk5Ohf//VfVVlZqTvvvFNlZWX66U9/qg0bNigsLMzT5siRI/rmm2886zNmzNDXX3+tJUuWqKSkRKNGjdKGDRsaTNIGAAC4EH57zlFb4nK5FBERofLycuYcAUGkslLq0aPudUUFc46AYOOvz29+Ww0AAMBCOAIAALAQjgAAACyEIwAAAAvhCAAAwEI4AgAAsBCOAAAALIQjAAAAC+EIAADAQjgCAACwEI4AAAAshCMAAAAL4QgAAMBCOAIAALAQjgAAACyEIwAAAAvhCAAAwEI4AgAAsBCOAAAALIQjAAAAC+EIAADAQjgCAACwEI4AAAAshCMAAAAL4QgAAMBCOAIAALAQjgAAACyEIwAAAAvhCAAAwEI4AgAAsBCOAAAALIQjAAAAC+EIAADAQjgCAACwEI4AAAAsAQ9HAwcOlMPhaLCkp6c3Wj8nJ6dB3bCwMD/3GgAABKvOge7Arl27VFNT41k/cOCA/umf/knTp09vsk14eLjy8/M96w6Ho1X7CAAAOo6Ah6OoqCiv9RUrVmjIkCG69tprm2zjcDgUExPT2l0DAAAdUMBvq9mqqqr0yiuv6Pbbb2/2alBFRYUSEhIUHx+vyZMn6+DBg83u1+12y+VyeS0AAACNaVPhaP369SorK9PcuXObrDN06FD98Y9/1DvvvKNXXnlFtbW1SklJUVFRUZNtsrKyFBER4Vni4+NbofcAACAYOIwxJtCdqJeWlqbQ0FC99957592murpaw4YN08yZM/Xoo482WsftdsvtdnvWXS6X4uPjVV5ervDw8B/dbwBtQ2Wl1KNH3euKCql798D2B4BvuVwuRUREtPrnd8DnHNU7fvy4Nm3apHXr1rWoXZcuXTR69GgVFBQ0WcfpdMrpdP7YLgIAgA6gzdxWy87OVt++fTVp0qQWtaupqdEXX3yh2NjYVuoZAADoSNpEOKqtrVV2drbmzJmjzp29L2bNnj1bmZmZnvXly5frf//3f/XXv/5Ve/fu1a9+9SsdP35cd9xxh7+7DQAAglCbuK22adMmFRYW6vbbb2+wrbCwUCEh/8hwf/vb3zR//nyVlJTooosu0pgxY5Sbm6vLLrvMn10GAABBqk1NyPYXf03oAuBfTMgGgpu/Pr/bxG01AACAtoJwBAAAYCEcAQAAWAhHAAAAFsIRAACAhXAEAABgIRwBAABYCEcAAAAWwhEAAICFcAQAAGAhHAEAAFgIRwAAABbCEQAAgIVwBAAAYCEcAQAAWAhHAAAAFsIRAACAhXAEAABgIRwBAABYCEcAAAAWwhEAAICFcAQAAGAhHAEAAFgIRwAAABbCEQAAgIVwBAAAYCEcAQAAWAhHAAAAFsIRAACAhXAEAABgIRwBAABYCEcAAAAWwhEAAICFcAQAAGDpHOgOAADOUlMjffyxVFwsxcZK48ZJnToFuldAhxHwK0ePPPKIHA6H15KYmNhsm7Vr1yoxMVFhYWG64oor9MEHH/iptwDQytatkwYOlCZMkG69te6/AwfWlQPwi4CHI0m6/PLLVVxc7Fk++eSTJuvm5uZq5syZmjdvnvbt26cpU6ZoypQpOnDggB97DACtYN066Ze/lIqKvMtPnqwrJyABfuEwxphAduCRRx7R+vXrtX///vOqP2PGDFVWVur999/3lF199dUaNWqUVq9efV77cLlcioiIUHl5ucLDwy+k2wDaoMpKqUePutcVFVL37oHtT4vU1NRdITo7GNVzOKT+/aWjR7nFhg7LX5/fbeLK0Zdffqm4uDgNHjxYs2bNUmFhYZN18/LylJqa6lWWlpamvLy8Jtu43W65XC6vBQDalI8/bjoYSZIx0okTdfUAtKqAh6OkpCTl5ORow4YNeuGFF3T06FGNGzdO3333XaP1S0pKFB0d7VUWHR2tkpKSJo+RlZWliIgIzxIfH+/TMQDAj1Zc7Nt6AC5YwMPRDTfcoOnTp2vEiBFKS0vTBx98oLKyMr355ps+O0ZmZqbKy8s9y4kTJ3y2bwDwidhY39YDcMHa3Ff5IyMjdemll6qgoKDR7TExMSotLfUqKy0tVUxMTJP7dDqdcjqdPu0nAPjUuHF1c4pOnqy7hXa2+jlH48b5v29ABxPwK0dnq6io0JEjRxTbxP8dJScna/PmzV5lGzduVHJysj+6BwCto1Mn6fe/r3vtcHhvq19ftYrJ2IAfBDwc/e53v9O2bdt07Ngx5ebm6uabb1anTp00c+ZMSdLs2bOVmZnpqX/PPfdow4YNeuqpp3T48GE98sgj2r17txYsWBCoIQCAb0ydKr31ltSvn3d5//515VOnBqZfQAcT8NtqRUVFmjlzpr799ltFRUXppz/9qT777DNFRUVJkgoLCxUS8o8Ml5KSotdee00PPfSQHnzwQV1yySVav369hg8fHqghAIDvTJ0qTZ7ME7KBAAr4c44CgeccAcGpXT/nCMA5dajnHAEAALQVhCMAAAAL4QgAAMBCOAIAALAQjgAAACyEIwAAAAvhCAAAwEI4AgAAsBCOAAAALIQjAAAAC+EIAADAQjgCAACwEI4AAAAshCMAAAAL4QgAAMBCOAIAALAQjgAAACyEIwAAAAvhCAAAwEI4AgAAsBCOAAAALIQjAAAAC+EIAADAQjgCAACwEI4AAAAshCMAAAAL4QgAAMBCOAIAALAQjgAAACyEIwAAAAvhCAAAwEI4AgAAsBCOAAAALIQjAAAAC+EIAADAQjgCAACwBDwcZWVl6aqrrlLPnj3Vt29fTZkyRfn5+c22ycnJkcPh8FrCwsL81GMAABDMAh6Otm3bpvT0dH322WfauHGjqqurdd1116mysrLZduHh4SouLvYsx48f91OPAQBAMOsc6A5s2LDBaz0nJ0d9+/bVnj17dM011zTZzuFwKCYm5ryO4Xa75Xa7Pesul+vCOgsAAIJewK8cna28vFyS1KtXr2brVVRUKCEhQfHx8Zo8ebIOHjzYZN2srCxFRER4lvj4eJ/2GQAABA+HMcYEuhP1amtrddNNN6msrEyffPJJk/Xy8vL05ZdfasSIESovL9fKlSu1fft2HTx4UP37929Qv7ErR/Hx8SovL1d4eHirjAWA/1VWSj161L2uqJC6dw9sfwD4lsvlUkRERKt/fgf8tpotPT1dBw4caDYYSVJycrKSk5M96ykpKRo2bJhefPFFPfroow3qO51OOZ1On/cXAAAEnzYTjhYsWKD3339f27dvb/TqT3O6dOmi0aNHq6CgoJV6BwAAOoqAzzkyxmjBggV6++23tWXLFg0aNKjF+6ipqdEXX3yh2NjYVughAADoSAJ+5Sg9PV2vvfaa3nnnHfXs2VMlJSWSpIiICHXt2lWSNHv2bPXr109ZWVmSpOXLl+vqq6/WxRdfrLKyMj355JM6fvy47rjjjoCNAwBgqamRPv5YKi6WYmOlceOkTp0C3SvgvAQ8HL3wwguSpPHjx3uVZ2dna+7cuZKkwsJChYT84yLX3/72N82fP18lJSW66KKLNGbMGOXm5uqyyy7zV7cBAE1Zt0665x6pqOgfZf37S7//vTR1auD6BZynNvVtNX/x12x3AP7Ft9XagHXrpF/+Ujr7o8XhqPvvW28RkHDB/PX5HfA5RwCAIFFTU3fFqLH/564vu/feunpAG0Y4AgD4xscfe99KO5sx0okTdfWANoxwBADwjeJi39YDAoRwBADwjfN9nAqPXUEbRzgCAPjGuHF130qrn3x9NodDio+vqwe0YYQjAIBvdOpU93V9qWFAql9ftYrnHaHNIxwBAHxn6tS6r+v36+dd3r8/X+NHuxHwh0ACAILM1KnS5Mk8IRvtFuEIAOB7nTpJZ/3yAdBecFsNAADAQjgCAACwEI4AAAAshCMAAAAL4QgAAMBCOAIAALDwVX4AaImaGp7fAwQ5whEAnK9166R77pGKiv5R1r9/3U9m8ORnIGhwWw0Azse6ddIvf+kdjCTp5Mm68nXrAtMvAD5HOAKAc6mpqbtiZEzDbfVl995bVw9Au0c4AoBz+fjjhleMbMZIJ07U1QPQ7hGOAOBciot9Ww9Am0Y4AoBziY31bT0AbRrhCADOZdy4um+lORyNb3c4pPj4unoA2j3CEQCcS6dOdV/XlxoGpPr1Vat43hEQJAhHAHA+pk6V3npL6tfPu7x//7pynnMEBA0eAgkA52vqVGnyZJ6QDQQ5whEAtESnTtL48YHuBYBWxG01AAAAC+EIAADAQjgCAACwEI4AAAAshCMAAAAL4QgAAMBCOAIAALAQjgAAACxtIhw9//zzGjhwoMLCwpSUlKSdO3c2W3/t2rVKTExUWFiYrrjiCn3wwQd+6ikAAAh2AX9C9htvvKGMjAytXr1aSUlJWrVqldLS0pSfn6++ffs2qJ+bm6uZM2cqKytLN954o1577TVNmTJFe/fu1fDhw1t07MpKnvoPBJPKysZfAwgO/vp37TDGGP8cqnFJSUm66qqr9Ic//EGSVFtbq/j4eC1cuFCLFy9uUH/GjBmqrKzU+++/7ym7+uqrNWrUKK1evbrRY7jdbrndbs+6y+VSfHy8pHJJ4T4dDwAAaC0uSREqLy9XeHjrfX4H9LZaVVWV9uzZo9TUVE9ZSEiIUlNTlZeX12ibvLw8r/qSlJaW1mR9ScrKylJERIRnqQtGAAAADQX0tto333yjmpoaRUdHe5VHR0fr8OHDjbYpKSlptH5JSUmTx8nMzFRGRoZnvf7K0alTUisGTwB+Vlkp1b89lJZK3bsHtj8AfMvlkuLiWv84AZ9z5A9Op1NOp7NBeffuvHkCwYp/30Dwqanxz3ECelutT58+6tSpk0pLS73KS0tLFRMT02ibmJiYFtUHAABoiYCGo9DQUI0ZM0abN2/2lNXW1mrz5s1KTk5utE1ycrJXfUnauHFjk/UBAABaIuC31TIyMjRnzhxdeeWVGjt2rFatWqXKykrddtttkqTZs2erX79+ysrKkiTdc889uvbaa/XUU09p0qRJev3117V792699NJLgRwGAAAIEgEPRzNmzNDXX3+tJUuWqKSkRKNGjdKGDRs8k64LCwsVEvKPC1wpKSl67bXX9NBDD+nBBx/UJZdcovXr17f4GUcAAACNCfhzjgLB5XIpIqL1n5MAwL8qK6UePepeV1QwIRsINv76/G4TPx8CAADQVhCOAAAALIQjAAAAC+EIAADAQjgCAACwEI4AAAAshCMAAAAL4QgAAMBCOAIAALAQjgAAACyEIwAAAAvhCAAAwEI4AgAAsBCOAAAALIQjAAAAC+EIAADAQjgCAACwEI4AAAAshCMAAAAL4QgAAMBCOAIAALAQjgAAACyEIwAAAAvhCAAAwEI4AgAAsBCOAAAALIQjAAAAC+EIAADAQjgCAACwEI4AAAAshCMAAAAL4QgAAMBCOAIAALAQjgAAACyEIwAAAEvAwtGxY8c0b948DRo0SF27dtWQIUO0dOlSVVVVNdtu/PjxcjgcXstdd93lp14DAIBg1zlQBz58+LBqa2v14osv6uKLL9aBAwc0f/58VVZWauXKlc22nT9/vpYvX+5Z79atW2t3FwAAdBABC0fXX3+9rr/+es/64MGDlZ+frxdeeOGc4ahbt26KiYlp7S4CAIAOqE3NOSovL1evXr3OWe/VV19Vnz59NHz4cGVmZur7779vtr7b7ZbL5fJaAAAAGhOwK0dnKygo0HPPPXfOq0a33nqrEhISFBcXp88//1wPPPCA8vPztW7duibbZGVladmyZb7uMgAACEIOY4zx5Q4XL16sxx9/vNk6hw4dUmJiomf95MmTuvbaazV+/Hj953/+Z4uOt2XLFk2cOFEFBQUaMmRIo3Xcbrfcbrdn3eVyKT4+XuXl5QoPD2/R8QC0XZWVUo8eda8rKqTu3QPbHwC+5XK5FBER0eqf3z6/crRo0SLNnTu32TqDBw/2vD516pQmTJiglJQUvfTSSy0+XlJSkiQ1G46cTqecTmeL9w0AADoen4ejqKgoRUVFnVfdkydPasKECRozZoyys7MVEtLyKVD79++XJMXGxra4LQAAwNkCNiH75MmTGj9+vAYMGKCVK1fq66+/VklJiUpKSrzqJCYmaufOnZKkI0eO6NFHH9WePXt07Ngxvfvuu5o9e7auueYajRgxIlBDAQAAQSRgE7I3btyogoICFRQUqH///l7b6qdBVVdXKz8/3/NttNDQUG3atEmrVq1SZWWl4uPjNW3aND300EN+7z8AAAhOPp+Q3R74a0IXAP9iQjYQ3Pz1+d2mnnMEAAAQaIQjAAAAC+EIAADAQjgCAACwEI4AAAAshCMAAAAL4QgAAMBCOAIAALAQjgAAACyEIwAAAAvhCAAAwEI4AgAAsBCOAAAALIQjAAAAC+EIAADAQjgCAACwEI4AAAAshCMAAAAL4QgAAMBCOAIAALAQjgAAACyEIwAAAAvhCAAAwEI4AgAAsBCOAAAALIQjAAAAC+EIAADAQjgCAACwEI4AAAAshCMAAAAL4QgAAMBCOAIAALAQjgAAACyEIwAAAAvhCAAAwBLQcDRw4EA5HA6vZcWKFc22+eGHH5Senq7evXurR48emjZtmkpLS/3UYwAAEOwCfuVo+fLlKi4u9iwLFy5stv59992n9957T2vXrtW2bdt06tQpTZ061U+9BQAAwa5zoDvQs2dPxcTEnFfd8vJyrVmzRq+99pp+9rOfSZKys7M1bNgwffbZZ7r66qtbs6sAAKADCPiVoxUrVqh3794aPXq0nnzySZ05c6bJunv27FF1dbVSU1M9ZYmJiRowYIDy8vKabOd2u+VyubwWAACAxgT0ytFvf/tb/eQnP1GvXr2Um5urzMxMFRcX6+mnn260fklJiUJDQxUZGelVHh0drZKSkiaPk5WVpWXLlvmy6wAAIEj5/MrR4sWLG0yyPns5fPiwJCkjI0Pjx4/XiBEjdNddd+mpp57Sc889J7fb7dM+ZWZmqry83LOcOHHCp/sHAADBw+dXjhYtWqS5c+c2W2fw4MGNliclJenMmTM6duyYhg4d2mB7TEyMqqqqVFZW5nX1qLS0tNl5S06nU06n87z6DwAAOjafh6OoqChFRUVdUNv9+/crJCREffv2bXT7mDFj1KVLF23evFnTpk2TJOXn56uwsFDJyckX3GcAAIB6AZtzlJeXpx07dmjChAnq2bOn8vLydN999+lXv/qVLrroIknSyZMnNXHiRP3Xf/2Xxo4dq4iICM2bN08ZGRnq1auXwsPDtXDhQiUnJ/NNNQAA4BMBC0dOp1Ovv/66HnnkEbndbg0aNEj33XefMjIyPHWqq6uVn5+v77//3lP2zDPPKCQkRNOmTZPb7VZaWpr+4z/+IxBDAAAAQchhjDGB7oS/uVwuRUREqLy8XOHh4YHuDgAfqayUevSoe11RIXXvHtj+APAtf31+B/w5RwAAAG0J4QgAAMBCOAIAALAQjgAAACyEIwAAAAvhCAAAwEI4AgAAsBCOAAAALIQjAAAAC+EIAADAQjgCAACwEI4AAAAshCMAAAAL4QgAAMBCOAIAALAQjgAAACyEIwAAAAvhCAAAwEI4AgAAsBCOAAAALIQjAAAAC+EIAADAQjgCAACwEI4AAAAshCMAAAAL4QgAAMBCOAIAALAQjgAAACyEIwAAAAvhCAAAwEI4AgAAsBCOAAAALIQjAAAAC+EIAADAQjgCAACwBCwcbd26VQ6Ho9Fl165dTbYbP358g/p33XWXH3sOAACCWedAHTglJUXFxcVeZQ8//LA2b96sK6+8stm28+fP1/Llyz3r3bp1a5U+AgCAjidg4Sg0NFQxMTGe9erqar3zzjtauHChHA5Hs227devm1RYAAMBX2syco3fffVfffvutbrvttnPWffXVV9WnTx8NHz5cmZmZ+v7775ut73a75XK5vBYAAIDGBOzK0dnWrFmjtLQ09e/fv9l6t956qxISEhQXF6fPP/9cDzzwgPLz87Vu3bom22RlZWnZsmW+7jIAAAhCDmOM8eUOFy9erMcff7zZOocOHVJiYqJnvaioSAkJCXrzzTc1bdq0Fh1vy5YtmjhxogoKCjRkyJBG67jdbrndbs+6y+VSfHy8ysvLFR4e3qLjAWi7KiulHj3qXldUSN27B7Y/AHzL5XIpIiKi1T+/fX7laNGiRZo7d26zdQYPHuy1np2drd69e+umm25q8fGSkpIkqdlw5HQ65XQ6W7xvAADQ8fg8HEVFRSkqKuq86xtjlJ2drdmzZ6tLly4tPt7+/fslSbGxsS1uCwAAcLaAT8jesmWLjh49qjvuuKPBtpMnTyoxMVE7d+6UJB05ckSPPvqo9uzZo2PHjundd9/V7Nmzdc0112jEiBH+7joAAAhCAZ+QvWbNGqWkpHjNQapXXV2t/Px8z7fRQkNDtWnTJq1atUqVlZWKj4/XtGnT9NBDD/m72wAAIEj5fEJ2e+CvCV0A/IsJ2UBw89fnd8BvqwEAALQlhCMAAAAL4QgAAMBCOAIAALAQjgAAACyEIwAAAAvhCAAAwEI4AgAAsBCOAAAALIQjAAAAC+EIAADAQjgCAACwEI4AAAAshCMAAAAL4QgAAMBCOAIAALAQjgAAACyEIwAAAAvhCAAAwEI4AgAAsBCOAAAALIQjAAAAC+EIAADAQjgCAACwEI4AAAAshCMAAAAL4QgAAMBCOAIAALAQjgAAACyEIwAAAAvhCAAAwEI4AgAAsBCOAAAALIQjAAAAC+EIAADAQjgCAACwtFo4euyxx5SSkqJu3bopMjKy0TqFhYWaNGmSunXrpr59++r+++/XmTNnmt3v6dOnNWvWLIWHhysyMlLz5s1TRUVFK4wAAAB0RK0WjqqqqjR9+nTdfffdjW6vqanRpEmTVFVVpdzcXL388svKycnRkiVLmt3vrFmzdPDgQW3cuFHvv/++tm/frjvvvLM1hgAAADoghzHGtOYBcnJydO+996qsrMyr/E9/+pNuvPFGnTp1StHR0ZKk1atX64EHHtDXX3+t0NDQBvs6dOiQLrvsMu3atUtXXnmlJGnDhg36+c9/rqKiIsXFxTXaB7fbLbfb7VkvLy/XgAEDdOLECYWHh/topAACrbJSqn8bOHVK6t49sP0B4Fsul0vx8fEqKytTRERE6x3ItLLs7GwTERHRoPzhhx82I0eO9Cr761//aiSZvXv3NrqvNWvWmMjISK+y6upq06lTJ7Nu3bom+7B06VIjiYWFhYWFhSUIliNHjrQ4j7REZwVISUmJ54pRvfr1kpKSJtv07dvXq6xz587q1atXk20kKTMzUxkZGZ71srIyJSQkqLCwsHWTZxtTn7g72hUzxs24OwLGzbg7gvo7P7169WrV47QoHC1evFiPP/54s3UOHTqkxMTEH9UpX3M6nXI6nQ3KIyIiOtRfqnrh4eGMuwNh3B0L4+5YOuq4Q0Ja98v2LQpHixYt0ty5c5utM3jw4PPaV0xMjHbu3OlVVlpa6tnWVJuvvvrKq+zMmTM6ffp0k20AAABaokXhKCoqSlFRUT45cHJysh577DF99dVXnltlGzduVHh4uC677LIm25SVlWnPnj0aM2aMJGnLli2qra1VUlKST/oFAAA6tla7LlVYWKj9+/ersLBQNTU12r9/v/bv3+95JtF1112nyy67TL/+9a/15z//WR9++KEeeughpaene26B7dy5U4mJiTp58qQkadiwYbr++us1f/587dy5U59++qkWLFigW265pclvqjXG6XRq6dKljd5qC2aMm3F3BIybcXcEjLt1x91qX+WfO3euXn755QblH330kcaPHy9JOn78uO6++25t3bpV3bt315w5c7RixQp17lx3QWvr1q2aMGGCjh49qoEDB0qqewjkggUL9N577ykkJETTpk3Ts88+qx49erTGMAAAQAfT6s85AgAAaE/4bTUAAAAL4QgAAMBCOAIAALAQjgAAACxBGY4ee+wxpaSkqFu3boqMjGy0TmFhoSZNmqRu3bqpb9++uv/++3XmzJlm93v69GnNmjVL4eHhioyM1Lx58zyPJmiLtm7dKofD0eiya9euJtuNHz++Qf277rrLjz3/8QYOHNhgDCtWrGi2zQ8//KD09HT17t1bPXr00LRp0zwPJm0Pjh07pnnz5mnQoEHq2rWrhgwZoqVLl6qqqqrZdu3xfD///PMaOHCgwsLClJSU1OCBsmdbu3atEhMTFRYWpiuuuEIffPCBn3rqG1lZWbrqqqvUs2dP9e3bV1OmTFF+fn6zbXJychqc17CwMD/12DceeeSRBmM41y8wtPdzLTX+/uVwOJSent5o/fZ6rrdv365f/OIXiouLk8Ph0Pr16722G2O0ZMkSxcbGqmvXrkpNTdWXX355zv229P2hMUEZjqqqqjR9+nTdfffdjW6vqanRpEmTVFVVpdzcXL388svKycnRkiVLmt3vrFmzdPDgQW3cuFHvv/++tm/frjvvvLM1huATKSkpKi4u9lruuOMODRo0SFdeeWWzbefPn+/V7oknnvBTr31n+fLlXmNYuHBhs/Xvu+8+vffee1q7dq22bdumU6dOaerUqX7q7Y93+PBh1dbW6sUXX9TBgwf1zDPPaPXq1XrwwQfP2bY9ne833nhDGRkZWrp0qfbu3auRI0cqLS2twdPz6+Xm5mrmzJmaN2+e9u3bpylTpmjKlCk6cOCAn3t+4bZt26b09HR99tln2rhxo6qrq3XdddepsrKy2Xbh4eFe5/X48eN+6rHvXH755V5j+OSTT5qsGwznWpJ27drlNeaNGzdKkqZPn95km/Z4risrKzVy5Eg9//zzjW5/4okn9Oyzz2r16tXasWOHunfvrrS0NP3www9N7rOl7w9NatWftQ2w7OxsExER0aD8gw8+MCEhIaakpMRT9sILL5jw8HDjdrsb3ddf/vIXI8ns2rXLU/anP/3JOBwOc/LkSZ/3vTVUVVWZqKgos3z58mbrXXvtteaee+7xT6daSUJCgnnmmWfOu35ZWZnp0qWLWbt2rafs0KFDRpLJy8trhR76xxNPPGEGDRrUbJ32dr7Hjh1r0tPTPes1NTUmLi7OZGVlNVr/n//5n82kSZO8ypKSksxvfvObVu1na/rqq6+MJLNt27Ym6zT1/teeLF261IwcOfK86wfjuTbGmHvuuccMGTLE1NbWNro9GM61JPP222971mtra01MTIx58sknPWVlZWXG6XSa//7v/25yPy19f2hKUF45Ope8vDxdccUVio6O9pSlpaXJ5XLp4MGDTbaJjIz0uuKSmpqqkJAQ7dixo9X77Avvvvuuvv32W912223nrPvqq6+qT58+Gj58uDIzM/X999/7oYe+tWLFCvXu3VujR4/Wk08+2ext0z179qi6ulqpqamessTERA0YMEB5eXn+6G6rKC8vP69fr24v57uqqkp79uzxOk8hISFKTU1t8jzl5eV51Zfq/r239/Mq6ZzntqKiQgkJCYqPj9fkyZObfH9ry7788kvFxcVp8ODBmjVrlgoLC5usG4znuqqqSq+88opuv/12ORyOJusFw7m2HT16VCUlJV7nMyIiQklJSU2ezwt5f2hKi35bLViUlJR4BSNJnvWSkpIm29T/Bly9zp07q1evXk22aWvWrFmjtLQ09e/fv9l6t956qxISEhQXF6fPP/9cDzzwgPLz87Vu3To/9fTH++1vf6uf/OQn6tWrl3Jzc5WZmani4mI9/fTTjdYvKSlRaGhogzlq0dHR7eb8nq2goEDPPfecVq5c2Wy99nS+v/nmG9XU1DT67/fw4cONtmnq33t7Pa+1tbW699579f/+3//T8OHDm6w3dOhQ/fGPf9SIESNUXl6ulStXKiUlRQcPHjzne0BbkZSUpJycHA0dOlTFxcVatmyZxo0bpwMHDqhnz54N6gfbuZak9evXq6ysrNkffQ+Gc322+nPWkvN5Ie8PTWk34Wjx4sV6/PHHm61z6NChc07WCwYX8mdRVFSkDz/8UG+++eY592/Po7riiisUGxuriRMn6siRIxoyZMiFd/xHasm4MzIyPGUjRoxQaGiofvOb3ygrK6vd/RbRhZzvkydP6vrrr9f06dM1f/78Ztu21fONxqWnp+vAgQPNzr2R6n6oOzk52bOekpKiYcOG6cUXX9Sjjz7a2t30iRtuuMHzesSIEUpKSlJCQoLefPNNzZs3L4A98581a9bohhtuaPb3Q4PhXLc17SYcLVq0qNnkLEmDBw8+r33FxMQ0mL1e/62kmJiYJtucPaHrzJkzOn36dJNtWsuF/FlkZ2erd+/euummm1p8vKSkJEl1VyIC+WH5Y/4OJCUl6cyZMzp27JiGDh3aYHtMTIyqqqpUVlbmdfWotLTU7+f3bC0d96lTpzRhwgSlpKTopZdeavHx2sr5bkyfPn3UqVOnBt8ibO48xcTEtKh+W7ZgwQLPl0FaekWgS5cuGj16tAoKClqpd60vMjJSl156aZNjCKZzLdX9/uimTZtafBU3GM51/TkrLS1VbGysp7y0tFSjRo1qtM2FvD80qUUzlNqZc03ILi0t9ZS9+OKLJjw83Pzwww+N7qt+Qvbu3bs9ZR9++GG7mJBdW1trBg0aZBYtWnRB7T/55BMjyfz5z3/2cc/855VXXjEhISHm9OnTjW6vn5D91ltvecoOHz7c7iZkFxUVmUsuucTccsst5syZMxe0j7Z+vseOHWsWLFjgWa+pqTH9+vVrdkL2jTfe6FWWnJzcribp1tbWmvT0dBMXF2f+7//+74L2cebMGTN06FBz3333+bh3/vPdd9+Ziy66yPz+979vdHswnGvb0qVLTUxMjKmurm5Ru/Z4rtXEhOyVK1d6ysrLy89rQnZL3h+a7E+LarcTx48fN/v27TPLli0zPXr0MPv27TP79u0z3333nTGm7i/O8OHDzXXXXWf2799vNmzYYKKiokxmZqZnHzt27DBDhw41RUVFnrLrr7/ejB492uzYscN88skn5pJLLjEzZ870+/haatOmTUaSOXToUINtRUVFZujQoWbHjh3GGGMKCgrM8uXLze7du83Ro0fNO++8YwYPHmyuueYaf3f7guXm5ppnnnnG7N+/3xw5csS88sorJioqysyePdtT5+xxG2PMXXfdZQYMGGC2bNlidu/ebZKTk01ycnIghnBBioqKzMUXX2wmTpxoioqKTHFxsWex67T38/36668bp9NpcnJyzF/+8hdz5513msjISM+3T3/961+bxYsXe+p/+umnpnPnzmblypXm0KFDZunSpaZLly7miy++CNQQWuzuu+82ERERZuvWrV7n9fvvv/fUOXvcy5YtMx9++KE5cuSI2bNnj7nllltMWFiYOXjwYCCGcEEWLVpktm7dao4ePWo+/fRTk5qaavr06WO++uorY0xwnut6NTU1ZsCAAeaBBx5osC1YzvV3333n+XyWZJ5++mmzb98+c/z4cWOMMStWrDCRkZHmnXfeMZ9//rmZPHmyGTRokPn73//u2cfPfvYz89xzz3nWz/X+cL6CMhzNmTPHSGqwfPTRR546x44dMzfccIPp2rWr6dOnj1m0aJFXOv/oo4+MJHP06FFP2bfffmtmzpxpevToYcLDw81tt93mCVxt2cyZM01KSkqj244ePer1Z1NYWGiuueYa06tXL+N0Os3FF19s7r//flNeXu7HHv84e/bsMUlJSSYiIsKEhYWZYcOGmX//93/3uip49riNMebvf/+7+Zd/+Rdz0UUXmW7dupmbb77ZK1i0ddnZ2Y3+vbcvEAfL+X7uuefMgAEDTGhoqBk7dqz57LPPPNuuvfZaM2fOHK/6b775prn00ktNaGioufzyy83//M//+LnHP05T5zU7O9tT5+xx33vvvZ4/o+joaPPzn//c7N271/+d/xFmzJhhYmNjTWhoqOnXr5+ZMWOGKSgo8GwPxnNd78MPPzSSTH5+foNtwXKu6z9nz17qx1ZbW2sefvhhEx0dbZxOp5k4cWKDP4+EhASzdOlSr7Lm3h/Ol8MYY1p2Iw4AACB4dcjnHAEAADSFcAQAAGAhHAEAAFgIRwAAABbCEQAAgIVwBAAAYCEcAQAAWAhHAAAAFsIRAACAhXAEAABgIRwBAABY/j9axndp1/AKyQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " \n", + "Code test passed\n", + "Go on to the next step\n" + ] + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "# only change the next two lines:\n", + "x = [4, 1, 2]\n", + "y = [2, 1, 5]\n", + "\n", + "# Only change code above this line\n", + "\n", + "xmin = -10\n", + "xmax = 10\n", + "ymin = -10\n", + "ymax = 10\n", + "\n", + "fig, ax = plt.subplots()\n", + "plt.axis([xmin,xmax,ymin,ymax]) # window size\n", + "plt.plot([xmin,xmax],[0,0],'b') # blue x axis\n", + "plt.plot([0,0],[ymin,ymax],'b') # blue y axis\n", + "\n", + "plt.plot(x, y, 'ro') # red points\n", + "plt.show()\n", + "\n", + "\n", + "# Only change code above this line\n", + "import math_code_test_b as test\n", + "test.step06(In[-1].split('# Only change code above this line')[0])" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "3MqIpFTOF1m9" + }, + "source": [ + "# Step 7 - Plotting Points and Lines" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "1O1_p4BqF1m-" + }, + "source": [ + "Notice the subtle difference between plotting points and lines. Each `plot()` statement takes an array of x values, an array of y values, and a third argument to tell what you are plotting. The default plot is a line. The letters `'r'` and `'b'` (and `'g'` and a few others) indicate common colors. The \"o\" in `'ro'` indicates a dot, where `'rs'` would indicate a red square and `'r^'` would indicate a red triangle. Plot a red line and two green squares." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "id": "oMRcOD7hF1m-" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkcAAAGiCAYAAADtImJbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAwX0lEQVR4nO3de3RU5b3/8U8CZEKATISEhGgSLioBEUSUmJwqUFKDxSqWxVGk5SKi2ECVUCrxKAjUE1BUqlLQFhPPUo9KD+KlFsulwE+JXAJUoZAaCkQuiSJmxgSZhOT5/TGLcYdcIJiZncv7tdZe7svz7P3dbJj5uPczM0HGGCMAAABIkoLtLgAAAKApIRwBAABYEI4AAAAsCEcAAAAWhCMAAAALwhEAAIAF4QgAAMCCcAQAAGBBOAIAALAgHAEAAFj4NRxt3rxZP/vZzxQbG6ugoCCtXr262nZjjObMmaNu3bqpffv2Sk1N1eeff37e/S5dulTdu3dXaGiokpKStG3bNj+dAQAAaG38Go7Kyso0YMAALV26tNbtTz75pJ577jktX75cW7duVYcOHZSWlqbTp0/Xuc8333xTGRkZmjt3rnbu3KkBAwYoLS1NX375pb9OAwAAtCJBgfrh2aCgIL399tsaNWqUJO9do9jYWM2cOVO/+c1vJEkul0vR0dHKycnRXXfdVet+kpKSdP311+uFF16QJFVVVSkuLk7Tp0/X7NmzA3EqAACgBWtr14EPHjyooqIipaam+tY5nU4lJSUpNze31nBUXl6uvLw8ZWZm+tYFBwcrNTVVubm5dR7L4/HI4/H4lquqqnTy5El16dJFQUFBjXRGAADAn4wx+vbbbxUbG6vgYP89/LItHBUVFUmSoqOjq62Pjo72bTvXiRMnVFlZWWuf/fv313msrKwszZs37wdWDAAAmoIvvvhCl112md/2b1s4CqTMzExlZGT4ll0ul+Lj4/XFF18oPDzcxsoANKayMik21jt/7JjUoYO99QBoXG63W3FxcerUqZNfj2NbOIqJiZEkFRcXq1u3br71xcXFuuaaa2rtExkZqTZt2qi4uLja+uLiYt/+auNwOORwOGqsDw8PJxwBLUibNt/Ph4cTjoCWyt9DYmz7nqMePXooJiZG69ev961zu93aunWrkpOTa+0TEhKiQYMGVetTVVWl9evX19kHAACgIfx656i0tFQFBQW+5YMHD2r37t3q3Lmz4uPj9dBDD+l3v/udrrjiCvXo0UOPPfaYYmNjfZ9ok6Thw4frjjvu0LRp0yRJGRkZmjBhgq677joNHjxYS5YsUVlZmSZNmuTPUwEAAK2EX8PRjh07NGzYMN/y2XE/EyZMUE5Ojn7729+qrKxM9913n0pKSvSjH/1Ia9asUWhoqK/PgQMHdOLECd/ynXfeqa+++kpz5sxRUVGRrrnmGq1Zs6bGIG0AAICLEbDvOWpK3G63nE6nXC4XY46AFqSsTOrY0TtfWsqYI6ClCdT7N7+tBgAAYEE4AgAAsCAcAQAAWBCOAAAALAhHAAAAFoQjAAAAC8IRAACABeEIAADAgnAEAABgQTgCAACwIBwBAABYEI4AAAAsCEcAAAAWhCMAAAALwhEAAIAF4QgAAMCCcAQAAGBBOAIAALAgHAEAAFgQjgAAACwIRwAAABaEIwAAAAvCEQAAgAXhCAAAwIJwBAAAYEE4AgAAsCAcAQAAWBCOAAAALAhHAAAAFoQjAAAAC8IRAACABeEIAADAgnAEAABgQTgCAACwIBwBAABY2B6OunfvrqCgoBpTenp6re1zcnJqtA0NDQ1w1QAAoKVqa3cB27dvV2VlpW95z549+slPfqIxY8bU2Sc8PFz5+fm+5aCgIL/WCAAAWg/bw1FUVFS15YULF6pXr14aMmRInX2CgoIUExPj79IAAEArZPtjNavy8nK9+uqruueee+q9G1RaWqqEhATFxcXp9ttv1969e+vdr8fjkdvtrjYBAADUpkmFo9WrV6ukpEQTJ06ss03v3r318ssv65133tGrr76qqqoqpaSk6MiRI3X2ycrKktPp9E1xcXF+qB4AALQEQcYYY3cRZ6WlpSkkJETvvffeBfepqKhQnz59NHbsWC1YsKDWNh6PRx6Px7fsdrsVFxcnl8ul8PDwH1w3gKahrEzq2NE7X1oqdehgbz0AGpfb7ZbT6fT7+7ftY47OOnz4sNatW6dVq1Y1qF+7du00cOBAFRQU1NnG4XDI4XD80BIBAEAr0GQeq2VnZ6tr164aOXJkg/pVVlbqs88+U7du3fxUGQAAaE2aRDiqqqpSdna2JkyYoLZtq9/MGj9+vDIzM33L8+fP19/+9jf9+9//1s6dO/WLX/xChw8f1r333hvosgEAQAvUJB6rrVu3ToWFhbrnnntqbCssLFRw8PcZ7ptvvtGUKVNUVFSkSy65RIMGDdKWLVvUt2/fQJYMAABaqCY1IDtQAjWgC0BgMSAbaNkC9f7dJB6rAQAANBWEIwAAAAvCEQAAgAXhCAAAwIJwBAAAYEE4AgAAsCAcAQAAWBCOAAAALAhHAAAAFoQjAAAAC8IRAACABeEIAADAgnAEAABgQTgCAACwIBwBAABYEI4AAAAs2tpdAAA0B4WuQp04daLO7ZFhkYp3xgewIgD+QjgCgPModBWq9wu9dfrM6TrbhLYNVf60fAIS0ALwWA0AzuPEqRP1BiNJOn3mdL13lgA0H4QjAAAAC8IRAACABeEIAADAgnAEAABgQTgCAACwIBwBAABYEI4A4DwiwyIV2ja03jahbUMVGRYZoIoA+BNfAgkA5xHvjFf+tHy+IRtoJQhHAHAB4p3xhB+gleCxGgAAgAXhCAAAwIJwBAAAYEE4AgAAsCAcAQAAWBCOAAAALAhHAAAAFraHo8cff1xBQUHVpsTExHr7rFy5UomJiQoNDdXVV1+tDz74IEDVAgCAls72cCRJV111lY4fP+6bPvroozrbbtmyRWPHjtXkyZO1a9cujRo1SqNGjdKePXsCWDEAAGipmkQ4atu2rWJiYnxTZGTdv0/0+9//XiNGjNCsWbPUp08fLViwQNdee61eeOGFAFYMADivsjLp6FG7qwAarEmEo88//1yxsbHq2bOnxo0bp8LCwjrb5ubmKjU1tdq6tLQ05ebm1tnH4/HI7XZXmwAAfjZ7tnTVVdKf/2x3JUCD2B6OkpKSlJOTozVr1mjZsmU6ePCgbrzxRn377be1ti8qKlJ0dHS1ddHR0SoqKqrzGFlZWXI6nb4pLi6uUc8BAHCOjRulF16QXC7J6bS7GqBBbA9Ht9xyi8aMGaP+/fsrLS1NH3zwgUpKSvTWW2812jEyMzPlcrl80xdffNFo+wYAnKO0VJo0yTt///3ST35ibz1AA7W1u4BzRURE6Morr1RBQUGt22NiYlRcXFxtXXFxsWJiYurcp8PhkMPhaNQ6AQB1+O1vpUOHpIQE6amn7K4GaDDb7xydq7S0VAcOHFC3bt1q3Z6cnKz169dXW7d27VolJycHojwAQH3Wr5eWLfPOr1ghdepkbz3ARbA9HP3mN7/Rpk2bdOjQIW3ZskV33HGH2rRpo7Fjx0qSxo8fr8zMTF/7Bx98UGvWrNHTTz+t/fv36/HHH9eOHTs0bdo0u04BACBJbrd0zz3e+V/9Sho+3N56gItk+2O1I0eOaOzYsfr6668VFRWlH/3oR/rkk08UFRUlSSosLFRw8PcZLiUlRa+//roeffRRPfLII7riiiu0evVq9evXz65TAABI0qxZUmGh1KOHtGiR3dUAFy3IGGPsLiLQ3G63nE6nXC6XwsPD7S4HQCMpK5M6dvTOl5ZKHTrYW0+r8re/SWlp3vmNG6UhQ2wtBy1ToN6/bX+sBgBo5lwuafJk7/z06QQjNHuEIwDAD5ORIR05IvXqJWVl2V0N8IMRjgAAF++vf5VeflkKCpKys3mWiRaBcAQAuDjffCPde693/qGHpBtvtLUcoLEQjgAAF2fGDOnYMemKK6Tf/c7uaoBGQzgCADTce+9Jr7zifZyWkyOFhdldEdBoCEcAgIY5eVK67z7v/MyZUkqKvfUAjYxwBABomAcflIqKpMREaf58u6sBGh3hCABw4Vavll59VQoO9j5Oa9/e7oqARkc4AgBcmBMnpPvv987PmiUlJdlbD+AnhCMAwIWZPl368kupb1/p8cftrgbwG8IRAOD8/u//pDfekNq08T5OCw21uyLAbwhHAID6ffWV9MAD3vnZs6Xrr7e3HsDPCEcAgPqlp3sDUr9+0mOP2V0N4HeEIwBA3d56S1q50vs47ZVXJIfD7ooAvyMcAQBqV1ws/epX3vn/+i/p2mvtrQcIEMIRAKAmY7zjjL7+WhowwBuOgFaCcAQAqOmNN6S335batvU+TgsJsbsiIGAIRwCA6o4f9w7ClrwDsAcMsLceIMAIRwCA7xkjTZ0qffONNHCglJlpd0VAwBGOAADfe+016d13pXbtvI/T2rWzuyIg4AhHAACvY8e8PxEieX8e5OqrbS0HsAvhCADgfZx2331SSYl03XXSb39rd0WAbQhHAADvI7S//MX7qbRXXvF+Sg1opQhHANDaHTkiPfigd37+fKlvX3vrAWzG/xoAQGtmjDRliuR2S0lJ0syZdlfUJBS6CnXi1Ik6t0eGRSreGR/AihBIhCMAaM1efllas8b7m2k5OTxOkzcY9X6ht06fOV1nm9C2ocqflk9AaqF4rAYArVVhoTRjhnf+d7+TEhPtraeJOHHqRL3BSJJOnzld750lNG+EIwBojYyR7r1X+vZbKTn5+5AEgHAEAK3SH/8orV0rhYZ6H6e1aWN3RUCTQTgCgNbm0KHvB15nZUlXXmlrOUBTQzgCgNakqkqaPFkqLZVuvFH69a/trghocghHANCaLF8ubdggtW/v/aRaMG8DwLn4VwEArcW//y3NmuWdX7RIuvxye+sBmijCEQC0BlVV0j33SKdOSUOGSOnpdlfUZEWGRSq0bWi9bULbhioyLDJAFSHQ+LYvAGgNli6VNm2SOnTgcdp5xDvjlT8tn2/IbsVsD0dZWVlatWqV9u/fr/bt2yslJUWLFi1S79696+yTk5OjSZMmVVvncDh0+nT9X9oFAK1SQYH08MPe+SeflHr2tLeeZiDeGU/4acVs/1+HTZs2KT09XZ988onWrl2riooK3XzzzSorK6u3X3h4uI4fP+6bDh8+HKCKAaAZqayUJk6UvvtO+vGPpalT7a4IaPJsv3O0Zs2aass5OTnq2rWr8vLydNNNN9XZLygoSDExMRd0DI/HI4/H41t2u90XVywANDfPPSd9/LHUsaO0YgWP04AL0OT+lbhcLklS586d621XWlqqhIQExcXF6fbbb9fevXvrbJuVlSWn0+mb4uLiGrVmAGiS/vUv6ZFHvPNPPy11725rOUBzEWSMMXYXcVZVVZVuu+02lZSU6KOPPqqzXW5urj7//HP1799fLpdLixcv1ubNm7V3715ddtllNdrXducoLi5OLpdL4eHhfjkXAIFXVua9QSJ5v+OwQwd767FVZaX3Sx5zc6Wf/ET68EMpKMjuqoAfxO12y+l0+v392/bHalbp6enas2dPvcFIkpKTk5WcnOxbTklJUZ8+ffTiiy9qwYIFNdo7HA45HI5GrxcAmqxnn/UGo06dpD/9iWAENECTCUfTpk3T+++/r82bN9d696c+7dq108CBA1VQUOCn6gCgGdm3T3r0Ue/8s89K8XzqCmgI28ccGWM0bdo0vf3229qwYYN69OjR4H1UVlbqs88+U7du3fxQIQA0I2fOeD+d5vFII0Z4v/gRQIPYfucoPT1dr7/+ut555x116tRJRUVFkiSn06n27dtLksaPH69LL71UWVlZkqT58+frhhtu0OWXX66SkhI99dRTOnz4sO69917bzgMAmoSnn5a2bZOcTumPf+RxGnARbA9Hy5YtkyQNHTq02vrs7GxNnDhRklRYWKhgy8dPv/nmG02ZMkVFRUW65JJLNGjQIG3ZskV9+/YNVNkA0PTs3SvNmeOdX7JEauAQBQBeTerTaoESqNHuAAKrVX9araJCSk6W8vKkkSOl997jrhFanEC9f9s+5ggA0AiefNIbjCIipJdeIhgBPwDhCACau88+k+bN884//7wUG2tvPUAzRzgCgOasokKaMMH739tvl8aNs7sioNkjHAFAc5aVJe3aJXXuLC1fzuM0oBEQjgCgudq9Wzr7qwAvvCBd4I9xA6gf4QgAmqPycu+XPZ45I/3859Jdd9ldEdBiEI4AoDl64gnpH/+QIiOlZct4nAY0IsIRADQ3O3d6w5Ek/eEPUteu9tYDtDCEIwBoTjwe76fTKiulMWO8E4BGRTgCgOZk/nxpzx4pKkpautTuaoAWiXAEAM3F9u3SokXe+WXLvAEJQKMjHAFAc3D6tPfTaZWV0tix0ujRdlcEtFiEIwBoDh5/XPrnP6XoaO9PhADwG8IRADR1n3wiPfWUd/7FF6UuXeytB2jhCEcA0JR99500aZJUVSX94hfe308D4FeEIwBoyubMkfbvl7p1k37/e7urAVoFwhEANFVbtkhPP+2df+kl74/LAvA7whEANEWnTnk/nWaM90sfb73V7oqAVoNwBABN0X/9l/T551JsrLRkid3VAK0K4QgAmpr/9/++H1/0pz9JERG2lgO0Nm3tLgAAcI4DB6SQEO+n0265xe5qgFaHcAQATc3EidINN3g/oQYg4AhHANAUJSbaXQHQajHmCAAAwIJwBAAAYEE4AgAAsCAcAQAAWBCOAAAALAhHAAAAFoQjAAAAC8IRAACABeEIAADAgnAEAABgQTgCAACwIBwBAABYNIlwtHTpUnXv3l2hoaFKSkrStm3b6m2/cuVKJSYmKjQ0VFdffbU++OCDAFUKAABaurZ2F/Dmm28qIyNDy5cvV1JSkpYsWaK0tDTl5+era9euNdpv2bJFY8eOVVZWlm699Va9/vrrGjVqlHbu3Kl+/fo16NhlZVKbNo11JgDsVlZW+zyAliFQ/66DjDEmMIeqXVJSkq6//nq98MILkqSqqirFxcVp+vTpmj17do32d955p8rKyvT+++/71t1www265pprtHz58lqP4fF45PF4fMtut1txcXGSXJLCG/V8AACAv7glOeVyuRQe7r/3b1sfq5WXlysvL0+pqam+dcHBwUpNTVVubm6tfXJzc6u1l6S0tLQ620tSVlaWnE6nb/IGIwAAgJpsfax24sQJVVZWKjo6utr66Oho7d+/v9Y+RUVFtbYvKiqq8ziZmZnKyMjwLZ+9c3TsmOTH4AkgwMrKpLMvD8XFUocO9tYDoHG53VJsrP+PY/uYo0BwOBxyOBw11nfowIsn0FLx7xtoeSorA3McWx+rRUZGqk2bNiouLq62vri4WDExMbX2iYmJaVB7AACAhrA1HIWEhGjQoEFav369b11VVZXWr1+v5OTkWvskJydXay9Ja9eurbM9AABAQ9j+WC0jI0MTJkzQddddp8GDB2vJkiUqKyvTpEmTJEnjx4/XpZdeqqysLEnSgw8+qCFDhujpp5/WyJEj9cYbb2jHjh166aWX7DwNAADQQtgeju6880599dVXmjNnjoqKinTNNddozZo1vkHXhYWFCg7+/gZXSkqKXn/9dT366KN65JFHdMUVV2j16tUN/o4jAACA2tj+PUd2cLvdcjr9/z0JAAKrrEzq2NE7X1rKgGygpQnU+3eT+PkQAACApoJwBAAAYEE4AgAAsCAcAQAAWBCOAAAALAhHAAAAFoQjAAAAC8IRAACABeEIAADAgnAEAABgQTgCAACwIBwBAABYEI4AAAAsCEcAAAAWhCMAAAALwhEAAIAF4QgAAMCCcAQAAGBBOAIAALAgHAEAAFgQjgAAACwIRwAAABaEIwAAAAvCEQAAgAXhCAAAwIJwBAAAYEE4AgAAsCAcAQAAWBCOAAAALAhHAAAAFoQjAAAAC8IRAACABeEIAADAgnAEAABgQTgCAACwsC0cHTp0SJMnT1aPHj3Uvn179erVS3PnzlV5eXm9/YYOHaqgoKBq09SpUwNUNQAAaOna2nXg/fv3q6qqSi+++KIuv/xy7dmzR1OmTFFZWZkWL15cb98pU6Zo/vz5vuWwsDB/lwsAAFoJ28LRiBEjNGLECN9yz549lZ+fr2XLlp03HIWFhSkmJsbfJQIAgFaoSY05crlc6ty583nbvfbaa4qMjFS/fv2UmZmpU6dO1dve4/HI7XZXmwAAAGpj252jcxUUFOj5558/712ju+++WwkJCYqNjdWnn36qhx9+WPn5+Vq1alWdfbKysjRv3rzGLhkAALRAQcYY05g7nD17thYtWlRvm3379ikxMdG3fPToUQ0ZMkRDhw7Vn/70pwYdb8OGDRo+fLgKCgrUq1evWtt4PB55PB7fstvtVlxcnFwul8LDwxt0PABNV1mZ1LGjd760VOrQwd56ADQut9stp9Pp9/fvRr9zNHPmTE2cOLHeNj179vTNHzt2TMOGDVNKSopeeumlBh8vKSlJkuoNRw6HQw6Ho8H7BgAArU+jh6OoqChFRUVdUNujR49q2LBhGjRokLKzsxUc3PAhULt375YkdevWrcF9AQAAzmXbgOyjR49q6NChio+P1+LFi/XVV1+pqKhIRUVF1dokJiZq27ZtkqQDBw5owYIFysvL06FDh/Tuu+9q/Pjxuummm9S/f3+7TgUAALQgtg3IXrt2rQoKClRQUKDLLrus2razw6AqKiqUn5/v+zRaSEiI1q1bpyVLlqisrExxcXEaPXq0Hn300YDXDwAAWqZGH5DdHARqQBeAwGJANtCyBer9u0l9zxEAAIDdCEcAAAAWhCMAAAALwhEAAIAF4QgAAMCCcAQAAGBBOAIAALAgHAEAAFgQjgAAACwIRwAAABaEIwAAAAvCEQAAgAXhCAAAwIJwBAAAYEE4AgAAsCAcAQAAWBCOAAAALAhHAAAAFoQjAAAAC8IRAACABeEIAADAgnAEAABgQTgCAACwIBwBAABYEI4AAAAsCEcAAAAWhCMAAAALwhEAAIAF4QgAAMCCcAQAAGBBOAIAALAgHAEAAFgQjgAAACwIRwAAABaEIwAAAAtbw1H37t0VFBRUbVq4cGG9fU6fPq309HR16dJFHTt21OjRo1VcXBygigEAQEtn+52j+fPn6/jx475p+vTp9bafMWOG3nvvPa1cuVKbNm3SsWPH9POf/zxA1QIAgJaurd0FdOrUSTExMRfU1uVyacWKFXr99df14x//WJKUnZ2tPn366JNPPtENN9zgz1IBAEArYPudo4ULF6pLly4aOHCgnnrqKZ05c6bOtnl5eaqoqFBqaqpvXWJiouLj45Wbm1tnP4/HI7fbXW0CAACoja13jn7961/r2muvVefOnbVlyxZlZmbq+PHjeuaZZ2ptX1RUpJCQEEVERFRbHx0draKiojqPk5WVpXnz5jVm6QAAoIVq9DtHs2fPrjHI+txp//79kqSMjAwNHTpU/fv319SpU/X000/r+eefl8fjadSaMjMz5XK5fNMXX3zRqPsHAAAtR6PfOZo5c6YmTpxYb5uePXvWuj4pKUlnzpzRoUOH1Lt37xrbY2JiVF5erpKSkmp3j4qLi+sdt+RwOORwOC6ofgAA0Lo1ejiKiopSVFTURfXdvXu3goOD1bVr11q3Dxo0SO3atdP69es1evRoSVJ+fr4KCwuVnJx80TUDAACcZduYo9zcXG3dulXDhg1Tp06dlJubqxkzZugXv/iFLrnkEknS0aNHNXz4cP3P//yPBg8eLKfTqcmTJysjI0OdO3dWeHi4pk+fruTkZD6pBgAAGoVt4cjhcOiNN97Q448/Lo/Hox49emjGjBnKyMjwtamoqFB+fr5OnTrlW/fss88qODhYo0ePlsfjUVpamv7whz/YcQoAAKAFCjLGGLuLCDS32y2n0ymXy6Xw8HC7ywHQSMrKpI4dvfOlpVKHDvbWA6BxBer92/bvOQIAAGhKCEcAAAAWhCMAAAALwhEAAIAF4QgAAMCCcAQAAGBBOAIAALAgHAEAAFgQjgAAACwIRwAAABaEIwAAAAvCEQAAgAXhCAAAwIJwBAAAYEE4AgAAsCAcAQAAWBCOAAAALAhHAAAAFoQjAAAAC8IRAACABeEIAADAgnAEAABgQTgCAACwIBwBAABYEI4AAAAsCEcAAAAWhCMAAAALwhEAAIAF4QgAAMCCcAQAAGBBOAIAALAgHAEAAFgQjgAAACwIRwAAABaEIwAAAAvbwtHGjRsVFBRU67R9+/Y6+w0dOrRG+6lTpwawcgAA0JK1tevAKSkpOn78eLV1jz32mNavX6/rrruu3r5TpkzR/PnzfcthYWF+qREAALQ+toWjkJAQxcTE+JYrKir0zjvvaPr06QoKCqq3b1hYWLW+AAAAjaXJjDl699139fXXX2vSpEnnbfvaa68pMjJS/fr1U2Zmpk6dOlVve4/HI7fbXW0CAACojW13js61YsUKpaWl6bLLLqu33d13362EhATFxsbq008/1cMPP6z8/HytWrWqzj5ZWVmaN29eY5cMAABaoCBjjGnMHc6ePVuLFi2qt82+ffuUmJjoWz5y5IgSEhL01ltvafTo0Q063oYNGzR8+HAVFBSoV69etbbxeDzyeDy+Zbfbrbi4OLlcLoWHhzfoeACarrIyqWNH73xpqdShg731AGhcbrdbTqfT7+/fjX7naObMmZo4cWK9bXr27FltOTs7W126dNFtt93W4OMlJSVJUr3hyOFwyOFwNHjfAACg9Wn0cBQVFaWoqKgLbm+MUXZ2tsaPH6927do1+Hi7d++WJHXr1q3BfQEAAM5l+4DsDRs26ODBg7r33ntrbDt69KgSExO1bds2SdKBAwe0YMEC5eXl6dChQ3r33Xc1fvx43XTTTerfv3+gSwcAAC2Q7QOyV6xYoZSUlGpjkM6qqKhQfn6+79NoISEhWrdunZYsWaKysjLFxcVp9OjRevTRRwNdNgAAaKEafUB2cxCoAV0AAosB2UDLFqj3b9sfqwEAADQlhCMAAAALwhEAAIAF4QgAAMCCcAQAAGBBOAIAALAgHAEAAFgQjgAAACwIRwAAABaEIwAAAAvCEQAAgAXhCAAAwIJwBAAAYEE4AgAAsCAcAQAAWBCOAAAALAhHAAAAFoQjAAAAC8IRAACABeEIAADAgnAEAABgQTgCAACwIBwBAABYEI4AAAAsCEcAAAAWhCMAAAALwhEAAIAF4QgAAMCCcAQAAGBBOAIAALAgHAEAAFgQjgAAACwIRwAAABaEIwAAAAvCEQAAgAXhCAAAwMJv4eiJJ55QSkqKwsLCFBERUWubwsJCjRw5UmFhYeratatmzZqlM2fO1LvfkydPaty4cQoPD1dERIQmT56s0tJSP5wBAABojfwWjsrLyzVmzBg98MADtW6vrKzUyJEjVV5eri1btuiVV15RTk6O5syZU+9+x40bp71792rt2rV6//33tXnzZt13333+OAUAANAKBRljjD8PkJOTo4ceekglJSXV1v/1r3/VrbfeqmPHjik6OlqStHz5cj388MP66quvFBISUmNf+/btU9++fbV9+3Zdd911kqQ1a9bopz/9qY4cOaLY2Nhaa/B4PPJ4PL5ll8ul+Ph4ffHFFwoPD2+kMwVgt7Iy6ezLwLFjUocO9tYDoHG53W7FxcWppKRETqfTfwcyfpadnW2cTmeN9Y899pgZMGBAtXX//ve/jSSzc+fOWve1YsUKExERUW1dRUWFadOmjVm1alWdNcydO9dIYmJiYmJiYmoB04EDBxqcRxqirWxSVFTku2N01tnloqKiOvt07dq12rq2bduqc+fOdfaRpMzMTGVkZPiWS0pKlJCQoMLCQv8mzybmbOJubXfMOG/OuzXgvDnv1uDsk5/OnTv79TgNCkezZ8/WokWL6m2zb98+JSYm/qCiGpvD4ZDD4aix3ul0tqq/VGeFh4dz3q0I5926cN6tS2s97+Bg/37YvkHhaObMmZo4cWK9bXr27HlB+4qJidG2bduqrSsuLvZtq6vPl19+WW3dmTNndPLkyTr7AAAANESDwlFUVJSioqIa5cDJycl64okn9OWXX/oela1du1bh4eHq27dvnX1KSkqUl5enQYMGSZI2bNigqqoqJSUlNUpdAACgdfPbfanCwkLt3r1bhYWFqqys1O7du7V7927fdxLdfPPN6tu3r375y1/qH//4hz788EM9+uijSk9P9z0C27ZtmxITE3X06FFJUp8+fTRixAhNmTJF27Zt08cff6xp06bprrvuqvOTarVxOByaO3durY/aWjLOm/NuDThvzrs14Lz9e95++yj/xIkT9corr9RY//e//11Dhw6VJB0+fFgPPPCANm7cqA4dOmjChAlauHCh2rb13tDauHGjhg0bpoMHD6p79+6SvF8COW3aNL333nsKDg7W6NGj9dxzz6ljx47+OA0AANDK+P17jgAAAJoTflsNAADAgnAEAABgQTgCAACwIBwBAABYtMhw9MQTTyglJUVhYWGKiIiotU1hYaFGjhypsLAwde3aVbNmzdKZM2fq3e/Jkyc1btw4hYeHKyIiQpMnT/Z9NUFTtHHjRgUFBdU6bd++vc5+Q4cOrdF+6tSpAaz8h+vevXuNc1i4cGG9fU6fPq309HR16dJFHTt21OjRo31fTNocHDp0SJMnT1aPHj3Uvn179erVS3PnzlV5eXm9/Zrj9V66dKm6d++u0NBQJSUl1fhC2XOtXLlSiYmJCg0N1dVXX60PPvggQJU2jqysLF1//fXq1KmTunbtqlGjRik/P7/ePjk5OTWua2hoaIAqbhyPP/54jXM43y8wNPdrLdX++hUUFKT09PRa2zfXa71582b97Gc/U2xsrIKCgrR69epq240xmjNnjrp166b27dsrNTVVn3/++Xn329DXh9q0yHBUXl6uMWPG6IEHHqh1e2VlpUaOHKny8nJt2bJFr7zyinJycjRnzpx69ztu3Djt3btXa9eu1fvvv6/Nmzfrvvvu88cpNIqUlBQdP3682nTvvfeqR48euu666+rtO2XKlGr9nnzyyQBV3Xjmz59f7RymT59eb/sZM2bovffe08qVK7Vp0yYdO3ZMP//5zwNU7Q+3f/9+VVVV6cUXX9TevXv17LPPavny5XrkkUfO27c5Xe8333xTGRkZmjt3rnbu3KkBAwYoLS2txrfnn7VlyxaNHTtWkydP1q5duzRq1CiNGjVKe/bsCXDlF2/Tpk1KT0/XJ598orVr16qiokI333yzysrK6u0XHh5e7boePnw4QBU3nquuuqraOXz00Ud1tm0J11qStm/fXu2c165dK0kaM2ZMnX2a47UuKyvTgAEDtHTp0lq3P/nkk3ruuee0fPlybd26VR06dFBaWppOnz5d5z4b+vpQJ7/+rK3NsrOzjdPprLH+gw8+MMHBwaaoqMi3btmyZSY8PNx4PJ5a9/XPf/7TSDLbt2/3rfvrX/9qgoKCzNGjRxu9dn8oLy83UVFRZv78+fW2GzJkiHnwwQcDU5SfJCQkmGefffaC25eUlJh27dqZlStX+tbt27fPSDK5ubl+qDAwnnzySdOjR4962zS36z148GCTnp7uW66srDSxsbEmKyur1vb/+Z//aUaOHFltXVJSkrn//vv9Wqc/ffnll0aS2bRpU51t6nr9a07mzp1rBgwYcMHtW+K1NsaYBx980PTq1ctUVVXVur0lXGtJ5u233/YtV1VVmZiYGPPUU0/51pWUlBiHw2H+93//t879NPT1oS4t8s7R+eTm5urqq69WdHS0b11aWprcbrf27t1bZ5+IiIhqd1xSU1MVHBysrVu3+r3mxvDuu+/q66+/1qRJk87b9rXXXlNkZKT69eunzMxMnTp1KgAVNq6FCxeqS5cuGjhwoJ566ql6H5vm5eWpoqJCqampvnWJiYmKj49Xbm5uIMr1C5fLdUG/Xt1crnd5ebny8vKqXafg4GClpqbWeZ1yc3OrtZe8/96b+3WVdN5rW1paqoSEBMXFxen222+v8/WtKfv8888VGxurnj17aty4cSosLKyzbUu81uXl5Xr11Vd1zz33KCgoqM52LeFaWx08eFBFRUXVrqfT6VRSUlKd1/NiXh/q0qDfVmspioqKqgUjSb7loqKiOvuc/Q24s9q2bavOnTvX2aepWbFihdLS0nTZZZfV2+7uu+9WQkKCYmNj9emnn+rhhx9Wfn6+Vq1aFaBKf7hf//rXuvbaa9W5c2dt2bJFmZmZOn78uJ555pla2xcVFSkkJKTGGLXo6Ohmc33PVVBQoOeff16LFy+ut11zut4nTpxQZWVlrf9+9+/fX2ufuv69N9frWlVVpYceekj/8R//oX79+tXZrnfv3nr55ZfVv39/uVwuLV68WCkpKdq7d+95XwOaiqSkJOXk5Kh37946fvy45s2bpxtvvFF79uxRp06darRvaddaklavXq2SkpJ6f/S9JVzrc529Zg25nhfz+lCXZhOOZs+erUWLFtXbZt++fecdrNcSXMyfxZEjR/Thhx/qrbfeOu/+reOorr76anXr1k3Dhw/XgQMH1KtXr4sv/AdqyHlnZGT41vXv318hISG6//77lZWV1ex+i+hirvfRo0c1YsQIjRkzRlOmTKm3b1O93qhdenq69uzZU+/YG8n7Q93Jycm+5ZSUFPXp00cvvviiFixY4O8yG8Utt9zim+/fv7+SkpKUkJCgt956S5MnT7axssBZsWKFbrnllnp/P7QlXOumptmEo5kzZ9abnCWpZ8+eF7SvmJiYGqPXz34qKSYmps4+5w7oOnPmjE6ePFlnH3+5mD+L7OxsdenSRbfddluDj5eUlCTJeyfCzjfLH/J3ICkpSWfOnNGhQ4fUu3fvGttjYmJUXl6ukpKSanePiouLA359z9XQ8z527JiGDRumlJQUvfTSSw0+XlO53rWJjIxUmzZtanyKsL7rFBMT06D2Tdm0adN8HwZp6B2Bdu3aaeDAgSooKPBTdf4XERGhK6+8ss5zaEnXWvL+/ui6desafBe3JVzrs9esuLhY3bp1860vLi7WNddcU2ufi3l9qFODRig1M+cbkF1cXOxb9+KLL5rw8HBz+vTpWvd1dkD2jh07fOs+/PDDZjEgu6qqyvTo0cPMnDnzovp/9NFHRpL5xz/+0ciVBc6rr75qgoODzcmTJ2vdfnZA9p///Gffuv379ze7AdlHjhwxV1xxhbnrrrvMmTNnLmofTf16Dx482EybNs23XFlZaS699NJ6B2Tfeuut1dYlJyc3q0G6VVVVJj093cTGxpp//etfF7WPM2fOmN69e5sZM2Y0cnWB8+2335pLLrnE/P73v691e0u41lZz5841MTExpqKiokH9muO1Vh0DshcvXuxb53K5LmhAdkNeH+qsp0Gtm4nDhw+bXbt2mXnz5pmOHTuaXbt2mV27dplvv/3WGOP9i9OvXz9z8803m927d5s1a9aYqKgok5mZ6dvH1q1bTe/evc2RI0d860aMGGEGDhxotm7daj766CNzxRVXmLFjxwb8/Bpq3bp1RpLZt29fjW1HjhwxvXv3Nlu3bjXGGFNQUGDmz59vduzYYQ4ePGjeeecd07NnT3PTTTcFuuyLtmXLFvPss8+a3bt3mwMHDphXX33VREVFmfHjx/vanHvexhgzdepUEx8fbzZs2GB27NhhkpOTTXJysh2ncFGOHDliLr/8cjN8+HBz5MgRc/z4cd9kbdPcr/cbb7xhHA6HycnJMf/85z/NfffdZyIiInyfPv3lL39pZs+e7Wv/8ccfm7Zt25rFixebffv2mblz55p27dqZzz77zK5TaLAHHnjAOJ1Os3HjxmrX9dSpU7425573vHnzzIcffmgOHDhg8vLyzF133WVCQ0PN3r177TiFizJz5kyzceNGc/DgQfPxxx+b1NRUExkZab788ktjTMu81mdVVlaa+Ph48/DDD9fY1lKu9bfffut7f5ZknnnmGbNr1y5z+PBhY4wxCxcuNBEREeadd94xn376qbn99ttNjx49zHfffefbx49//GPz/PPP+5bP9/pwoVpkOJowYYKRVGP6+9//7mtz6NAhc8stt5j27dubyMhIM3PmzGrp/O9//7uRZA4ePOhb9/XXX5uxY8eajh07mvDwcDNp0iRf4GrKxo4da1JSUmrddvDgwWp/NoWFheamm24ynTt3Ng6Hw1x++eVm1qxZxuVyBbDiHyYvL88kJSUZp9NpQkNDTZ8+fcx///d/V7sreO55G2PMd999Z371q1+ZSy65xISFhZk77rijWrBo6rKzs2v9e2+9QdxSrvfzzz9v4uPjTUhIiBk8eLD55JNPfNuGDBliJkyYUK39W2+9Za688koTEhJirrrqKvOXv/wlwBX/MHVd1+zsbF+bc8/7oYce8v0ZRUdHm5/+9Kdm586dgS/+B7jzzjtNt27dTEhIiLn00kvNnXfeaQoKCnzbW+K1PuvDDz80kkx+fn6NbS3lWp99nz13OntuVVVV5rHHHjPR0dHG4XCY4cOH1/jzSEhIMHPnzq22rr7XhwsVZIwxDXsQBwAA0HK1yu85AgAAqAvhCAAAwIJwBAAAYEE4AgAAsCAcAQAAWBCOAAAALAhHAAAAFoQjAAAAC8IRAACABeEIAADAgnAEAABg8f8BClRYy9sOe3EAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " \n", + "Code test passed\n", + "Go on to the next step\n" + ] + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "# Use these numbers:\n", + "linex = [2,4]\n", + "liney = [1,5]\n", + "pointx = [1,6]\n", + "pointy = [6,3]\n", + "\n", + "# Keep these lines:\n", + "xmin = -10\n", + "xmax = 10\n", + "ymin = -10\n", + "ymax = 10\n", + "\n", + "fig, ax = plt.subplots()\n", + "plt.axis([xmin,xmax,ymin,ymax]) # window size\n", + "plt.plot([xmin,xmax],[0,0],'b') # blue x axis\n", + "plt.plot([0,0],[ymin,ymax], 'b') # blue y axis\n", + "\n", + "# Change the next two lines:\n", + "plt.plot(linex, liney, 'r')\n", + "plt.plot(pointx, pointy, 'gs')\n", + "\n", + "plt.show()\n", + "\n", + "\n", + "# Only change code above this line\n", + "import math_code_test_b as test\n", + "test.step07(In[-1].split('# Only change code above this line')[0])" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "NKq_qwCsF3Dj" + }, + "source": [ + "# Step 8 - Making a Scatterplot Game" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "sBh-rNyOF3Dk" + }, + "source": [ + "To make the game, you can make a loop that plots a random point and asks the user to input the (x,y) coordinates. Notice the `for` loop that runs three rounds of the game. Run the code, play the game, then you can go on to the next step." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "id": "uR5TFWbLF3Dk" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " \n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiYAAAGiCAYAAADTBw0VAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAjuklEQVR4nO3de1RVdd7H8c8BjweY4SaCoSKCXZy00tCo9Jm0vNRIk2OPM47WUnOoJiwdnZJqSl15iSTHJysv2TJnisFmuttlYrzX6BIlXVkKWTkZohgqFIzHI+znD5KRgQyMfc4P9vu11lmLs9n7/L6ftQs/a5+by7IsSwAAAAYICvQAAAAAp1FMAACAMSgmAADAGBQTAABgDIoJAAAwBsUEAAAYg2ICAACMQTEBAADGoJgAAABjUEwAAIAxbC0m1dXVeuihh5SUlKTQ0FD16NFDjzzyiPgUfAAA0Jh2dj54VlaWlixZolWrVqlXr17avn27Jk6cqMjISN1zzz12Lg0AAFohl51f4peWlqZOnTrp2Wefrdt28803KzQ0VM8//7xdywIAgFbK1ismV199tZYvX66ioiJdeOGF2rVrl9577z0tXLiw0f29Xq+8Xm/d/ZqaGh09elQxMTFyuVx2jgoAAFqIZVn6+uuv1blzZwUFNfNVI5aNqqurrRkzZlgul8tq166d5XK5rHnz5n3n/jNnzrQkcePGjRs3btzawO3AgQPN7g62PpWTm5ure++9VwsWLFCvXr20c+dOTZ06VQsXLtT48eMb7P/fV0zKy8vVrVs3FRUVqUOHDnaNaRyfz6f169dr8ODBcrvdgR7Hb8jtnNyVlVJiYm3WTz+tUmSkM3JLzjzfErmdlvvo0aO68MILdfz4cUVGRjbrWFufyrn33nuVmZmpMWPGSJIuueQS/etf/9L8+fMbLSYej0cej6fB9g4dOigmJsbOUY3i8/kUFhammJgYR/2HTG7n5A4J+c/PHTqEKirKGbklZ55vidxOy33aubwMw9a3C1dVVTV4bik4OFg1NTV2LgsAAFopW6+Y3HjjjZo7d666deumXr166YMPPtDChQt122232bksAABopWwtJosXL9ZDDz2ku+66S6WlpercubPuuOMOPfzww3YuCwAAWilbi0l4eLgWLVqkRYsW2bkMAABoI/iuHAAAYAyKCQAAMAbFBAAAGINiAgAAjEExAQAAxqCYAAAAY1BMAACAMSgmAADAGBQTAABgDIoJAAAwBsUEAAAYg2ICAACMQTEBAADGoJgAAABjUEwAAIAxKCYAAMAYFBMAAGAMigkAADAGxQQAABiDYgIAAIxBMQEAAMagmAAAAGNQTAAAgDEoJgAAwBgUEwAAYAyKCQAAMAbFBAAAGINiAgAAjEExAQAAxqCYAAAAY1BMAACAMSgmAADAGBQTAABgDIoJAAAwBsUEAAAYw/ZiUlxcrFtuuUUxMTEKDQ3VJZdcou3bt9u9LAAAaIXa2fngx44d04ABAzR48GC9/fbbio2N1SeffKLo6Gg7lwUAAK2UrcUkKytLCQkJWrlyZd22pKQkO5cEAACtmK3F5PXXX9fw4cM1evRobdy4UV26dNFdd92l9PT0Rvf3er3yer119ysqKiRJPp9PPp/PzlGNcjqrkzJL5HZS7tqo7m9/9slB0R15viVyOzX3uXBZlmW14Cz1hISESJKmTZum0aNHKz8/X1OmTNHSpUs1fvz4BvvPmjVLs2fPbrA9JydHYWFhdo0JwM9OnAjWmDFpkqTc3DUKCakO8EQAWlJVVZXGjh2r8vJyRURENOtYW4tJ+/bt1a9fP/3zn/+s23bPPfcoPz9fW7ZsabB/Y1dMEhISVFJSopiYGLvGNI7P51NeXp6GDh0qt9sd6HH8htzOyV1ZKUVH12YtLa1SVJQzckvOPN8SuZ2Wu6ysTPHx8edUTGx9Kic+Pl4XX3xxvW0/+clP9NJLLzW6v8fjkcfjabDd7XY76oSeRm5ncVLuM2M6KfeZyO0sTsv9Q7La+nbhAQMGqLCwsN62oqIiJSYm2rksAABopWwtJr/73e+0detWzZs3T/v27VNOTo6WL1+ujIwMO5cFAACtlK3FpH///nrllVf0l7/8Rb1799YjjzyiRYsWady4cXYuCwAAWilbX2MiSWlpaUpLS7N7GQAA0AbwXTkAAMAYFBMAAGAMigkAADAGxQQAABiDYgIAAIxBMQEAAMagmAAAAGNQTAAAgDEoJgAAwBgUEwAAYAyKCQAAMAbFBAAAGINiAgAAjEExAQAAxqCYAAAAY1BMAACAMSgmAADAGBQTAABgDIoJAAAwBsUEAAAYg2ICAACMQTEBAADGoJgAAABjUEwAAIAxKCYAAMAYFBMAAGAMigkAADAGxQQAABiDYgIAAIxBMQEAAMagmAAAAGNQTAAAgDEoJgAAwBgUEwAAYAyKCQAAMIbfismjjz4ql8ulqVOn+mtJAADQyvilmOTn52vZsmW69NJL/bEcAABopWwvJt98843GjRunZ555RtHR0XYvBwAAWrF2di+QkZGhESNGaMiQIZozZ85Z9/V6vfJ6vXX3KyoqJEk+n08+n8/WOU1yOquTMkvkdlLu2qjub3/2yUHRHXm+JXI7Nfe5sLWY5ObmqqCgQPn5+U3af/78+Zo9e3aD7evXr1dYWFhLj2e8vLy8QI8QEORu+06cCJaUJklat26dQkKqAztQADjpfJ+J3M5QVVV1zse6LMuyWnCWOgcOHFC/fv2Ul5dX99qSQYMGqU+fPlq0aFGjxzR2xSQhIUElJSWKiYmxY0wj+Xw+5eXlaejQoXK73YEex2/I7ZzclZVSdHRt1tLSKkVFOSO35MzzLZHbabnLysoUHx+v8vJyRURENOtY266Y7NixQ6Wlpbr88svrtlVXV2vTpk168skn5fV6FRwcXO8Yj8cjj8fT4LHcbrejTuhp5HYWJ+U+M6aTcp+J3M7itNw/JKttxeS6667Thx9+WG/bxIkT1bNnT82YMaNBKQEAALCtmISHh6t37971tv3oRz9STExMg+0AAAASn/wKAAAMYvvbhc+0YcMGfy4HAABaGa6YAAAAY1BMAACAMSgmAADAGBQTAABgDIoJAAAwBsUEAAAYg2ICAACMQTEBAADGoJgAAABjUEwAAIAxKCYAAMAYFBMAAGAMigkAADAGxQQAABiDYgIAAIxBMQEAAMagmAAAAGNQTAAAgDEoJgAAwBgUEwAAYAyKCQAAMAbFBAAAGINiAgAAjEExAQAAxqCYAAAAY1BMAACAMSgmAADAGBQTAABgDIoJAAAwBsUEAAAYg2ICAACMQTEBAADGoJgAAABjUEwAAIAxKCYAAMAYFBMAAGAMW4vJ/Pnz1b9/f4WHhysuLk4jR45UYWGhnUsCAIBWzNZisnHjRmVkZGjr1q3Ky8uTz+fTsGHDVFlZaeeyAACglWpn54O/88479e4/99xziouL044dO/TTn/60wf5er1der7fufkVFhSTJ5/PJ5/PZOapRTmd1UmaJ3E7KXRvV/e3PPjkouiPPt0Rup+Y+Fy7LsqwWnOWs9u3bpwsuuEAffvihevfu3eD3s2bN0uzZsxtsz8nJUVhYmD9GBOAHJ04Ea8yYNElSbu4ahYRUB3giAC2pqqpKY8eOVXl5uSIiIpp1rN+KSU1NjX7+85/r+PHjeu+99xrdp7ErJgkJCSopKVFMTIw/xjSCz+dTXl6ehg4dKrfbHehx/IbczsldWSlFR9dmLS2tUlSUM3JLzjzfErmdlrusrEzx8fHnVExsfSrnTBkZGdq9e/d3lhJJ8ng88ng8Dba73W5HndDTyO0sTsp9Zkwn5T4TuZ3Fabl/SFa/FJPJkydrzZo12rRpk7p27eqPJQEAQCtkazGxLEt33323XnnlFW3YsEFJSUl2LgcAAFo5W4tJRkaGcnJy9Nprryk8PFyHDh2SJEVGRio0NNTOpQEAQCtk6+eYLFmyROXl5Ro0aJDi4+PrbqtXr7ZzWQAA0ErZ/lQOAABAU/FdOQAAwBgUEwAAYAyKCQAAMAbFBAAAGINiAgAAjEExAQAAxqCYAAAAY1BMAACAMSgmAADAGBQTAABgDIoJAAAwBsUEAAAYg2ICAACMQTEBAADGoJgAAABjUEwAAIAxKCYAAMAYFBMAAGAMigkAADAGxQQAABiDYgIAAIxBMQEAAMagmAAAAGNQTAAAgDEoJgAAwBgUEwAAYAyKCQAAMAbFBAAAGINiAgAAjEExAQAAxqCYAAAAY1BMAACAMSgmAADAGO0CPQAQcNXV0ubNUkmJFB8v/c//SMHBgZ4KAByJYgJne/llacoU6csv/7Ota1fp//5PGjUqcHMBgEP55amcp556St27d1dISIhSU1O1bds2fywLnN3LL0v/+7/1S4kkFRfXbn/55cDMBQAOZvsVk9WrV2vatGlaunSpUlNTtWjRIg0fPlyFhYWKi4tr0mNUVkohITYPahCfTzpxIliVlZLbHehp/MevuaurFXrPFLksS67//p1lyXK5ZE2Zqn8Pucn2p3WceL4rK+v/7JTckjPPt0Rup+U+8//x5nJZlmW13CgNpaamqn///nryySclSTU1NUpISNDdd9+tzMzMevt6vV55vd66+xUVFUpISJBULinCzjHhMNdogzZo8PfuN0jrtVGD7B8IANqUCkmRKi8vV0RE8/79tvWpnJMnT2rHjh0aMmTIfxYMCtKQIUO0ZcuWBvvPnz9fkZGRdbfaUgK0vHiVtOh+AICWYetTOV999ZWqq6vVqVOnets7deqkvXv3Ntj//vvv17Rp0+run75i8umnVerQIdTOUY3i8/m0bt06XXvttXI76NqfP3O3ey9WuvH793vmjVgtGeizdRYnnu/KSqlr19qsn39epagoZ+SWnHm+JXI7LffRo1Xq0ePcjjXqXTkej0cej6fB9shIt8P+cEkhIdWKinI76j9kv+a+YXDtu2+Ki6XGns10uaSuXfXjGwb75TUmTjvfZ8aMiuL/bycgt7NyV1efe1Zbn8rp2LGjgoODdfjw4XrbDx8+rPPOO8/OpYGzCw6ufUuwVFtCznT6/qJFfJ4JAPiZrcWkffv2SklJ0dq1a+u21dTUaO3atbrqqqvsXBr4fqNGSX/7m9SlS/3tXbvWbudzTADA72x/KmfatGkaP368+vXrpyuuuEKLFi1SZWWlJk6caPfSwPcbNUq66SY++RUADGF7MfnVr36lI0eO6OGHH9ahQ4fUp08fvfPOOw1eEAsETHCwNGhQoKcAAMhPL36dPHmyJk+e7I+lAABAK8a3CwMAAGNQTAAAgDEoJgAAwBgUEwAAYAyKCQAAMAbFBAAAGINiAgAAjEExAQAAxqCYAAAAY1BMAACAMSgmAADAGBQTAABgDIoJAAAwBsUEAAAYg2ICAACMQTEBAADGoJgAAABjUEwAAIAxKCYAAMAYFBMAAGAMigkAADAGxQQAABiDYgIAAIxBMQEAAMagmAAAAGNQTAAAgDEoJgAAwBgUEwAAYAyKCQAAMAbFBAAAGINiAgAAjEExAQAAxqCYAAAAY1BMAACAMSgmAADAGLYVk/3792vSpElKSkpSaGioevTooZkzZ+rkyZN2LQkAAFq5dnY98N69e1VTU6Nly5bp/PPP1+7du5Wenq7KykplZ2fbtSwAAGjFbCsm119/va6//vq6+8nJySosLNSSJUsoJgAAoFG2FZPGlJeXq0OHDt/5e6/XK6/XW3e/oqJCkuTz+eTz+WyfzxSnszops0RuJ+Wujer+9mefHBTdkedbIrdTc58Ll2VZVgvO8p327dunlJQUZWdnKz09vdF9Zs2apdmzZzfYnpOTo7CwMLtHBOAnJ04Ea8yYNElSbu4ahYRUB3giAC2pqqpKY8eOVXl5uSIiIpp1bLOLSWZmprKyss66z549e9SzZ8+6+8XFxbrmmms0aNAgrVix4juPa+yKSUJCgkpKShQTE9OcMVs1n8+nvLw8DR06VG63O9Dj+A25nZO7slKKjq7NWlpapagoZ+SWnHm+JXI7LXdZWZni4+PPqZg0+6mc6dOna8KECWfdJzk5ue7ngwcPavDgwbr66qu1fPnysx7n8Xjk8XgabHe73Y46oaeR21mclPvMmE7KfSZyO4vTcv+QrM0uJrGxsYqNjW3SvsXFxRo8eLBSUlK0cuVKBQXxsSkAAOC72fbi1+LiYg0aNEiJiYnKzs7WkSNH6n533nnn2bUsAABoxWwrJnl5edq3b5/27dunrl271vudn15vCwAAWhnbnluZMGGCLMtq9AYAANAYXvQBAACMQTEBAADGoJgAAABjUEwAAIAxKCYAAMAYFBMAAGAMigkAADAGxQQAABiDYgIAAIxBMQEAAMagmAAAAGNQTAAAgDEoJgAAwBgUEwAAYAyKCQAAMAbFBAAAGINiAgAAjEExAQAAxqCYAAAAY1BMAACAMSgmAADAGBQTAABgDIoJAAAwBsUEAAAYg2ICAACMQTEBAADGoJgAAABjUEwAAIAxKCYAAMAYFBMAAGAMigkAADAGxQQAABiDYgIAAIxBMQEAAMagmAAAAGP4pZh4vV716dNHLpdLO3fu9MeSAACgFfJLMbnvvvvUuXNnfywFAABaMduLydtvv613331X2dnZdi8FAABauXZ2Pvjhw4eVnp6uV199VWFhYd+7v9frldfrrbtfUVEhSfL5fPL5fLbNaZrTWZ2UWSK3k3LXRnV/+7NPDoruyPMtkdupuc+Fy7IsqwVnqWNZln72s59pwIAB+sMf/qD9+/crKSlJH3zwgfr06dPoMbNmzdLs2bMbbM/JyWlSsQHQOpw4EawxY9IkSbm5axQSUh3giQC0pKqqKo0dO1bl5eWKiIho1rHNLiaZmZnKyso66z579uzRu+++qxdffFEbN25UcHBwk4pJY1dMEhISVFJSopiYmOaM2ar5fD7l5eVp6NChcrvdgR7Hb8jtnNyVlVJ0dG3W0tIqRUU5I7fkzPMtkdtpucvKyhQfH39OxaTZT+VMnz5dEyZMOOs+ycnJWrdunbZs2SKPx1Pvd/369dO4ceO0atWqBsd5PJ4G+0uS2+121Ak9jdzO4qTcZ8Z0Uu4zkdtZnJb7h2RtdjGJjY1VbGzs9+73xBNPaM6cOXX3Dx48qOHDh2v16tVKTU1t7rIAAMABbHvxa7du3erd//GPfyxJ6tGjh7p27WrXsgAAoBXjk18BAIAxbH278Jm6d+8um94ABAAA2giumAAAAGNQTAAAgDEoJgAAwBgUEwAAYAyKCQAAMAbFBAAAGINiAgAAjEExAQAAxqCYAAAAY1BMAACAMSgmAADAGBQTAABgDIoJAAAwBsUEAAAYg2ICAACMQTEBAADGoJgAAABjUEwAAIAxKCYAAMAYFBMAAGAMigkAADAGxQQAABiDYgIAAIxBMQEAAMagmAAAAGNQTAAAgDEoJgAAwBgUEwAAYAyKCQAAMAbFBAAAGINiAgAAjEExAQAAxqCYAAAAY1BMAACAMSgmAADAGLYWkzfffFOpqakKDQ1VdHS0Ro4caedyAACglWtn1wO/9NJLSk9P17x583Tttdfq1KlT2r17t13LAQCANsCWYnLq1ClNmTJFCxYs0KRJk+q2X3zxxXYsBwAA2ghbiklBQYGKi4sVFBSkvn376tChQ+rTp48WLFig3r17f+dxXq9XXq+37n5FRYUkyefzyefz2TGqkU5ndVJmidxOyl0b1f3tzz45KLojz7dEbqfmPhcuy7KsFpxFkpSbm6tf//rX6tatmxYuXKju3bvr8ccf17vvvquioiJ16NCh0eNmzZql2bNnN9iek5OjsLCwlh4TQICcOBGsMWPSJEm5uWsUElId4IkAtKSqqiqNHTtW5eXlioiIaNaxzSommZmZysrKOus+e/bsUUFBgcaNG6dly5bp9ttvl1R7NaRr166aM2eO7rjjjkaPbeyKSUJCgkpKShQTE9PUMVs9n8+nvLw8DR06VG63O9Dj+A25nZO7slKKjq7NWlpapagoZ+SWnHm+JXI7LXdZWZni4+PPqZg066mc6dOna8KECWfdJzk5WSUlJZLqv6bE4/EoOTlZX3zxxXce6/F45PF4Gmx3u92OOqGnkdtZnJT7zJhOyn0mcjuL03L/kKzNKiaxsbGKjY393v1SUlLk8XhUWFiogQMHSqptjfv371diYuK5TQoAANo8W178GhERoTvvvFMzZ85UQkKCEhMTtWDBAknS6NGj7VgSAAC0AbZ9jsmCBQvUrl073Xrrrfr3v/+t1NRUrVu3TtHR0XYtCQAAWjnbionb7VZ2drays7PtWgIAALQxfFcOAAAwBsUEAAAYg2ICAACMQTEBAADGoJgAAABjUEwAAIAxKCYAAMAYFBMAAGAMigkAADAGxQQAABiDYgIAAIxBMQEAAMagmAAAAGNQTAAAgDEoJgAAwBgUEwAAYAyKCQAAMAbFBAAAGINiAgAAjEExAQAAxqCYAAAAY1BMAACAMSgmAADAGBQTAABgDIoJAAAwBsUEAAAYg2ICAACMQTEBAADGoJgAAABjUEwAAIAxKCYAAMAYFBMAAGAMigkAADAGxQQAABiDYgIAAIxBMQEAAMawrZgUFRXppptuUseOHRUREaGBAwdq/fr1di0HAADaANuKSVpamk6dOqV169Zpx44duuyyy5SWlqZDhw7ZtSQAAGjl2tnxoF999ZU++eQTPfvss7r00kslSY8++qiefvpp7d69W+edd16jx3m9Xnm93rr75eXlkqSjR4/aMaaxfD6fqqqqVFZWJrfbHehx/IbczsldWSlJtVmPHq1SdbUzckvOPN8SuZ2W+/S/25ZlNf9gywY1NTXWRRddZP3mN7+xvvnmG8vn81kLFiyw4uLirKNHj37ncTNnzrQkcePGjRs3btzawO3TTz9tdodwWda51Jnv9+WXX2rkyJEqKChQUFCQ4uLi9Oabb6pv377fecx/XzE5fvy4EhMT9cUXXygyMtKOMY1UUVGhhIQEHThwQBEREYEex2/ITW4nIDe5naC8vFzdunXTsWPHFBUV1axjm/VUTmZmprKyss66z549e3TRRRcpIyNDcXFx2rx5s0JDQ7VixQrdeOONys/PV3x8fKPHejweeTyeBtsjIyMddUJPi4iIILeDkNtZyO0sTs0dFNT8l7I2q5hMnz5dEyZMOOs+ycnJWrdundasWaNjx47VnYinn35aeXl5WrVqlTIzM5s9KAAAaPuaVUxiY2MVGxv7vftVVVVJatiUgoKCVFNT05wlAQCAg9jyduGrrrpK0dHRGj9+vHbt2qWioiLde++9+vzzzzVixIgmP47H49HMmTMbfXqnLSM3uZ2A3OR2AnI3P7dtL37dvn27HnzwQW3fvl0+n0+9evXSww8/rBtuuMGO5QAAQBtgWzEBAABoLr4rBwAAGINiAgAAjEExAQAAxqCYAAAAY7SaYlJUVKSbbrpJHTt2VEREhAYOHKj169cHeiy/ePPNN5WamqrQ0FBFR0dr5MiRgR7Jr7xer/r06SOXy6WdO3cGehxb7d+/X5MmTVJSUpJCQ0PVo0cPzZw5UydPngz0aC3uqaeeUvfu3RUSEqLU1FRt27Yt0CPZav78+erfv7/Cw8MVFxenkSNHqrCwMNBj+d2jjz4ql8ulqVOnBnoU2xUXF+uWW25RTEyMQkNDdckll2j79u2BHstW1dXVeuihh+r9DXvkkUea9WV+raaYpKWl6dSpU1q3bp127Nihyy67TGlpaTp06FCgR7PVSy+9pFtvvVUTJ07Url279P7772vs2LGBHsuv7rvvPnXu3DnQY/jF3r17VVNTo2XLlumjjz7SH//4Ry1dulQPPPBAoEdrUatXr9a0adM0c+ZMFRQU6LLLLtPw4cNVWloa6NFss3HjRmVkZGjr1q3Ky8uTz+fTsGHDVFn7VcuOkJ+fr2XLltV963xbduzYMQ0YMEBut1tvv/22Pv74Yz3++OOKjo4O9Gi2ysrK0pIlS/Tkk09qz549ysrK0mOPPabFixc3/UHO6euD/ezIkSOWJGvTpk112yoqKixJVl5eXgAns5fP57O6dOlirVixItCjBMxbb71l9ezZ0/roo48sSdYHH3wQ6JH87rHHHrOSkpICPUaLuuKKK6yMjIy6+9XV1Vbnzp2t+fPnB3Aq/yotLbUkWRs3bgz0KH7x9ddfWxdccIGVl5dnXXPNNdaUKVMCPZKtZsyYYQ0cODDQY/jdiBEjrNtuu63etlGjRlnjxo1r8mO0iismMTExuuiii/SnP/1JlZWVOnXqlJYtW6a4uDilpKQEejzbFBQUqLi4WEFBQerbt6/i4+N1ww03aPfu3YEezS8OHz6s9PR0/fnPf1ZYWFigxwmY8vJydejQIdBjtJiTJ09qx44dGjJkSN22oKAgDRkyRFu2bAngZP5VXl4uSW3q3J5NRkaGRowYUe+8t2Wvv/66+vXrp9GjRysuLk59+/bVM888E+ixbHf11Vdr7dq1KioqkiTt2rVL7733XrM+XLVZ35UTKC6XS//4xz80cuRIhYeHKygoSHFxcXrnnXfa9GWxzz77TJI0a9YsLVy4UN27d9fjjz+uQYMGqaioqE3/QbMsSxMmTNCdd96pfv36af/+/YEeKSD27dunxYsXKzs7O9CjtJivvvpK1dXV6tSpU73tnTp10t69ewM0lX/V1NRo6tSpGjBggHr37h3ocWyXm5urgoIC5efnB3oUv/nss8+0ZMkSTZs2TQ888IDy8/N1zz33qH379ho/fnygx7NNZmamKioq1LNnTwUHB6u6ulpz587VuHHjmvwYAb1ikpmZKZfLddbb3r17ZVmWMjIyFBcXp82bN2vbtm0aOXKkbrzxRpWUlAQywjlpau7TX3j44IMP6uabb1ZKSopWrlwpl8ulv/71rwFOcW6amn3x4sX6+uuvdf/99wd65BbR1NxnKi4u1vXXX6/Ro0crPT09QJPDDhkZGdq9e7dyc3MDPYrtDhw4oClTpuiFF15QSEhIoMfxm5qaGl1++eWaN2+e+vbtq9tvv13p6elaunRpoEez1YsvvqgXXnhBOTk5Kigo0KpVq5Sdna1Vq1Y1+TEC+pH0R44cUVlZ2Vn3SU5O1ubNmzVs2DAdO3ZMERERdb+74IILNGnSJGVmZto9aotqau73339f1157rTZv3qyBAwfW/S41NVVDhgzR3Llz7R61xTU1+y9/+Uu98cYbcrlcddurq6sVHByscePGNes/chM0NXf79u0lSQcPHtSgQYN05ZVX6rnnnmvwTd2t2cmTJxUWFqa//e1v9d5hNn78eB0/flyvvfZa4Ibzg8mTJ+u1117Tpk2blJSUFOhxbPfqq6/qF7/4hYKDg+u2VVdXy+VyKSgoSF6vt97v2orExEQNHTpUK1asqNu2ZMkSzZkzR8XFxQGczF4JCQnKzMxURkZG3bY5c+bo+eefb/IV0YA+lRMbG6vY2Njv3a+qqkqSGvxxDgoKqruq0Jo0NXdKSoo8Ho8KCwvrionP59P+/fuVmJho95i2aGr2J554QnPmzKm7f/DgQQ0fPlyrV69WamqqnSPaoqm5pdorJYMHD667QtaWSokktW/fXikpKVq7dm1dMampqdHatWs1efLkwA5nI8uydPfdd+uVV17Rhg0bHFFKJOm6667Thx9+WG/bxIkT1bNnT82YMaNNlhJJGjBgQIO3gxcVFbXav91NVVVV1eBvVnBwcPP+rW7BF+Pa5siRI1ZMTIw1atQoa+fOnVZhYaH1+9//3nK73dbOnTsDPZ6tpkyZYnXp0sX6+9//bu3du9eaNGmSFRcXZx09ejTQo/nV559/7oh35Xz55ZfW+eefb1133XXWl19+aZWUlNTd2pLc3FzL4/FYzz33nPXxxx9bt99+uxUVFWUdOnQo0KPZ5re//a0VGRlpbdiwod55raqqCvRofueEd+Vs27bNateunTV37lzrk08+sV544QUrLCzMev755wM9mq3Gjx9vdenSxVqzZo31+eefWy+//LLVsWNH67777mvyY7SKYmJZlpWfn28NGzbM6tChgxUeHm5deeWV1ltvvRXosWx38uRJa/r06VZcXJwVHh5uDRkyxNq9e3egx/I7pxSTlStXWpIavbU1ixcvtrp162a1b9/euuKKK6ytW7cGeiRbfdd5XblyZaBH8zsnFBPLsqw33njD6t27t+XxeKyePXtay5cvD/RItquoqLCmTJlidevWzQoJCbGSk5OtBx980PJ6vU1+jIC+xgQAAOBMbevJawAA0KpRTAAAgDEoJgAAwBgUEwAAYAyKCQAAMAbFBAAAGINiAgAAjEExAQAAxqCYAAAAY1BMAACAMSgmAADAGP8P+iWnHbUYuwYAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdin", + "output_type": "stream", + "text": [ + "Enter the coordinates of the red point point: \n", + " -3, 0\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " \n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiYAAAGiCAYAAADTBw0VAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAjtklEQVR4nO3de1RVdd7H8c8BjweY4SaCoSKCXZy00tCo9Jm0vNRIk2OPM47WUnOoJiwdnZJqSl15iSTHJysv2TJnisFmuttlYrzX6BIlXVkKWTkZohgqFIzHI+znD5KRgQyMfc4P9vu11lmLs9n7/L6ftQs/a5+by7IsSwAAAAYICvQAAAAAp1FMAACAMSgmAADAGBQTAABgDIoJAAAwBsUEAAAYg2ICAACMQTEBAADGoJgAAABjUEwAAIAxbC0m1dXVeuihh5SUlKTQ0FD16NFDjzzyiPgUfAAA0Jh2dj54VlaWlixZolWrVqlXr17avn27Jk6cqMjISN1zzz12Lg0AAFohl51f4peWlqZOnTrp2Wefrdt28803KzQ0VM8//7xdywIAgFbK1ismV199tZYvX66ioiJdeOGF2rVrl9577z0tXLiw0f29Xq+8Xm/d/ZqaGh09elQxMTFyuVx2jgoAAFqIZVn6+uuv1blzZwUFNfNVI5aNqqurrRkzZlgul8tq166d5XK5rHnz5n3n/jNnzrQkcePGjRs3btzawO3AgQPN7g62PpWTm5ure++9VwsWLFCvXr20c+dOTZ06VQsXLtT48eMb7P/fV0zKy8vVrVs3FRUVqUOHDnaNaRyfz6f169dr8ODBcrvdgR7Hb8jtnNyVlVJiYm3WTz+tUmSkM3JLzjzfErmdlvvo0aO68MILdfz4cUVGRjbrWFufyrn33nuVmZmpMWPGSJIuueQS/etf/9L8+fMbLSYej0cej6fB9g4dOigmJsbOUY3i8/kUFhammJgYR/2HTG7n5A4J+c/PHTqEKirKGbklZ55vidxOy33aubwMw9a3C1dVVTV4bik4OFg1NTV2LgsAAFopW6+Y3HjjjZo7d666deumXr166YMPPtDChQt122232bksAABopWwtJosXL9ZDDz2ku+66S6WlpercubPuuOMOPfzww3YuCwAAWilbi0l4eLgWLVqkRYsW2bkMAABoI/iuHAAAYAyKCQAAMAbFBAAAGINiAgAAjEExAQAAxqCYAAAAY1BMAACAMSgmAADAGBQTAABgDIoJAAAwBsUEAAAYg2ICAACMQTEBAADGoJgAAABjUEwAAIAxKCYAAMAYFBMAAGAMigkAADAGxQQAABiDYgIAAIxBMQEAAMagmAAAAGNQTAAAgDEoJgAAwBgUEwAAYAyKCQAAMAbFBAAAGINiAgAAjEExAQAAxqCYAAAAY1BMAACAMSgmAADAGBQTAABgDIoJAAAwBsUEAAAYw/ZiUlxcrFtuuUUxMTEKDQ3VJZdcou3bt9u9LAAAaIXa2fngx44d04ABAzR48GC9/fbbio2N1SeffKLo6Gg7lwUAAK2UrcUkKytLCQkJWrlyZd22pKQkO5cEAACtmK3F5PXXX9fw4cM1evRobdy4UV26dNFdd92l9PT0Rvf3er3yer119ysqKiRJPp9PPp/PzlGNcjqrkzJL5HZS7tqo7m9/9slB0R15viVyOzX3uXBZlmW14Cz1hISESJKmTZum0aNHKz8/X1OmTNHSpUs1fvz4BvvPmjVLs2fPbrA9JydHYWFhdo0JwM9OnAjWmDFpkqTc3DUKCakO8EQAWlJVVZXGjh2r8vJyRURENOtYW4tJ+/bt1a9fP/3zn/+s23bPPfcoPz9fW7ZsabB/Y1dMEhISVFJSopiYGLvGNI7P51NeXp6GDh0qt9sd6HH8htzOyV1ZKUVH12YtLa1SVJQzckvOPN8SuZ2Wu6ysTPHx8edUTGx9Kic+Pl4XX3xxvW0/+clP9NJLLzW6v8fjkcfjabDd7XY76oSeRm5ncVLuM2M6KfeZyO0sTsv9Q7La+nbhAQMGqLCwsN62oqIiJSYm2rksAABopWwtJr/73e+0detWzZs3T/v27VNOTo6WL1+ujIwMO5cFAACtlK3FpH///nrllVf0l7/8Rb1799YjjzyiRYsWady4cXYuCwAAWilbX2MiSWlpaUpLS7N7GQAA0AbwXTkAAMAYFBMAAGAMigkAADAGxQQAABiDYgIAAIxBMQEAAMagmAAAAGNQTAAAgDEoJgAAwBgUEwAAYAyKCQAAMAbFBAAAGINiAgAAjEExAQAAxqCYAAAAY1BMAACAMSgmAADAGBQTAABgDIoJAAAwBsUEAAAYg2ICAACMQTEBAADGoJgAAABjUEwAAIAxKCYAAMAYFBMAAGAMigkAADAGxQQAABiDYgIAAIxBMQEAAMagmAAAAGNQTAAAgDEoJgAAwBgUEwAAYAyKCQAAMIbfismjjz4ql8ulqVOn+mtJAADQyvilmOTn52vZsmW69NJL/bEcAABopWwvJt98843GjRunZ555RtHR0XYvBwAAWrF2di+QkZGhESNGaMiQIZozZ85Z9/V6vfJ6vXX3KyoqJEk+n08+n8/WOU1yOquTMkvkdlLu2qjub3/2yUHRHXm+JXI7Nfe5sLWY5ObmqqCgQPn5+U3af/78+Zo9e3aD7evXr1dYWFhLj2e8vLy8QI8QEORu+06cCJaUJklat26dQkKqAztQADjpfJ+J3M5QVVV1zse6LMuyWnCWOgcOHFC/fv2Ul5dX99qSQYMGqU+fPlq0aFGjxzR2xSQhIUElJSWKiYmxY0wj+Xw+5eXlaejQoXK73YEex2/I7ZzclZVSdHRt1tLSKkVFOSO35MzzLZHbabnLysoUHx+v8vJyRURENOtY266Y7NixQ6Wlpbr88svrtlVXV2vTpk168skn5fV6FRwcXO8Yj8cjj8fT4LHcbrejTuhp5HYWJ+U+M6aTcp+J3M7itNw/JKttxeS6667Thx9+WG/bxIkT1bNnT82YMaNBKQEAALCtmISHh6t37971tv3oRz9STExMg+0AAAASn/wKAAAMYvvbhc+0YcMGfy4HAABaGa6YAAAAY1BMAACAMSgmAADAGBQTAABgDIoJAAAwBsUEAAAYg2ICAACMQTEBAADGoJgAAABjUEwAAIAxKCYAAMAYFBMAAGAMigkAADAGxQQAABiDYgIAAIxBMQEAAMagmAAAAGNQTAAAgDEoJgAAwBgUEwAAYAyKCQAAMAbFBAAAGINiAgAAjEExAQAAxqCYAAAAY1BMAACAMSgmAADAGBQTAABgDIoJAAAwBsUEAAAYg2ICAACMQTEBAADGoJgAAABjUEwAAIAxKCYAAMAYFBMAAGAMW4vJ/Pnz1b9/f4WHhysuLk4jR45UYWGhnUsCAIBWzNZisnHjRmVkZGjr1q3Ky8uTz+fTsGHDVFlZaeeyAACglWpn54O/88479e4/99xziouL044dO/TTn/60wf5er1der7fufkVFhSTJ5/PJ5/PZOapRTmd1UmaJ3E7KXRvV/e3PPjkouiPPt0Rup+Y+Fy7LsqwWnOWs9u3bpwsuuEAffvihevfu3eD3s2bN0uzZsxtsz8nJUVhYmD9GBOAHJ04Ea8yYNElSbu4ahYRUB3giAC2pqqpKY8eOVXl5uSIiIpp1rN+KSU1NjX7+85/r+PHjeu+99xrdp7ErJgkJCSopKVFMTIw/xjSCz+dTXl6ehg4dKrfbHehx/IbczsldWSlFR9dmLS2tUlSUM3JLzjzfErmdlrusrEzx8fHnVExsfSrnTBkZGdq9e/d3lhJJ8ng88ng8Dba73W5HndDTyO0sTsp9Zkwn5T4TuZ3Fabl/SFa/FJPJkydrzZo12rRpk7p27eqPJQEAQCtkazGxLEt33323XnnlFW3YsEFJSUl2LgcAAFo5W4tJRkaGcnJy9Nprryk8PFyHDh2SJEVGRio0NNTOpQEAQCtk6+eYLFmyROXl5Ro0aJDi4+PrbqtXr7ZzWQAA0ErZ/lQOAABAU/FdOQAAwBgUEwAAYAyKCQAAMAbFBAAAGINiAgAAjEExAQAAxqCYAAAAY1BMAACAMSgmAADAGBQTAABgDIoJAAAwBsUEAAAYg2ICAACMQTEBAADGoJgAAABjUEwAAIAxKCYAAMAYFBMAAGAMigkAADAGxQQAABiDYgIAAIxBMQEAAMagmAAAAGNQTAAAgDEoJgAAwBgUEwAAYAyKCQAAMAbFBAAAGINiAgAAjEExAQAAxqCYAAAAY1BMAACAMSgmAADAGO0CPYCRqqulzZulkhIpPl76n/+RgoMDPRUAAG0exeS/vfyyNGWK9OWX/9nWtav0f/8njRoVuLkAAHAAvzyV89RTT6l79+4KCQlRamqqtm3b5o9lm+/ll6X//d/6pUSSiotrt7/8cmDmAgDAIWy/YrJ69WpNmzZNS5cuVWpqqhYtWqThw4ersLBQcXFxTXqMykopJMTmQaurFXrPFLksS67//p1lyXK5ZE2Zqn8Pucn2p3V8PunEiWBVVkput61LGYXczsldWVn/Z6fklpx5viVyOy33mf+PN5fLsiyr5UZpKDU1Vf3799eTTz4pSaqpqVFCQoLuvvtuZWZm1tvX6/XK6/XW3a+oqFBCQoKkckkRdo6pa7RBGzT4e/cbpPXaqEG2zgIAQOtWISlS5eXlioho3r/ftj6Vc/LkSe3YsUNDhgz5z4JBQRoyZIi2bNnSYP/58+crMjKy7lZbSvwjXiUtuh8AAGg+W5/K+eqrr1RdXa1OnTrV296pUyft3bu3wf7333+/pk2bVnf/9BWTTz+tUocOoXaOqnbvxUo3fv9+z7wRqyUDfbbO4vP5tG7dOl177bVyO+jaH7mdk7uyUuratTbr559XKSrKGbklZ55vidxOy330aJV69Di3Y416V47H45HH42mwPTLSbf8frhsG1777prhYauzZLZdL6tpVP75hsF9eYxISUq2oKLej/kMmt3NynxkzKsoP/38bxInnWyK303JXV597VlufyunYsaOCg4N1+PDhetsPHz6s8847z86lmy84uPYtwVJtCTnT6fuLFvF5JgAA2MjWYtK+fXulpKRo7dq1ddtqamq0du1aXXXVVXYufW5GjZL+9jepS5f627t2rd3O55gAAGAr25/KmTZtmsaPH69+/frpiiuu0KJFi1RZWamJEyfavfS5GTVKuukmPvkVAIAAsL2Y/OpXv9KRI0f08MMP69ChQ+rTp4/eeeedBi+INUpwsDRoUKCnAADAcfzy4tfJkydr8uTJ/lgKAAC0Yny7MAAAMAbFBAAAGINiAgAAjEExAQAAxqCYAAAAY1BMAACAMSgmAADAGBQTAABgDIoJAAAwBsUEAAAYg2ICAACMQTEBAADGoJgAAABjUEwAAIAxKCYAAMAYFBMAAGAMigkAADAGxQQAABiDYgIAAIxBMQEAAMagmAAAAGNQTAAAgDEoJgAAwBgUEwAAYAyKCQAAMAbFBAAAGINiAgAAjEExAQAAxqCYAAAAY1BMAACAMSgmAADAGBQTAABgDIoJAAAwBsUEAAAYg2ICAACMYVsx2b9/vyZNmqSkpCSFhoaqR48emjlzpk6ePGnXkgAAoJVrZ9cD7927VzU1NVq2bJnOP/987d69W+np6aqsrFR2drZdywIAgFbMtmJy/fXX6/rrr6+7n5ycrMLCQi1ZsoRiAgAAGmVbMWlMeXm5OnTo8J2/93q98nq9dfcrKiokST6fTz6fz/b5THE6q5MyS+R2Uu7aqO5vf/bJQdEdeb4lcjs197lwWZZlteAs32nfvn1KSUlRdna20tPTG91n1qxZmj17doPtOTk5CgsLs3tEAH5y4kSwxoxJkyTl5q5RSEh1gCcC0JKqqqo0duxYlZeXKyIiolnHNruYZGZmKisr66z77NmzRz179qy7X1xcrGuuuUaDBg3SihUrvvO4xq6YJCQkqKSkRDExMc0Zs1Xz+XzKy8vT0KFD5Xa7Az2O35DbObkrK6Xo6NqspaVViopyRm7JmedbIrfTcpeVlSk+Pv6cikmzn8qZPn26JkyYcNZ9kpOT634+ePCgBg8erKuvvlrLly8/63Eej0cej6fBdrfb7agTehq5ncVJuc+M6aTcZyK3szgt9w/J2uxiEhsbq9jY2CbtW1xcrMGDByslJUUrV65UUBAfmwIAAL6bbS9+LS4u1qBBg5SYmKjs7GwdOXKk7nfnnXeeXcsCAIBWzLZikpeXp3379mnfvn3q2rVrvd/56fW2AACglbHtuZUJEybIsqxGbwAAAI3hRR8AAMAYFBMAAGAMigkAADAGxQQAABiDYgIAAIxBMQEAAMagmAAAAGNQTAAAgDEoJgAAwBgUEwAAYAyKCQAAMAbFBAAAGINiAgAAjEExAQAAxqCYAAAAY1BMAACAMSgmAADAGBQTAABgDIoJAAAwBsUEAAAYg2ICAACMQTEBAADGoJgAAABjUEwAAIAxKCYAAMAYFBMAAGAMigkAADAGxQQAABiDYgIAAIxBMQEAAMagmAAAAGNQTAAAgDEoJgAAwBgUEwAAYAyKCQAAMIZfionX61WfPn3kcrm0c+dOfywJAABaIb8Uk/vuu0+dO3f2x1IAAKAVs72YvP3223r33XeVnZ1t91IAAKCVa2fngx8+fFjp6el69dVXFRYW9r37e71eeb3euvsVFRWSJJ/PJ5/PZ9ucpjmd1UmZJXI7KXdtVPe3P/vkoOiOPN8SuZ2a+1y4LMuyWnCWOpZl6Wc/+5kGDBigP/zhD9q/f7+SkpL0wQcfqE+fPo0eM2vWLM2ePbvB9pycnCYVGwCtw4kTwRozJk2SlJu7RiEh1QGeCEBLqqqq0tixY1VeXq6IiIhmHdvsYpKZmamsrKyz7rNnzx69++67evHFF7Vx40YFBwc3qZg0dsUkISFBJSUliomJac6YrZrP51NeXp6GDh0qt9sd6HH8htzOyV1ZKUVH12YtLa1SVJQzckvOPN8SuZ2Wu6ysTPHx8edUTJr9VM706dM1YcKEs+6TnJysdevWacuWLfJ4PPV+169fP40bN06rVq1qcJzH42mwvyS53W5HndDTyO0sTsp9Zkwn5T4TuZ3Fabl/SNZmF5PY2FjFxsZ+735PPPGE5syZU3f/4MGDGj58uFavXq3U1NTmLgsAABzAthe/duvWrd79H//4x5KkHj16qGvXrnYtCwAAWjE++RUAABjD1rcLn6l79+6y6Q1AAACgjeCKCQAAMAbFBAAAGINiAgAAjEExAQAAxqCYAAAAY1BMAACAMSgmAADAGBQTAABgDIoJAAAwBsUEAAAYg2ICAACMQTEBAADGoJgAAABjUEwAAIAxKCYAAMAYFBMAAGAMigkAADAGxQQAABiDYgIAAIxBMQEAAMagmAAAAGNQTAAAgDEoJgAAwBgUEwAAYAyKCQAAMAbFBAAAGINiAgAAjEExAQAAxqCYAAAAY1BMAACAMSgmAADAGBQTAABgDIoJAAAwBsUEAAAYg2ICAACMYWsxefPNN5WamqrQ0FBFR0dr5MiRdi4HAABauXZ2PfBLL72k9PR0zZs3T9dee61OnTql3bt327UcAABoA2wpJqdOndKUKVO0YMECTZo0qW77xRdfbMdyAACgjbClmBQUFKi4uFhBQUHq27evDh06pD59+mjBggXq3bv3dx7n9Xrl9Xrr7ldUVEiSfD6ffD6fHaMa6XRWJ2WWyO2k3LVR3d/+7JODojvyfEvkdmruc+GyLMtqwVkkSbm5ufr1r3+tbt26aeHCherevbsef/xxvfvuuyoqKlKHDh0aPW7WrFmaPXt2g+05OTkKCwtr6TEBBMiJE8EaMyZNkpSbu0YhIdUBnghAS6qqqtLYsWNVXl6uiIiIZh3brGKSmZmprKyss+6zZ88eFRQUaNy4cVq2bJluv/12SbVXQ7p27ao5c+bojjvuaPTYxq6YJCQkqKSkRDExMU0ds9Xz+XzKy8vT0KFD5Xa7Az2O35DbObkrK6Xo6NqspaVViopyRm7JmedbIrfTcpeVlSk+Pv6cikmznsqZPn26JkyYcNZ9kpOTVVJSIqn+a0o8Ho+Sk5P1xRdffOexHo9HHo+nwXa32+2oE3oauZ3FSbnPjOmk3Gcit7M4LfcPydqsYhIbG6vY2Njv3S8lJUUej0eFhYUaOHCgpNrWuH//fiUmJp7bpAAAoM2z5cWvERERuvPOOzVz5kwlJCQoMTFRCxYskCSNHj3ajiUBAEAbYNvnmCxYsEDt2rXTrbfeqn//+99KTU3VunXrFB0dbdeSAACglbOtmLjdbmVnZys7O9uuJQAAQBvDd+UAAABjUEwAAIAxKCYAAMAYFBMAAGAMigkAADAGxQQAABiDYgIAAIxBMQEAAMagmAAAAGNQTAAAgDEoJgAAwBgUEwAAYAyKCQAAMAbFBAAAGINiAgAAjEExAQAAxqCYAAAAY1BMAACAMSgmAADAGBQTAABgDIoJAAAwBsUEAAAYg2ICAACMQTEBAADGoJgAAABjUEwAAIAxKCYAAMAYFBMAAGAMigkAADAGxQQAABiDYgIAAIxBMQEAAMagmAAAAGNQTAAAgDEoJgAAwBgUEwAAYAzbiklRUZFuuukmdezYURERERo4cKDWr19v13IAAKANsK2YpKWl6dSpU1q3bp127Nihyy67TGlpaTp06JBdSwIAgFaunR0P+tVXX+mTTz7Rs88+q0svvVSS9Oijj+rpp5/W7t27dd555zV6nNfrldfrrbtfXl4uSTp69KgdYxrL5/OpqqpKZWVlcrvdgR7Hb8jtnNyVlZJUm/Xo0SpVVzsjt+TM8y2R22m5T/+7bVlW8w+2bFBTU2NddNFF1m9+8xvrm2++sXw+n7VgwQIrLi7OOnr06HceN3PmTEsSN27cuHHjxq0N3D799NNmdwiXZZ1Lnfl+X375pUaOHKmCggIFBQUpLi5Ob775pvr27fudx/z3FZPjx48rMTFRX3zxhSIjI+0Y00gVFRVKSEjQgQMHFBEREehx/Ibc5HYCcpPbCcrLy9WtWzcdO3ZMUVFRzTq2WU/lZGZmKisr66z77NmzRxdddJEyMjIUFxenzZs3KzQ0VCtWrNCNN96o/Px8xcfHN3qsx+ORx+NpsD0yMtJRJ/S0iIgIcjsIuZ2F3M7i1NxBQc1/KWuzisn06dM1YcKEs+6TnJysdevWac2aNTp27FjdiXj66aeVl5enVatWKTMzs9mDAgCAtq9ZxSQ2NlaxsbHfu19VVZWkhk0pKChINTU1zVkSAAA4iC1vF77qqqsUHR2t8ePHa9euXSoqKtK9996rzz//XCNGjGjy43g8Hs2cObPRp3faMnKT2wnITW4nIHfzc9v24tft27frwQcf1Pbt2+Xz+dSrVy89/PDDuuGGG+xYDgAAtAG2FRMAAIDm4rtyAACAMSgmAADAGBQTAABgDIoJAAAwRqspJkVFRbrpppvUsWNHRUREaODAgVq/fn2gx/KLN998U6mpqQoNDVV0dLRGjhwZ6JH8yuv1qk+fPnK5XNq5c2egx7HV/v37NWnSJCUlJSk0NFQ9evTQzJkzdfLkyUCP1uKeeuopde/eXSEhIUpNTdW2bdsCPZKt5s+fr/79+ys8PFxxcXEaOXKkCgsLAz2W3z366KNyuVyaOnVqoEexXXFxsW655RbFxMQoNDRUl1xyibZv3x7osWxVXV2thx56qN7fsEceeaRZX+bXaopJWlqaTp06pXXr1mnHjh267LLLlJaWpkOHDgV6NFu99NJLuvXWWzVx4kTt2rVL77//vsaOHRvosfzqvvvuU+fOnQM9hl/s3btXNTU1WrZsmT766CP98Y9/1NKlS/XAAw8EerQWtXr1ak2bNk0zZ85UQUGBLrvsMg0fPlylpaWBHs02GzduVEZGhrZu3aq8vDz5fD4NGzZMlbVftewI+fn5WrZsWd23zrdlx44d04ABA+R2u/X222/r448/1uOPP67o6OhAj2arrKwsLVmyRE8++aT27NmjrKwsPfbYY1q8eHHTH+Scvj7Yz44cOWJJsjZt2lS3raKiwpJk5eXlBXAye/l8PqtLly7WihUrAj1KwLz11ltWz549rY8++siSZH3wwQeBHsnvHnvsMSspKSnQY7SoK664wsrIyKi7X11dbXXu3NmaP39+AKfyr9LSUkuStXHjxkCP4hdff/21dcEFF1h5eXnWNddcY02ZMiXQI9lqxowZ1sCBAwM9ht+NGDHCuu222+ptGzVqlDVu3LgmP0aruGISExOjiy66SH/6059UWVmpU6dOadmyZYqLi1NKSkqgx7NNQUGBiouLFRQUpL59+yo+Pl433HCDdu/eHejR/OLw4cNKT0/Xn//8Z4WFhQV6nIApLy9Xhw4dAj1Gizl58qR27NihIUOG1G0LCgrSkCFDtGXLlgBO5l/l5eWS1KbO7dlkZGRoxIgR9c57W/b666+rX79+Gj16tOLi4tS3b18988wzgR7LdldffbXWrl2roqIiSdKuXbv03nvvNevDVZv1XTmB4nK59I9//EMjR45UeHi4goKCFBcXp3feeadNXxb77LPPJEmzZs3SwoUL1b17dz3++OMaNGiQioqK2vQfNMuyNGHCBN15553q16+f9u/fH+iRAmLfvn1avHixsrOzAz1Ki/nqq69UXV2tTp061dveqVMn7d27N0BT+VdNTY2mTp2qAQMGqHfv3oEex3a5ubkqKChQfn5+oEfxm88++0xLlizRtGnT9MADDyg/P1/33HOP2rdvr/Hjxwd6PNtkZmaqoqJCPXv2VHBwsKqrqzV37lyNGzeuyY8R0CsmmZmZcrlcZ73t3btXlmUpIyNDcXFx2rx5s7Zt26aRI0fqxhtvVElJSSAjnJOm5j79hYcPPvigbr75ZqWkpGjlypVyuVz661//GuAU56ap2RcvXqyvv/5a999/f6BHbhFNzX2m4uJiXX/99Ro9erTS09MDNDnskJGRod27dys3NzfQo9juwIEDmjJlil544QWFhIQEehy/qamp0eWXX6558+apb9++uv3225Wenq6lS5cGejRbvfjii3rhhReUk5OjgoICrVq1StnZ2Vq1alWTHyOgH0l/5MgRlZWVnXWf5ORkbd68WcOGDdOxY8cUERFR97sLLrhAkyZNUmZmpt2jtqim5n7//fd17bXXavPmzRo4cGDd71JTUzVkyBDNnTvX7lFbXFOz//KXv9Qbb7whl8tVt726ulrBwcEaN25cs/4jN0FTc7dv316SdPDgQQ0aNEhXXnmlnnvuuQbf1N2anTx5UmFhYfrb3/5W7x1m48eP1/Hjx/Xaa68Fbjg/mDx5sl577TVt2rRJSUlJgR7Hdq+++qp+8YtfKDg4uG5bdXW1XC6XgoKC5PV66/2urUhMTNTQoUO1YsWKum1LlizRnDlzVFxcHMDJ7JWQkKDMzExlZGTUbZszZ46ef/75Jl8RDehTObGxsYqNjf3e/aqqqiSpwR/noKCguqsKrUlTc6ekpMjj8aiwsLCumPh8Pu3fv1+JiYl2j2mLpmZ/4oknNGfOnLr7Bw8e1PDhw7V69WqlpqbaOaItmppbqr1SMnjw4LorZG2plEhS+/btlZKSorVr19YVk5qaGq1du1aTJ08O7HA2sixLd999t1555RVt2LDBEaVEkq677jp9+OGH9bZNnDhRPXv21IwZM9pkKZGkAQMGNHg7eFFRUav9291UVVVVDf5mBQcHN+/f6hZ8Ma5tjhw5YsXExFijRo2ydu7caRUWFlq///3vLbfbbe3cuTPQ49lqypQpVpcuXay///3v1t69e61JkyZZcXFx1tGjRwM9ml99/vnnjnhXzpdffmmdf/751nXXXWd9+eWXVklJSd2tLcnNzbU8Ho/13HPPWR9//LF1++23W1FRUdahQ4cCPZptfvvb31qRkZHWhg0b6p3XqqqqQI/md054V862bdusdu3aWXPnzrU++eQT64UXXrDCwsKs559/PtCj2Wr8+PFWly5drDVr1liff/659fLLL1sdO3a07rvvviY/RqsoJpZlWfn5+dawYcOsDh06WOHh4daVV15pvfXWW4Eey3YnT560pk+fbsXFxVnh4eHWkCFDrN27dwd6LL9zSjFZuXKlJanRW1uzePFiq1u3blb79u2tK664wtq6dWugR7LVd53XlStXBno0v3NCMbEsy3rjjTes3r17Wx6Px+rZs6e1fPnyQI9ku4qKCmvKlClWt27drJCQECs5Odl68MEHLa/X2+THCOhrTAAAAM7Utp68BgAArRrFBAAAGINiAgAAjEExAQAAxqCYAAAAY1BMAACAMSgmAADAGBQTAABgDIoJAAAwBsUEAAAYg2ICAACM8f+eYqcdh2k2FgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdin", + "output_type": "stream", + "text": [ + "Enter the coordinates of the red point point: \n", + " -7, 0\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " \n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiYAAAGiCAYAAADTBw0VAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAjq0lEQVR4nO3de1RVdd7H8c8BjweY4SaCoaKCXZy00tCo9HnSEq2RJsceZxytpeZQTVg6OhVNU+rKSyQ5Pll5yZY5Uww2090uE+O9Rpco6cpSyMrJEMW8QMF4PMJ+/iB5ZCADY5/zO+z3a629Fmez9/l9P2sXftY+B47LsixLAAAABggJ9AAAAACnUUwAAIAxKCYAAMAYFBMAAGAMigkAADAGxQQAABiDYgIAAIxBMQEAAMagmAAAAGNQTAAAgDFsLSY1NTV66KGHlJycrPDwcPXs2VOPPPKI+Cv4AACgKe3sfPKcnBwtXrxYK1euVO/evbVt2zZNnDhR0dHRuueee+xcGgAABCGXnR/il5GRoU6dOunZZ5+t33fzzTcrPDxczz//vF3LAgCAIGXrHZOrr75ay5YtU0lJiS688ELt3LlT7733nhYsWNDk8V6vV16vt/5xbW2tjh49qri4OLlcLjtHBQAArcSyLH399dfq3LmzQkJa+K4Ry0Y1NTXW/fffb7lcLqtdu3aWy+Wy5s6d+53Hz5gxw5LExsbGxsbG1ga2/fv3t7g72PpSTn5+vu69917Nnz9fvXv31o4dOzR16lQtWLBA48ePb3T8f94xqaioULdu3VRSUqIOHTrYNaZxfD6f1q1bpyFDhsjtdgd6HL8ht3NyV1VJ3bvXZf3002pFRzsjt+TM6y2R22m5jx49qgsvvFDHjx9XdHR0i8619aWce++9V9nZ2RozZowk6ZJLLtG//vUvzZs3r8li4vF45PF4Gu3v0KGD4uLi7BzVKD6fTxEREYqLi3PUf8jkdk7usLD//7pDh3DFxDgjt+TM6y2R22m5TzuXt2HY+uvC1dXVjV5bCg0NVW1trZ3LAgCAIGXrHZMbb7xRc+bMUbdu3dS7d2998MEHWrBggW677TY7lwUAAEHK1mKyaNEiPfTQQ7rrrrtUXl6uzp0764477tDDDz9s57IAACBI2VpMIiMjtXDhQi1cuNDOZQAAQBvBZ+UAAABjUEwAAIAxKCYAAMAYFBMAAGAMigkAADAGxQQAABiDYgIAAIxBMQEAAMagmAAAAGNQTAAAgDEoJgAAwBgUEwDwl5oauTZsUJeNG+XasEGqqQn0RIBxKCYA4A8vvyz16KF26enqv2CB2qWnSz161O0HUI9iAgB2e/ll6X/+R/ryy4b7S0vr9lNOgHoUEwCwU02NNGWKZFmNv3d639SpvKwDfItiAgB22rSp8Z2SM1mWtH9/3XEAKCYAYKuystY9DmjjKCYAYKfExNY9DmjjKCYAYKf/+i+pa1fJ5Wr6+y6XlJRUdxwAigkA2Co0VPrf/637+j/LyenHCxfWHQeAYgIAths1Svrb36QuXRru79q1bv+oUYGZCzBQu0APAACOMGqUdNNNOrVunXa8/bb63nCD2g0Zwp0S4D9QTADAX0JDZV1zjUqrqnTZNddQSoAm8FIOAAAwBsUEAAAYg2ICAACMQTEBAADGoJgAAABjUEwAAIAxKCYAAMAYFBMAAGAMigkAADAGxQQAABiDYgIAAIxBMQEAAMawvZiUlpbqlltuUVxcnMLDw3XJJZdo27Ztdi8LAACCkK2fLnzs2DENHDhQQ4YM0dtvv634+Hh98sknio2NtXNZAAAQpGwtJjk5OUpKStKKFSvq9yUnJ9u5JAAACGK2FpPXX39dw4cP1+jRo7VhwwZ16dJFd911lzIzM5s83uv1yuv11j+urKyUJPl8Pvl8PjtHNcrprE7KLJHbSbnrorq//donB0V35PWWyO3U3OfCZVmW1YqzNBAWFiZJmjZtmkaPHq3CwkJNmTJFS5Ys0fjx4xsdP3PmTM2aNavR/ry8PEVERNg1JgA/O3EiVGPGZEiS8vNXKyysJsATAWhN1dXVGjt2rCoqKhQVFdWic20tJu3bt1f//v31z3/+s37fPffco8LCQm3evLnR8U3dMUlKSlJZWZni4uLsGtM4Pp9PBQUFSk9Pl9vtDvQ4fkNu5+SuqpJiY+uylpdXKybGGbklZ15vidxOy33kyBElJiaeUzGx9aWcxMREXXzxxQ32/eQnP9FLL73U5PEej0cej6fRfrfb7agLehq5ncVJuc+M6aTcZyK3szgt9w/JauuvCw8cOFDFxcUN9pWUlKh79+52LgsAAIKUrcXkt7/9rbZs2aK5c+dq7969ysvL07Jly5SVlWXnsgAAIEjZWkwGDBigV155RX/5y1/Up08fPfLII1q4cKHGjRtn57IAACBI2foeE0nKyMhQRkaG3csAAIA2gM/KAQAAxqCYAAAAY1BMAACAMSgmAADAGBQTAABgDIoJAAAwBsUEAAAYg2ICAACMQTEBAADGoJgAAABjUEwAAIAxKCYAAMAYFBMAAGAMigkAADAGxQQAABiDYgIAAIxBMQEAAMagmAAAAGNQTAAAgDEoJgAAwBgUEwAAYAyKCQAAMAbFBAAAGINiAgAAjEExAQAAxqCYAAAAY1BMAACAMSgmAADAGBQTAABgDIoJAAAwBsUEAAAYg2ICAACMQTEBAADGoJgAAABjUEwAAIAx/FZMHn30UblcLk2dOtVfSwIAgCDjl2JSWFiopUuX6tJLL/XHcgAAIEjZXky++eYbjRs3Ts8884xiY2PtXg4AAASxdnYvkJWVpREjRmjo0KGaPXv2WY/1er3yer31jysrKyVJPp9PPp/P1jlNcjqrkzJL5HZS7rqo7m+/9slB0R15vSVyOzX3ubC1mOTn56uoqEiFhYXNOn7evHmaNWtWo/3r1q1TREREa49nvIKCgkCPEBDkbvtOnAiVlCFJWrt2rcLCagI7UAA46XqfidzOUF1dfc7nuizLslpxlnr79+9X//79VVBQUP/eksGDB6tv375auHBhk+c0dcckKSlJZWVliouLs2NMI/l8PhUUFCg9PV1utzvQ4/gNuZ2Tu6pKio2ty1peXq2YGGfklpx5vSVyOy33kSNHlJiYqIqKCkVFRbXoXNvumGzfvl3l5eW6/PLL6/fV1NRo48aNevLJJ+X1ehUaGtrgHI/HI4/H0+i53G63oy7oaeR2FiflPjOmk3KfidzO4rTcPySrbcXkuuuu04cffthg38SJE9WrVy/df//9jUoJAACAbcUkMjJSffr0abDvRz/6keLi4hrtBwAAkPjLrwAAwCC2/7rwmdavX+/P5QAAQJDhjgkAADAGxQQAABiDYgIAAIxBMQEAAMagmAAAAGNQTAAAgDEoJgAAwBgUEwAAYAyKCQAAMAbFBAAAGINiAgAAjEExAQAAxqCYAAAAY1BMAACAMSgmAADAGBQTAABgDIoJAAAwBsUEAAAYg2ICAACMQTEBAADGoJgAAABjUEwAAIAxKCYAAMAYFBMAAGAMigkAADAGxQQAABiDYgIAAIxBMQEAAMagmAAAAGNQTAAAgDEoJgAAwBgUEwAAYAyKCQAAMAbFBAAAGINiAgAAjEExAQAAxrC1mMybN08DBgxQZGSkEhISNHLkSBUXF9u5JAAACGK2FpMNGzYoKytLW7ZsUUFBgXw+n4YNG6aqqio7lwUAAEGqnZ1P/s477zR4/NxzzykhIUHbt2/Xf//3fzc63uv1yuv11j+urKyUJPl8Pvl8PjtHNcrprE7KLJHbSbnrorq//donB0V35PWWyO3U3OfCZVmW1YqznNXevXt1wQUX6MMPP1SfPn0afX/mzJmaNWtWo/15eXmKiIjwx4gA/ODEiVCNGZMhScrPX62wsJoATwSgNVVXV2vs2LGqqKhQVFRUi871WzGpra3Vz372Mx0/flzvvfdek8c0dcckKSlJZWVliouL88eYRvD5fCooKFB6errcbnegx/Ebcjsnd1WVFBtbl7W8vFoxMc7ILTnzekvkdlruI0eOKDEx8ZyKia0v5ZwpKytLu3bt+s5SIkkej0cej6fRfrfb7agLehq5ncVJuc+M6aTcZyK3szgt9w/J6pdiMnnyZK1evVobN25U165d/bEkAAAIQrYWE8uydPfdd+uVV17R+vXrlZycbOdyAAAgyNlaTLKyspSXl6fXXntNkZGROnjwoCQpOjpa4eHhdi4NAACCkK1/x2Tx4sWqqKjQ4MGDlZiYWL+tWrXKzmUBAECQsv2lHAAAgObis3IAAIAxKCYAAMAYFBMAAGAMigkAADAGxQQAABiDYgIAAIxBMQEAAMagmAAAAGNQTAAAgDEoJgAAwBgUEwAAYAyKCQAAMAbFBAAAGINiAgAAjEExAQAAxqCYAAAAY1BMAACAMSgmAADAGBQTAABgDIoJAAAwBsUEAAAYg2ICAACMQTEBAADGoJgAAABjUEwAAIAxKCYAAMAYFBMAAGAMigkAADAGxQQAABiDYgIAAIxBMQEAAMagmAAAAGNQTAAAgDEoJgAAwBgUEwAAYAy/FJOnnnpKPXr0UFhYmNLS0rR161Z/LAsAAIJMO7sXWLVqlaZNm6YlS5YoLS1NCxcu1PDhw1VcXKyEhIRmPUdVlRQWZvOgBvH5pBMnQlVVJbndgZ7Gf8jtnNxVVQ2/dkpuyZnXWyK303Kf+f94S7ksy7Jab5TG0tLSNGDAAD355JOSpNraWiUlJenuu+9WdnZ2g2O9Xq+8Xm/948rKSiUlJUmqkBRl55gAAKDVVEqKVkVFhaKiWvbvt60v5Zw8eVLbt2/X0KFD/3/BkBANHTpUmzdvbnT8vHnzFB0dXb/VlRIAAOAUtr6U89VXX6mmpkadOnVqsL9Tp07as2dPo+MfeOABTZs2rf7x6Tsmn35arQ4dwu0c1Sg+n09r167VtddeK7eD7v2R2zm5q6qkrl3rsn7+ebViYpyRW3Lm9ZbI7bTcR49Wq2fPczvX9veYtITH45HH42m0Pzra7bAfXFJYWI1iYtyO+g+Z3M7JfWbMmBj+/3YCcjsrd03NuWe19aWcjh07KjQ0VIcOHWqw/9ChQzrvvPPsXBoAAAQhW4tJ+/btlZqaqjVr1tTvq62t1Zo1a3TVVVfZuTQAAAhCtr+UM23aNI0fP179+/fXFVdcoYULF6qqqkoTJ060e2kAABBkbC8mv/zlL3X48GE9/PDDOnjwoPr27at33nmn0RtiAQAA/PLm18mTJ2vy5Mn+WAoAAAQxPisHAAAYg2ICAACMQTEBAADGoJgAAABjUEwAAIAxKCYAAMAYFBMAAGAMigkAADAGxQQAABiDYgIAAIxBMQEAAMagmAAAAGNQTAAAgDEoJgAAwBgUEwAAYAyKCQAAMAbFBAAAGINiAgAAjEExAQAAxqCYAAAAY1BMAACAMSgmAADAGBQTAABgDIoJAAAwBsUEAAAYg2ICAACMQTEBAADGoJgAAABjUEwAAIAxKCYAAMAYFBMAAGAMigkAADAGxQQAABiDYgIAAIxBMQEAAMawrZjs27dPkyZNUnJyssLDw9WzZ0/NmDFDJ0+etGtJAAAQ5NrZ9cR79uxRbW2tli5dqvPPP1+7du1SZmamqqqqlJuba9eyAAAgiNlWTK6//npdf/319Y9TUlJUXFysxYsXU0wAAECTbCsmTamoqFCHDh2+8/ter1der7f+cWVlpSTJ5/PJ5/PZPp8pTmd1UmaJ3E7KXRfV/e3XPjkouiOvt0Rup+Y+Fy7LsqxWnOU77d27V6mpqcrNzVVmZmaTx8ycOVOzZs1qtD8vL08RERF2jwjAT06cCNWYMRmSpPz81QoLqwnwRABaU3V1tcaOHauKigpFRUW16NwWF5Ps7Gzl5OSc9Zjdu3erV69e9Y9LS0t1zTXXaPDgwVq+fPl3ntfUHZOkpCSVlZUpLi6uJWMGNZ/Pp4KCAqWnp8vtdgd6HL8ht3NyV1VJsbF1WcvLqxUT44zckjOvt0Rup+U+cuSIEhMTz6mYtPilnOnTp2vChAlnPSYlJaX+6wMHDmjIkCG6+uqrtWzZsrOe5/F45PF4Gu13u92OuqCnkdtZnJT7zJhOyn0mcjuL03L/kKwtLibx8fGKj49v1rGlpaUaMmSIUlNTtWLFCoWE8GdTAADAd7Ptza+lpaUaPHiwunfvrtzcXB0+fLj+e+edd55dywIAgCBmWzEpKCjQ3r17tXfvXnXt2rXB9/z0flsAABBkbHttZcKECbIsq8kNAACgKbzpAwAAGINiAgAAjEExAQAAxqCYAAAAY1BMAACAMSgmAADAGBQTAABgDIoJAAAwBsUEAAAYg2ICAACMQTEBAADGoJgAAABjUEwAAIAxKCYAAMAYFBMAAGAMigkAADAGxQQAABiDYgIAAIxBMQEAAMagmAAAAGNQTAAAgDEoJgAAwBgUEwAAYAyKCQAAMAbFBAAAGINiAgAAjEExAQAAxqCYAAAAY1BMAACAMSgmAADAGBQTAABgDIoJAAAwBsUEAAAYg2ICAACMQTEBAADG8Esx8Xq96tu3r1wul3bs2OGPJQEAQBDySzG577771LlzZ38sBQAAgpjtxeTtt9/Wu+++q9zcXLuXAgAAQa6dnU9+6NAhZWZm6tVXX1VERMT3Hu/1euX1eusfV1ZWSpJ8Pp98Pp9tc5rmdFYnZZbI7aTcdVHd337tk4OiO/J6S+R2au5z4bIsy2rFWepZlqWf/vSnGjhwoP7whz9o3759Sk5O1gcffKC+ffs2ec7MmTM1a9asRvvz8vKaVWwABIcTJ0I1ZkyGJCk/f7XCwmoCPBGA1lRdXa2xY8eqoqJCUVFRLTq3xcUkOztbOTk5Zz1m9+7devfdd/Xiiy9qw4YNCg0NbVYxaeqOSVJSksrKyhQXF9eSMYOaz+dTQUGB0tPT5Xa7Az2O35DbObmrqqTY2Lqs5eXViolxRm7JmddbIrfTch85ckSJiYnnVExa/FLO9OnTNWHChLMek5KSorVr12rz5s3yeDwNvte/f3+NGzdOK1eubHSex+NpdLwkud1uR13Q08jtLE7KfWZMJ+U+E7mdxWm5f0jWFheT+Ph4xcfHf+9xTzzxhGbPnl3/+MCBAxo+fLhWrVqltLS0li4LAAAcwLY3v3br1q3B4x//+MeSpJ49e6pr1652LQsAAIIYf/kVAAAYw9ZfFz5Tjx49ZNMvAAEAgDaCOyYAAMAYFBMAAGAMigkAADAGxQQAABiDYgIAAIxBMQEAAMagmAAAAGNQTAAAgDEoJgAAwBgUEwAAYAyKCQAAMAbFBAAAGINiAgAAjEExAQAAxqCYAAAAY1BMAACAMSgmAADAGBQTAABgDIoJAAAwBsUEAAAYg2ICAACMQTEBAADGoJgAAABjUEwAAIAxKCYAAMAYFBMAAGAMigkAADAGxQQAABiDYgIAAIxBMQEAAMagmAAAAGNQTAAAgDEoJgAAwBgUEwAAYAyKCQAAMIatxeTNN99UWlqawsPDFRsbq5EjR9q5HAAACHLt7Hril156SZmZmZo7d66uvfZanTp1Srt27bJrOQAA0AbYUkxOnTqlKVOmaP78+Zo0aVL9/osvvtiO5QAAQBthSzEpKipSaWmpQkJC1K9fPx08eFB9+/bV/Pnz1adPn+88z+v1yuv11j+urKyUJPl8Pvl8PjtGNdLprE7KLJHbSbnrorq//donB0V35PWWyO3U3OfCZVmW1YqzSJLy8/P1q1/9St26ddOCBQvUo0cPPf7443r33XdVUlKiDh06NHnezJkzNWvWrEb78/LyFBER0dpjAgiQEydCNWZMhiQpP3+1wsJqAjwRgNZUXV2tsWPHqqKiQlFRUS06t0XFJDs7Wzk5OWc9Zvfu3SoqKtK4ceO0dOlS3X777ZLq7oZ07dpVs2fP1h133NHkuU3dMUlKSlJZWZni4uKaO2bQ8/l8KigoUHp6utxud6DH8RtyOyd3VZUUG1uXtby8WjExzsgtOfN6S+R2Wu4jR44oMTHxnIpJi17KmT59uiZMmHDWY1JSUlRWViap4XtKPB6PUlJS9MUXX3znuR6PRx6Pp9F+t9vtqAt6GrmdxUm5z4zppNxnIrezOC33D8naomISHx+v+Pj47z0uNTVVHo9HxcXFGjRokKS61rhv3z5179793CYFAABtni1vfo2KitKdd96pGTNmKCkpSd27d9f8+fMlSaNHj7ZjSQAA0AbY9ndM5s+fr3bt2unWW2/Vv//9b6WlpWnt2rWKjY21a0kAABDkbCsmbrdbubm5ys3NtWsJAADQxvBZOQAAwBgUEwAAYAyKCQAAMAbFBAAAGINiAgAAjEExAQAAxqCYAAAAY1BMAACAMSgmAADAGBQTAABgDIoJAAAwBsUEAAAYg2ICAACMQTEBAADGoJgAAABjUEwAAIAxKCYAAMAYFBMAAGAMigkAADAGxQQAABiDYgIAAIxBMQEAAMagmAAAAGNQTAAAgDEoJgAAwBgUEwAAYAyKCQAAMAbFBAAAGINiAgAAjEExAQAAxqCYAAAAY1BMAACAMSgmAADAGBQTAABgDIoJAAAwBsUEAAAYw7ZiUlJSoptuukkdO3ZUVFSUBg0apHXr1tm1HAAAaANsKyYZGRk6deqU1q5dq+3bt+uyyy5TRkaGDh48aNeSAAAgyLWz40m/+uorffLJJ3r22Wd16aWXSpIeffRRPf3009q1a5fOO++8Js/zer3yer31jysqKiRJR48etWNMY/l8PlVXV+vIkSNyu92BHsdvyO2c3FVVklSX9ejRatXUOCO35MzrLZHbablP/7ttWVbLT7ZsUFtba1100UXWr3/9a+ubb76xfD6fNX/+fCshIcE6evTod543Y8YMSxIbGxsbGxtbG9g+/fTTFncIl2WdS535fl9++aVGjhypoqIihYSEKCEhQW+++ab69ev3nef85x2T48ePq3v37vriiy8UHR1tx5hGqqysVFJSkvbv36+oqKhAj+M35Ca3E5Cb3E5QUVGhbt266dixY4qJiWnRuS16KSc7O1s5OTlnPWb37t266KKLlJWVpYSEBG3atEnh4eFavny5brzxRhUWFioxMbHJcz0ejzweT6P90dHRjrqgp0VFRZHbQcjtLOR2FqfmDglp+VtZW1RMpk+frgkTJpz1mJSUFK1du1arV6/WsWPH6i/E008/rYKCAq1cuVLZ2dktHhQAALR9LSom8fHxio+P/97jqqurJTVuSiEhIaqtrW3JkgAAwEFs+XXhq666SrGxsRo/frx27typkpIS3Xvvvfr88881YsSIZj+Px+PRjBkzmnx5py0jN7mdgNzkdgJytzy3bW9+3bZtmx588EFt27ZNPp9PvXv31sMPP6wbbrjBjuUAAEAbYFsxAQAAaCk+KwcAABiDYgIAAIxBMQEAAMagmAAAAGMETTEpKSnRTTfdpI4dOyoqKkqDBg3SunXrAj2WX7z55ptKS0tTeHi4YmNjNXLkyECP5Fder1d9+/aVy+XSjh07Aj2Orfbt26dJkyYpOTlZ4eHh6tmzp2bMmKGTJ08GerRW99RTT6lHjx4KCwtTWlqatm7dGuiRbDVv3jwNGDBAkZGRSkhI0MiRI1VcXBzosfzu0Ucflcvl0tSpUwM9iu1KS0t1yy23KC4uTuHh4brkkku0bdu2QI9lq5qaGj300EMNfoY98sgjLfowv6ApJhkZGTp16pTWrl2r7du367LLLlNGRoYOHjwY6NFs9dJLL+nWW2/VxIkTtXPnTr3//vsaO3ZsoMfyq/vuu0+dO3cO9Bh+sWfPHtXW1mrp0qX66KOP9Mc//lFLlizR73//+0CP1qpWrVqladOmacaMGSoqKtJll12m4cOHq7y8PNCj2WbDhg3KysrSli1bVFBQIJ/Pp2HDhqmq7qOWHaGwsFBLly6t/9T5tuzYsWMaOHCg3G633n77bX388cd6/PHHFRsbG+jRbJWTk6PFixfrySef1O7du5WTk6PHHntMixYtav6TnNPHB/vZ4cOHLUnWxo0b6/dVVlZakqyCgoIATmYvn89ndenSxVq+fHmgRwmYt956y+rVq5f10UcfWZKsDz74INAj+d1jjz1mJScnB3qMVnXFFVdYWVlZ9Y9ramqszp07W/PmzQvgVP5VXl5uSbI2bNgQ6FH84uuvv7YuuOACq6CgwLrmmmusKVOmBHokW91///3WoEGDAj2G340YMcK67bbbGuwbNWqUNW7cuGY/R1DcMYmLi9NFF12kP/3pT6qqqtKpU6e0dOlSJSQkKDU1NdDj2aaoqEilpaUKCQlRv379lJiYqBtuuEG7du0K9Gh+cejQIWVmZurPf/6zIiIiAj1OwFRUVKhDhw6BHqPVnDx5Utu3b9fQoUPr94WEhGjo0KHavHlzACfzr4qKCklqU9f2bLKysjRixIgG170te/3119W/f3+NHj1aCQkJ6tevn5555plAj2W7q6++WmvWrFFJSYkkaefOnXrvvfda9MdVW/RZOYHicrn0j3/8QyNHjlRkZKRCQkKUkJCgd955p03fFvvss88kSTNnztSCBQvUo0cPPf744xo8eLBKSkra9A80y7I0YcIE3Xnnnerfv7/27dsX6JECYu/evVq0aJFyc3MDPUqr+eqrr1RTU6NOnTo12N+pUyft2bMnQFP5V21traZOnaqBAweqT58+gR7Hdvn5+SoqKlJhYWGgR/Gbzz77TIsXL9a0adP0+9//XoWFhbrnnnvUvn17jR8/PtDj2SY7O1uVlZXq1auXQkNDVVNTozlz5mjcuHHNfo6A3jHJzs6Wy+U667Znzx5ZlqWsrCwlJCRo06ZN2rp1q0aOHKkbb7xRZWVlgYxwTpqb+/QHHj744IO6+eablZqaqhUrVsjlcumvf/1rgFOcm+ZmX7Rokb7++ms98MADgR65VTQ395lKS0t1/fXXa/To0crMzAzQ5LBDVlaWdu3apfz8/ECPYrv9+/drypQpeuGFFxQWFhbocfymtrZWl19+uebOnat+/frp9ttvV2ZmppYsWRLo0Wz14osv6oUXXlBeXp6Kioq0cuVK5ebmauXKlc1+joD+SfrDhw/ryJEjZz0mJSVFmzZt0rBhw3Ts2DFFRUXVf++CCy7QpEmTlJ2dbfeoraq5ud9//31de+212rRpkwYNGlT/vbS0NA0dOlRz5syxe9RW19zsv/jFL/TGG2/I5XLV76+pqVFoaKjGjRvXov/ITdDc3O3bt5ckHThwQIMHD9aVV16p5557rtEndQezkydPKiIiQn/7298a/IbZ+PHjdfz4cb322muBG84PJk+erNdee00bN25UcnJyoMex3auvvqqf//znCg0Nrd9XU1Mjl8ulkJAQeb3eBt9rK7p376709HQtX768ft/ixYs1e/ZslZaWBnAyeyUlJSk7O1tZWVn1+2bPnq3nn3++2XdEA/pSTnx8vOLj47/3uOrqaklq9MM5JCSk/q5CMGlu7tTUVHk8HhUXF9cXE5/Pp3379ql79+52j2mL5mZ/4oknNHv27PrHBw4c0PDhw7Vq1SqlpaXZOaItmptbqrtTMmTIkPo7ZG2plEhS+/btlZqaqjVr1tQXk9raWq1Zs0aTJ08O7HA2sixLd999t1555RWtX7/eEaVEkq677jp9+OGHDfZNnDhRvXr10v33398mS4kkDRw4sNGvg5eUlATtz+7mqq6ubvQzKzQ0tGX/Vrfim3Ftc/jwYSsuLs4aNWqUtWPHDqu4uNj63e9+Z7ndbmvHjh2BHs9WU6ZMsbp06WL9/e9/t/bs2WNNmjTJSkhIsI4ePRro0fzq888/d8Rv5Xz55ZfW+eefb1133XXWl19+aZWVldVvbUl+fr7l8Xis5557zvr444+t22+/3YqJibEOHjwY6NFs85vf/MaKjo621q9f3+C6VldXB3o0v3PCb+Vs3brVateunTVnzhzrk08+sV544QUrIiLCev755wM9mq3Gjx9vdenSxVq9erX1+eefWy+//LLVsWNH67777mv2cwRFMbEsyyosLLSGDRtmdejQwYqMjLSuvPJK66233gr0WLY7efKkNX36dCshIcGKjIy0hg4dau3atSvQY/mdU4rJihUrLElNbm3NokWLrG7dulnt27e3rrjiCmvLli2BHslW33VdV6xYEejR/M4JxcSyLOuNN96w+vTpY3k8HqtXr17WsmXLAj2S7SorK60pU6ZY3bp1s8LCwqyUlBTrwQcftLxeb7OfI6DvMQEAADhT23rxGgAABDWKCQAAMAbFBAAAGINiAgAAjEExAQAAxqCYAAAAY1BMAACAMSgmAADAGBQTAABgDIoJAAAwBsUEAAAY4/8Aj4ysgQ7ZXjcAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdin", + "output_type": "stream", + "text": [ + "Enter the coordinates of the red point point: \n", + " 2, 7\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Your score: 3\n", + "You scored 3 out of 3. Good job!\n", + "You can go on to the next step\n" + ] + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "import random\n", + "\n", + "score = 0\n", + "\n", + "xmin = -8\n", + "xmax = 8\n", + "ymin = -8\n", + "ymax = 8\n", + "\n", + "fig, ax = plt.subplots()\n", + "\n", + "for i in range(0,3):\n", + " xpoint = random.randint(xmin, xmax)\n", + " ypoint = random.randint(ymin, ymax)\n", + " x = [xpoint]\n", + " y = [ypoint]\n", + " plt.axis([xmin,xmax,ymin,ymax]) # window size\n", + " plt.plot([xmin,xmax],[0,0],'b') # blue x axis\n", + " plt.plot([0,0],[ymin,ymax], 'b') # blue y axis\n", + " plt.plot(x, y, 'ro')\n", + " print(\" \")\n", + " plt.grid() # displays grid lines on graph\n", + " plt.show()\n", + " guess = input(\"Enter the coordinates of the red point point: \\n\")\n", + " guess_array = guess.split(\",\")\n", + " xguess = int(guess_array[0])\n", + " yguess = int(guess_array[1])\n", + " if xguess == xpoint and yguess == ypoint:\n", + " score = score + 1\n", + "\n", + "print(\"Your score: \", score) # notice this is not in the loop\n", + "\n", + "\n", + "# Only change code above this line\n", + "import math_code_test_b as test\n", + "test.step08(score)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "wvdngkOTF4Hi" + }, + "source": [ + "# Step 9 - Graphing Linear Equations" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "fTzBZAmtF4Hj" + }, + "source": [ + "Besides graphing points, you can graph linear equations (or functions). The graph will be a straight line, and the equation will not have any exponents. For these graphs, you will import `numpy` and use the `linspace()` function to define the x values. That function takes three arguments: starting number, ending number, and number of steps. Notice the `plot()` function only has two arguments: the x values and a function (y = 2x - 3) for the y values. Run this code, then use the same x values to graph `y = -x + 3`." + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "id": "xJ0pkcFsF4Hj" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkcAAAGiCAYAAADtImJbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABL9klEQVR4nO3deVhU9eI/8PcZlmGdQWRXFndccUcQ1NIycS1Tcwn31EQsvd3k3tLSulrZImpqaWippZZ7pKm5gCAqiiuguCEIuDLDIsMy5/dHP+cLCSgKnJnh/Xqe8zzMmc858z4cY97N58yMIIqiCCIiIiICAMikDkBERESkT1iOiIiIiEphOSIiIiIqheWIiIiIqBSWIyIiIqJSWI6IiIiISmE5IiIiIiqF5YiIiIioFJYjIiIiolJYjoiIiIhKqdFydOTIEQwcOBBubm4QBAHbt28vc78oipg7dy5cXV1haWmJPn364PLly0/c7/Lly+Hl5QULCwv4+vri+PHjNXQEREREVNfUaDnKy8uDj48Pli9fXu79n3/+OcLDw7Fy5UrExcXB2toaffv2RUFBQYX73LRpE2bNmoV58+bh1KlT8PHxQd++fXH79u2aOgwiIiKqQ4Ta+uJZQRCwbds2DBkyBMDfrxq5ublh9uzZ+Ne//gUAUKlUcHZ2xtq1a/HGG2+Uux9fX1906dIFy5YtAwBotVq4u7tjxowZmDNnTm0cChERERkxU6ke+Nq1a8jMzESfPn1065RKJXx9fREbG1tuOSosLER8fDzCwsJ062QyGfr06YPY2NgKH0uj0UCj0ehua7Va3L9/H/Xr14cgCNV0RERERFSTRFFETk4O3NzcIJPV3OSXZOUoMzMTAODs7FxmvbOzs+6+f7p79y5KSkrK3SYpKanCx1q4cCE+/vjj50xMRERE+uDmzZto2LBhje1fsnJUm8LCwjBr1izdbZVKBQ8PD9y8eRMKhULCZPrvXq4GYdvOISblHgCgf1sXfDiwNWzkdeKfDhmYvDzAze3vn2/dAqytpc1DRNVLrVbD3d0dtra2Nfo4kj3Dubi4AACysrLg6uqqW5+VlYX27duXu42DgwNMTEyQlZVVZn1WVpZuf+WRy+WQy+WPrVcoFCxHT6BQABunvYCVR67gyz8v4Y9LaiSvO4tlozqilRt/d6RfTEz+72eFguWIyFjV9CUxkn3OUaNGjeDi4oIDBw7o1qnVasTFxcHPz6/cbczNzdGpU6cy22i1Whw4cKDCbej5yWQC3u7VFL+81Q2uSgtcvZuHId8exYa4G6il6/mJiIhqTY2Wo9zcXCQkJCAhIQHA3xdhJyQkIDU1FYIg4J133sEnn3yCnTt34ty5cwgODoabm5vuHW0A0Lt3b9070wBg1qxZ+P7777Fu3TokJiZi2rRpyMvLw/jx42vyUAhAFy97/B4aiBe9nVBYrMV/t51HyM+nkVNQJHU0IiKialOj02onT57ECy+8oLv96LqfsWPHYu3atfj3v/+NvLw8vPXWW8jOzkZAQAD27NkDCwsL3TZXrlzB3bt3dbdHjBiBO3fuYO7cucjMzET79u2xZ8+exy7Sppphb22O1cGdsTr6Kj7fk4zfz2bgfLoKy0Z2RNuGSqnjERERPbda+5wjfaJWq6FUKqFSqXjN0XM4lfoAMzaeRnr2Q5ibyPCfIG+M9ffixyOQZPLyABubv3/OzeU1R0TGpraev/ndavTMOnrUQ2RoIF5q5YzCEi0+2nURU9fHQ5XPaTYiIjJcLEf0XJRWZvjuzU6YO6AVzEwE7L2Qhf5Lo5BwM1vqaERERM+E5YiemyAImBDQCL9O9Ye7vSXSHjzE6ytisDrqKt/NRkREBofliKqNj7sdfg8NRFBbFxRrRXzyeyIm/3gS2fmFUkcjIiJ6aixHVK0UFmZYPqojFgxuDXNTGfYn3kbQkijE37gvdTQiIqKnwnJE1U4QBLzp54Vtb/ujkYM1bqkKMHzVMaw4dAVaLafZiIhIv7EcUY1p7abErhkBGOTjhhKtiM/2JGHCuhO4l6uROhoREVGFWI6oRtnITbHkjfZY+FpbyE1lOJR8B0HhUYi7ek/qaEREROViOaIaJwgCRnb1wI6Q7mjiaI0stQYjvz+GpQcuo4TTbEREpGdYjqjWeLsosDMkAK91bACtCHy57xLG/nAcd3I4zUZERPqD5YhqlbXcFF8Nb48vXm8HSzMTRKfcRb8lUYhJufvkjYmIiGoByxFJYlhnd+wM6Y7mzja4m6vB6DVx+GrfJU6zERGR5FiOSDLNnG2xY3oARnR2hygC4QcuY/TqY8hSF0gdjYiI6jCWI5KUpbkJPnu9Hb4Z0R5W5iY4dvU+gpZE4cilO1JHIyKiOorliPTCkA4NsGtGALxdbHEvrxDBPxzH53uSUFyilToaERHVMSxHpDeaONpg+/TuGO3rAQD49tAVjPz+GDJUDyVORkREdQnLEekVCzMTfPpqWywb1QE2clOcuP4AQUuicDDpttTRiIiojmA5Ir00oJ0bds8IQJsGCjzIL8L4tSewMDIRRZxmIyKiGsZyRHrLy8Eav03zxzh/LwDAqiNXMXxVLNIe5EsbjIiIjBrLEek1uakJPhrUGivHdISthSlOp2YjaEkU/ryQKXU0IiIyUixHZBBeaeOKyNBA+DRUQl1QjLd+isfHuy6gsJjTbEREVL1YjshguNtbYctUf0wKaAQAiDh6Ha+vjEHqPU6zERFR9WE5IoNibirDBwNaYXVwZygtzXA2TYX+4VGIPJchdTQiIjISLEdkkPq0ckbkzEB09LBDjqYYb284hQ+3n0dBUYnU0YiIyMCxHJHBamBniU1T/DClZ2MAwE/HbmDoihhcu5sncTIiIjJkLEdk0MxMZAjr1xIR47vA3tocF26pMSA8CjvP3JI6GhERGSiWIzIKL7RwQmRoILp62SOvsAShP59G2NZznGYjIqIqYzkio+GitMDGyb6Y8WJTCALw8/FUDFl+FCm3c6WORkREBoTliIyKqYkMs19ugR8ndIWDjTmSMnMwaFk0tp5KkzoaEREZCJYjMkqBzRwRGRoIv8b1kV9Yglmbz+C9LWeQX1gsdTQiItJzLEdktJwUFlg/yRfv9mkOmQBsiU/D4GVHcSkrR+poRESkx1iOyKiZyATM7NMMGyZ1g6OtHJdv52LQsmhsPnEToihKHY+IiPQQyxHVCX5N6uOPmYEIbOaAgiIt/v3bWby7KQF5Gk6zERFRWSxHVGc42MixbnxXvNe3BWQCsD3hFgYujcbFW2qpoxERkR5hOaI6RSYTMP2FpvjlLT+4KCxw9W4ehnx7FBvibnCajYiIAOhBOfLy8oIgCI8t06dPL3f82rVrHxtrYWFRy6nJ0HVtZI/ImYF4oYUjCou1+O+285jx82nkFBRJHY2IiCRmKnWAEydOoKTk/z7F+Pz583jppZcwbNiwCrdRKBRITk7W3RYEoUYzknGytzbHmrFd8H3UVXyxNxm7z2bgXLoKy0d1RJsGSqnjERGRRCQvR46OjmVuL1q0CE2aNEHPnj0r3EYQBLi4uNR0NKoDZDIBU3o2QWcve4T+fBo37uXjtW9j8N/+LRHs58niTURUB0k+rVZaYWEh1q9fjwkTJlT6pJSbmwtPT0+4u7tj8ODBuHDhQqX71Wg0UKvVZRai0jp51sPvoQHo09IZhSVazNt5AdPWn4LqIafZiIjqGr0qR9u3b0d2djbGjRtX4ZgWLVrghx9+wI4dO7B+/XpotVr4+/sjLa3ir4dYuHAhlEqlbnF3d6+B9GTo7KzM8X1wJ8wd0ApmJgL2XMhE//AoJNzMljoaERHVIkHUo7fo9O3bF+bm5ti1a9dTb1NUVISWLVti5MiRWLBgQbljNBoNNBqN7rZarYa7uztUKhUUCsVz5ybjc+ZmNkJ+PoWb9x/CzETA+694Y2JAI06z6bm8PMDG5u+fc3MBa2tp8xBR9VKr1VAqlTX+/K03rxzduHED+/fvx6RJk6q0nZmZGTp06ICUlJQKx8jlcigUijILUWV83O2we0Yg+rVxQVGJiE9+T8TkH+ORnV8odTQiIqphelOOIiIi4OTkhP79+1dpu5KSEpw7dw6urq41lIzqKqWlGb4d3RHzB7eGuYkM+xOzELQkCvE37ksdjYiIapBelCOtVouIiAiMHTsWpqZl30AXHByMsLAw3e358+fjzz//xNWrV3Hq1CmMGTMGN27cqPIrTkRPQxAEBPt5Yevb/vCqb4VbqgIMX3UMKw9fgVarNzPSRERUjfSiHO3fvx+pqamYMGHCY/elpqYiIyNDd/vBgweYPHkyWrZsiaCgIKjVasTExKBVq1a1GZnqmDYNlNg1IwADfdxQohWx6I8kTFh3AvdyNU/emIiIDIpeXZBdW2rrgi4yPqIo4ufjN/HxrgvQFGvhrJBj6ciO6NrIXupoBF6QTWTs6twF2USGQBAEjPL1wPbp3dHY0RpZag3e+C4Wy/66zGk2IiIjwXJE9AxauiqwKyQAr3VoAK0ILP7zEsZGHMedHE6zEREZOpYjomdkLTfFl8N98Pnr7WBhJkPU5bsICo9CTMpdqaMREdFzYDkieg6CIGB4Z3fsDAlAMycb3MnRYPSaOHy97xJKOM1GRGSQWI6IqkFzZ1vsDAnA8M4NIYrAkgOXMWZ1HG6rC6SORkREVcRyRFRNLM1N8PnrPvh6hA+szE0Qe/UegsKjEHX5jtTRiIioCliOiKrZqx0aYmdIALxdbHE3txDBPxzH4r3JKC7RSh2NiIieAssRUQ1o6mSD7dO7Y5SvB0QRWHYwBaO+j0OG6qHU0YiI6AlYjohqiIWZCf73aluEj+wAG7kpjl+/j6AlUTiYdFvqaEREVAmWI6IaNsjHDbtnBKC1mwIP8oswfu0JLIxMRBGn2YiI9BLLEVEt8HKwxm/T/DHWzxMAsOrIVYxYFYv0bE6zERHpG5YjolpiYWaCjwe3wYrRHWFrYYpTqdkIWhKFfRezpI5GRESlsBwR1bJ+bV3x+4xA+DRUQvWwCJN/PIn5uy6isJjTbERE+oDliEgCHvWtsGWqPyZ0bwQA+OHoNQxbGYOb9/MlTkZERCxHRBIxN5Vh7sBW+D64M5SWZjiTpkJQeBT2nM+QOhoRUZ3GckQksZdaOSNyZiA6etghp6AYU9efwrwd51FQVCJ1NCKiOonliEgPNLCzxKYpfpjSszEAYF3sDQxdEYPrd/MkTkZEVPewHBHpCTMTGcL6tUTEuC6oZ2WGC7fUGLA0GrvO3JI6GhFRncJyRKRnXvB2QuTMQHT1skeuphgzfj6N/2w7x2k2IqJawnJEpIdclZbYONkXIS80hSAAG+NSMWT5UVy5kyt1NCIio8dyRKSnTE1k+FffFvhxQlc42JgjKTMHA5dGY9vpNKmjEREZNZYjIj0X2MwRkaGB8GtcH/mFJXh30xm8t+UMHhZymo2IqCawHBEZACeFBdZP8sU7fZpBEIAt8WkYtCwal7JypI5GRGR0WI6IDISJTMA7fZpjwyRfONrKcfl2LgYti8bmkzchiqLU8YiIjAbLEZGB8W/igD9mBiKwmQMKirT4969nMXvzGeRpiqWORkRkFFiOiAyQg40c68Z3xXt9W0AmAFtPp2PgsmgkZqiljkZEZPBYjogMlEwmYPoLTfHLW35wUVjg6p08DFl+FBvjUjnNRkT0HFiOiAxc10b2iJwZiF4tHKEp1uI/284h9JcE5BQUSR2NiMggsRwRGQF7a3P8MLYLwvp5w1QmYNeZWxi4NBrn01VSRyMiMjgsR0RGQiYTMKVnE2ya4ocGdpa4fi8fr30bgx9jr3OajYioCliOiIxMJ896+D00AH1aOqOwRIu5Oy5g+sZTUD3kNBsR0dNgOSIyQnZW5vg+uBM+HNAKZiYCIs9lYsDSKJy5mS11NCIivcdyRGSkBEHAxIBG+HWqP9ztLXHz/kO8vjIGa6KvcZqNiKgSLEdERs7H3Q67ZwSiXxsXFJWIWLD7Iib/GI/s/EKpoxER6SWWI6I6QGlphm9Hd8T8wa1hbiLD/sQs9A+PRvyNB1JHIyLSO5KXo48++giCIJRZvL29K91my5Yt8Pb2hoWFBdq2bYvIyMhaSktkuARBQLCfF7a+7Q/P+lZIz36IEatiserwFWi1nGYjInpE8nIEAK1bt0ZGRoZuiY6OrnBsTEwMRo4ciYkTJ+L06dMYMmQIhgwZgvPnz9diYiLD1aaBErtnBGBAO1cUa0Us/CMJE9edwP08TrMREQF6Uo5MTU3h4uKiWxwcHCocu2TJErzyyit477330LJlSyxYsAAdO3bEsmXLajExkWGztTDD0pEd8L9X28LcVIaDyXcQtCQKx6/dlzoaEZHk9KIcXb58GW5ubmjcuDFGjx6N1NTUCsfGxsaiT58+Zdb17dsXsbGxFW6j0WigVqvLLER1nSAIGOXrgR3Tu6OxozUy1QUY+f0xLD+Ywmk2IqrTJC9Hvr6+WLt2Lfbs2YMVK1bg2rVrCAwMRE5OTrnjMzMz4ezsXGads7MzMjMzK3yMhQsXQqlU6hZ3d/dqPQYiQ9bSVYFdIQF4rUMDlGhFfLE3GWMjjuNurkbqaEREkpC8HPXr1w/Dhg1Du3bt0LdvX0RGRiI7OxubN2+utscICwuDSqXSLTdv3qy2fRMZA2u5Kb4c7oPPX28HCzMZoi7fRdCSKMReuSd1NCKiWid5OfonOzs7NG/eHCkpKeXe7+LigqysrDLrsrKy4OLiUuE+5XI5FApFmYWIyhIEAcM7u2NnSACaOdngdo4Go1cfwzf7L6GE02xEVIfoXTnKzc3FlStX4OrqWu79fn5+OHDgQJl1+/btg5+fX23EIzJ6zZ1tsTMkAMM7N4RWBL7ZfxlvronDbXWB1NGIiGqF5OXoX//6Fw4fPozr168jJiYGr776KkxMTDBy5EgAQHBwMMLCwnTjZ86ciT179uDLL79EUlISPvroI5w8eRIhISFSHQKR0bE0N8Hnr/vgq+E+sDI3QcyVewgKj0LU5TtSRyMiqnGSl6O0tDSMHDkSLVq0wPDhw1G/fn0cO3YMjo6OAIDU1FRkZGToxvv7+2Pjxo347rvv4OPjg19//RXbt29HmzZtpDoEIqP1WseG2BkSAG8XW9zNLUTwD8exeG8yiku0UkcjIqoxglgHv4FSrVZDqVRCpVLx+iOip1BQVIL5uy9iY9zfH7PR1cse4SM7wEVpIXGysvLyABubv3/OzQWsraXNQ0TVq7aevyV/5YiI9J+FmQn+92pbhI/sABu5KY5fv4+g8CgcTL4tdTQiomrHckRET22Qjxt2zQhAazcF7ucVYnzECSz8IxFFnGYjIiPCckREVdLIwRq/TfNHsJ8nAGDV4at447tjSM9+KHEyIqLqwXJERFVmYWaC+YPbYMXojrC1MEX8jQcIWhKF/ReznrwxEZGeYzkiomfWr60rfp8RCJ+GSqgeFmHSjyfxye6LKCzmNBsRGS6WIyJ6Lh71rbBlqj8mdG8EAFgdfQ3DVsXi5v18iZMRET0bliMiem7mpjLMHdgK3wd3htLSDGduZiMoPAp7zmc8eWMiIj3DckRE1ealVs74PTQAHTzskFNQjKnrT2HejvPQFJdIHY2I6KmxHBFRtWpYzwqbp/hhSs/GAIB1sTcwdEUMrt/NkzgZEdHTYTkiompnZiJDWL+WiBjXBfWszHA+XY0BS6Ox++wtqaMRET0RyxER1ZgXvJ0QOTMQXbzqIVdTjJCNp/HfbedQUMRpNiLSXyxHRFSjXJWW+HlyN0x/oQkEAdgQl4ohy4/iyp1cqaMREZWL5YiIapypiQzv9fXGuvFdUd/aHEmZORi4NBrbT6dLHY2I6DEsR0RUa3o0d8QfMwPRrbE98gtL8M6mBLz/61k8LOQ0GxHpD5YjIqpVTgoLbJjUDTN7N4MgAJtO3sTg5dG4nJUjdTQiIgAsR0QkAROZgHdfao4NE33haCvHpaxcDFp2FFtO3pQ6GhERyxERSce/qQMiQwMR0NQBD4tK8N6vZzFrcwLyNMVSRyOiOozliIgk5Wgrx48TuuJfLzeHTAC2nkrHoGXRSMpUSx2NiOooliMikpxMJiDkxWb4eXI3OCvkuHInD4OXHcXPx1MhiqLU8YiojmE5IiK94du4PiJDA9GrhSM0xVqEbT2H0F8SkFNQJHU0IqpDWI6ISK/Ut5Hjh7FdMKefN0xkAnaduYWBS6NxPl0ldTQiqiNYjohI78hkAqb2bILNU7rBTWmB6/fy8dq3Mfgp9jqn2YioxrEcEZHe6uRpj8iZgejT0gmFJVp8uOMCpm88BTWn2YioBrEcEZFes7Myx/fBnfFB/5YwMxEQeS4T/cOjcDYtW+poRGSkWI6ISO8JgoBJgY2xZao/GtazxM37DzF0RQx+iL7GaTYiqnYsR0RkMNq72+H30EC80toFRSUi5u++iCk/xUOVz2k2Iqo+LEdEZFCUlmZYMaYjPh7UGuYmMvx5MQtB4VE4lfpA6mhEZCRYjojI4AiCgLH+Xvhtmj8861shPfshhq+MRUTsFQCcZiOi58NyREQGq21DJXbPCED/dq4o1opYvD8JjkNPQmZRKHU0IjJgLEdEZNBsLcywbGQHfPpqG5ibyGDV9DZcx0chPvW+1NGIyECxHBGRwRMEAaN9PfHzhO4oumcNU0UBxv94DMsPpkCr5TQbEVUNyxERGQ1vFwUyfgxA7gU3lIgivtibjLERx3E3VyN1NCIyICxHRGRUxEJT3NvdHgsGtoOFmQxRl+8iaEkUYq/ckzoaERkIliMiMkICXmvvjh3TA9DUyQa3czQYvfoYluy/jBJOsxHRE7AcEZHRauFii50h3fF6p4bQisDX+y/hzTVxuJ1TIHU0ItJjLEdEZNSszE2xeJgPvhzmA0szE8RcuYegJdGIvnxX6mhEpKckL0cLFy5Ely5dYGtrCycnJwwZMgTJycmVbrN27VoIglBmsbCwqKXERGSIhnZqiF0zAtDC2RZ3czV484c4fPlnMopLtFJHIyI9I3k5Onz4MKZPn45jx45h3759KCoqwssvv4y8vLxKt1MoFMjIyNAtN27cqKXERGSomjrZYEdId4zs6g5RBJb+lYJRq+OQqeI0GxH9H1OpA+zZs6fM7bVr18LJyQnx8fHo0aNHhdsJggAXF5enegyNRgON5v/eyqtWq58tLBEZPAszEyx8rR26Na6P/2w9h+PX7iMoPApfDfdBrxZOUscjIj0g+StH/6RSqQAA9vb2lY7Lzc2Fp6cn3N3dMXjwYFy4cKHCsQsXLoRSqdQt7u7u1ZqZiAzP4PYNsDs0EK1cFbifV4hxESfw2Z4kFHGajajOE0RR1Jv3tWq1WgwaNAjZ2dmIjo6ucFxsbCwuX76Mdu3aQaVSYfHixThy5AguXLiAhg0bPja+vFeO3N3doVKpoFAoauRYiKj25eUBNjZ//5ybC1hbP3mbgqISfPp7In469vfUfCfPelg6sgPc7CxrMCkRPQu1Wg2lUlnjz996VY6mTZuGP/74A9HR0eWWnIoUFRWhZcuWGDlyJBYsWPDE8bX1yyWi2vUs5eiRyHMZeP/Xs8jRFMPOygyLX/dBn1bONROUiJ5JbT1/6820WkhICHbv3o2DBw9WqRgBgJmZGTp06ICUlJQaSkdExi6orSt+Dw1Eu4ZKZOcXYdKPJ/HJ7osoLOY0G1FdI3k5EkURISEh2LZtG/766y80atSoyvsoKSnBuXPn4OrqWgMJiaiu8KhvhS1T/TC+uxcAYHX0NQxbFYub9/OlDUZEtUrycjR9+nSsX78eGzduhK2tLTIzM5GZmYmHDx/qxgQHByMsLEx3e/78+fjzzz9x9epVnDp1CmPGjMGNGzcwadIkKQ6BiIyI3NQE8wa2xqo3O0FhYYozN7PRPzwKe85nSh2NiGqJ5OVoxYoVUKlU6NWrF1xdXXXLpk2bdGNSU1ORkZGhu/3gwQNMnjwZLVu2RFBQENRqNWJiYtCqVSspDoGIjFDf1i6InBmI9u52UBcUY+r6eHy08wI0xSVSRyOiGqZXF2TXFl6QTWScnueC7IoUlWjxxd5kfHfkKgCgbQMllo3qAM/61bBzIqqSOndBNhGRPjIzkeE/QS3xw7jOsLMyw7l0FfqHR2P32VtSRyOiGsJyRET0FF70dkZkaCA6e9ZDrqYYIRtP47/bzqGgiNNsRMaG5YiI6Cm52Vnil7e64e1eTQAAG+JSMWT5UVy5kytxMiKqTixHRERVYGoiw79f8ca6CV1R39ocSZk5GLg0GttPp0sdjYiqCcsREdEz6NncEZEzA9GtsT3yC0vwzqYEvP/rWTws5DQbkaFjOSIiekbOCgtsmNQNob2bQRCATSdvYvDyaFzOypE6GhE9B5YjIqLnYCITMOul5lg/0RcONnJcysrFoGVHseXkTamjEdEzYjkiIqoG3Zs64I+ZgQho6oCHRSV479ezmLU5AXmaYqmjEVEVsRwREVUTR1s51k3oitkvNYdMALaeSsegZdFIylRLHY2IqoDliIioGpnIBMzo3QwbJ3eDs0KOK3fyMHjZUfx8PBV18AsJiAwSyxERUQ3o1rg+IkMD0bO5IzTFWoRtPYeZvyQgl9NsRHqP5YiIqIbUt5EjYlwXvP+KN0xkAnaeuYUB4VE4n66SOhoRVYLliIioBslkAqb1aoJNb3WDq9IC1+/l47UVMfgp9jqn2Yj0FMsREVEt6Oxlj8jQQPT2dkJhsRYf7riA6RtPQV1QJHU0IvoHliMiolpSz9ocq8d2xgf9W8JUJiDyXCYGhEfjbFq21NGIqBSWIyKiWiQIAiYFNsaWqX5oYGeJ1Pv5GLoiBj9EX+M0G5GeYDkiIpJAB496iAwNRN/WzigqETF/90VM+SkeqnxOsxFJjeWIiEgiSiszrBzTCR8NbAVzExn+vJiFoPAonE59IHU0ojqN5YiISEKCIGBc90b4bZo/POytkJ79EMNWxuL7I1eh1XKajUgKLEdERHqgbUMldocGoH87VxRrRXwamYhJP57Eg7xCqaMR1TksR0REekJhYYZlIzvgkyFtYG4qw19JtxEUHoUT1+9LHY2oTmE5IiLSI4IgYEw3T2x72x+NHKyRoSrAG98dw/KDKZxmI6olLEdERHqotZsSu2YEYHB7N5RoRXyxNxnj1p7A3VyN1NGIjB7LERGRnrKRm+KbEe3x2dC2kJvKcOTSHQQticKxq/ekjkZk1FiOiIj0mCAIGNHFAztDAtDUyQa3czQY9f0xLNl/GSWcZiOqESxHREQGoIWLLXaGdMfQjg2hFYGv919C8A9xuJ1TIHU0IqPDckREZCCszE3x5XAfLB7mA0szExxNuYegJdE4mnJX6mhERoXliIjIwLzeqSF2zeiOFs62uJurwZg1cfjqz2QUl2iljkZkFFiOiIgMUFMnW+wI6Y6RXd0hikD4XykYtToOWWpOsxE9L5YjIiIDZWFmgoWvtcOSN9rD2twEx6/dR78lUTiUfFvqaEQGjeWIiMjADW7fALtmBKCVqwL38woxLuIEPtuTxGk2omfEckREZAQaO9pg69v+eLObJwBgxaEreOO7Y7iV/VDiZESGh+WIiMhIWJiZYMGQNlg+qiNs5aY4eeMBgsKjcCAxS+poRAaF5YiIyMj0b+eK30MD0a6hEtn5RZi47iQ+2X0RhcWcZiN6GixHRERGyKO+FbZM9cP47l4AgNXR1zB8VSxu3s+XNhiRAdCLcrR8+XJ4eXnBwsICvr6+OH78eKXjt2zZAm9vb1hYWKBt27aIjIyspaRERIZDbmqCeQNbY9WbnaCwMEXCzWz0D4/C3guZUkcj0muCKIqSfjnPpk2bEBwcjJUrV8LX1xfffPMNtmzZguTkZDg5OT02PiYmBj169MDChQsxYMAAbNy4EZ999hlOnTqFNm3aPNVjqtVqKJVK3LqlgkKhqO5DIiKJ5OUBzs5//5yVBVhbS5tHn9zKzsfsradxNj0bADCmqxdm9/aGuamJtMGIqkCtVsPNTQmVqmafvyUvR76+vujSpQuWLVsGANBqtXB3d8eMGTMwZ86cx8aPGDECeXl52L17t25dt27d0L59e6xcubLcx9BoNNBoNLrbarUa7u7uAFQAWI6IqI6QaWHXIxlK36sAAE2GEnd3dkBxNlskGQo1gJovR5JOqxUWFiI+Ph59+vTRrZPJZOjTpw9iY2PL3SY2NrbMeADo27dvheMBYOHChVAqlbrl72JERFTHaGXIPtQSt7d0RslDM8hdVXAdFw2rFhlSJyPSK6ZSPvjdu3dRUlIC50evg/9/zs7OSEpKKnebzMzMcsdnZlY8hx4WFoZZs2bpbj965ejWLYCzakTGg9NqT8sZGapAvLftNE7ffADHIacwopMH3n+5FeScZiM9plYDbm41/ziSlqPaIpfLIZfLH1tvbc0/nkTGiv99V66ptSW2TO2Gr/ZdwreHrmBTfCrO3srG8lEd0NjRRup4ROUqKamdx5F0Ws3BwQEmJibIyir7AWVZWVlwcXEpdxsXF5cqjSciovKZmsjw71e8sW5CV9S3NkdihhoDl0ZjR0K61NGIJCVpOTI3N0enTp1w4MAB3TqtVosDBw7Az8+v3G38/PzKjAeAffv2VTieiIgq17O5IyJnBqJbY3vkFZZg5i8JmPPbWTwsrKX/TSfSM5J/ztGsWbPw/fffY926dUhMTMS0adOQl5eH8ePHAwCCg4MRFhamGz9z5kzs2bMHX375JZKSkvDRRx/h5MmTCAkJkeoQiIgMnrPCAhsmdUNo72YQBOCXEzcxZPlRpNzOkToaUa2TvByNGDECixcvxty5c9G+fXskJCRgz549uouuU1NTkZHxf++k8Pf3x8aNG/Hdd9/Bx8cHv/76K7Zv3/7Un3FERETlM5EJmPVSc6yf6AsHGzmSs3IwcOlR/BqfJnU0olol+eccSeHRh0DW9OckEFHtyssDbP7/tcS5ubwg+3nczinAu5sScDTlHgBgaMeGWDCkNazM68T7eEhP1dbzt+SvHBERkf5xsrXAjxN8Mful5pAJwG+n0jBo2VEkZ3KajYwfyxEREZXLRCZgRu9m2Di5G5wVcqTczsXg5dHYdCIVdXDSgeoQliMiIqpUt8b1ERkaiJ7NHVFQpMX7v53Du5sSkKspljoaUY1gOSIioieqbyNHxLgueP8Vb5jIBGxPuIVBS6Nx8ZZa6mhE1Y7liIiInopMJmBarybY9FY3uCotcPVuHoZ8exTrj93gNBsZFZYjIiKqks5e9ogMDURvbycUFmvxwfbzCPn5NNQFRVJHI6oWLEdERFRl9azNsXpsZ3zQvyVMZQJ+P5uBgUujcS5NJXU0oufGckRERM9EEARMCmyMLVP90MDOEjfu5WPoihisPXqN02xk0FiOiIjouXTwqIfI0EC83MoZhSVafLTrIqauj4cqn9NsZJhYjoiI6Lkprcyw6s1O+GhgK5ibyLD3Qhb6L41Cws1sqaMRVRnLERERVQtBEDCueyP8Ns0fHvZWSHvwEK+viMHqqKucZiODwnJERETVqm1DJXaHBqB/W1cUa0V88nsiJq07iQd5hVJHI3oqLEdERFTtFBZmWDaqAz4Z0gbmpjIcSLqN/uFRiL9xX+poRE/EckRERDVCEASM6eaJbW/7o5GDNW6pCjB81TGsOHQFWi2n2Uh/sRwREVGNau2mxK4ZARjc3g0lWhGf7UnC+LUncC9XI3U0onKxHBERUY2zkZvimxHtsei1tpCbynD40h0EhUch7uo9qaMRPYbliIiIaoUgCHijqwd2hgSgiaM1stQajPz+GJYeuIwSTrORHmE5IiKiWtXCxRa7ZgRgaMeG0IrAl/suIfiHONzJ4TQb6QeWIyIiqnVW5qb4crgPFg/zgaWZCY6m3EO/JVE4mnJX6mhELEdERCSd1zs1xK4Z3dHC2RZ3czUYsyYOX+27xGk2khTLERERSaqpky22T++ON7q4QxSB8AOXMXr1MWSpC6SORnUUyxEREUnO0twEi4a2w5I32sPa3ATHrt5H0JIoHL50R+poVAexHBERkd4Y3L4Bds0IQEtXBe7lFWLsD8fx+Z4kFJdopY5GdQjLERER6ZXGjjbY9rY/xnTzAAB8e+gK3vjuGG5lP5Q4GdUVLEdERKR3LMxM8MmQtlg2qgNs5KY4eeMBgsKj8FdSltTRqA5gOSIiIr01oJ0bfg8NQNsGSmTnF2HC2pP4X2QiijjNRjWI5YiIiPSaZ31r/DrND+P8vQAA3x25imErY5H2IF/aYGS0WI6IiEjvyU1N8NGg1lg5phMUFqZIuJmNoCVR2HshU+poZIRYjoiIyGC80sYFv4cGwsfdDuqCYkz5KR4f77qAwmJOs1H1YTkiIiKD4m5vhS1T/DA5sBEAIOLodby+Mgap9zjNRtWD5YiIiAyOuakM/+3fCquDO8POygxn01ToHx6FyHMZUkcjI8ByREREBqtPK2f8HhqITp71kKMpxtsbTuHD7edRUFQidTQyYCxHRERk0BrYWeKXt7phas8mAICfjt3Aa9/G4NrdPImTkaFiOSIiIoNnZiLDnH7eWDu+C+ytzXExQ40B4VHYkZAudTQyQCxHRERkNHq1cEJkaCC6NrJHXmEJZv6SgLCtZznNRlUiWTm6fv06Jk6ciEaNGsHS0hJNmjTBvHnzUFhYWOl2vXr1giAIZZapU6fWUmoiItJ3LkoLbJzkixkvNoUgAD8fv4khy48i5Xau1NHIQJhK9cBJSUnQarVYtWoVmjZtivPnz2Py5MnIy8vD4sWLK9128uTJmD9/vu62lZVVTcclIiIDYmoiw+yXW8C3UX28sykBSZk5GLg0Gp8MaYOhnRpKHY/0nCCKoih1iEe++OILrFixAlevXq1wTK9evdC+fXt88803z/w4arUaSqUSKpUKCoXimfdDRPolLw+wsfn759xcwNpa2jykH27nFODdTQk4mnIPAPB6p4aYP7g1rMwle32AnlFtPX/r1TVHKpUK9vb2Txy3YcMGODg4oE2bNggLC0N+fuUf/KXRaKBWq8ssRERUNzjZWuDHCb6Y9VJzyATg1/g0DF52FJeycqSORnpKb8pRSkoKli5diilTplQ6btSoUVi/fj0OHjyIsLAw/PTTTxgzZkyl2yxcuBBKpVK3uLu7V2d0IiLScyYyAaG9m2HDpG5wspXj8u1cDFoWjU0nUqFHEyikJ6p9Wm3OnDn47LPPKh2TmJgIb29v3e309HT07NkTvXr1wurVq6v0eH/99Rd69+6NlJQUNGnSpNwxGo0GGo1Gd1utVsPd3Z3TakRGhtNq9DTu5mowa/MZHLl0BwAwpL0bPnm1LWzknGbTd7U1rVbt5ejOnTu4d+9epWMaN24Mc3NzAMCtW7fQq1cvdOvWDWvXroVMVrUXs/Ly8mBjY4M9e/agb9++T7UNrzkiMk4sR/S0tFoRK49cwZd/XkKJVkRjB2ssG9URrdz4nKDPauv5u9prsqOjIxwdHZ9qbHp6Ol544QV06tQJERERVS5GAJCQkAAAcHV1rfK2RERUN8lkAt7u1RRdvOwR+vNpXL2bhyHfHsXcAa0w2tcDgiBIHZEkJNk1R+np6ejVqxc8PDywePFi3LlzB5mZmcjMzCwzxtvbG8ePHwcAXLlyBQsWLEB8fDyuX7+OnTt3Ijg4GD169EC7du2kOhQiIjJQXbzsERkaiBe9nVBYrMUH288j5OfTyCkokjoaSUiyCdZ9+/YhJSUFKSkpaNiw7GdOPJrpKyoqQnJysu7daObm5ti/fz+++eYb5OXlwd3dHUOHDsUHH3xQ6/mJiMg41LM2x+rgzlgTfQ2f7UnC72czcD5dhWUjO6JtQ6XU8UgCevU5R7WF1xwRGSdec0TP61TqA8zYeBrp2Q9hbiLDf4K8Mdbfi9NseqJOfs4RERGRlDp61ENkaCBebuWMwhItPtp1EdPWn4LqIafZ6hKWIyIiolKUVmZY9WYnzBvYCmYmAvZcyET/8Cgk3MyWOhrVEpYjIiKifxAEAeO7N8Jv0/zhYW+FtAcP8fqKGKyOusoPjawDWI6IiIgq0K6hHXaHBqB/W1cUa0V88nsiJv94Etn5hVJHoxrEckRERFQJhYUZlo3qgAVD2sDcVIb9ibcRtCQK8TfuSx2NagjLERER0RMIgoA3u3li29v+aORgjVuqAgxfdQwrD1+BVstpNmPDckRERPSUWrspsWtGAAb5uKFEK2LRH0mYsO4E7uVqnrwxGQyWIyIioiqwkZtiyRvtsei1tpCbynAo+Q6CwqMQd7Xy7xUlw8FyREREVEWCIOCNrh7YEdIdTRytkaXWYOT3x7Dsr8ucZjMCLEdERETPyNtFgZ0hAXitYwNoRWDxn5cQ/MNx3MnhNJshYzkiIiJ6DtZyU3w1vD2+eL0dLM1MEJ1yF0HhUYhJuSt1NHpGLEdERETVYFhnd+wM6Y7mzja4k6PB6DVx+HrfJZRwms3gsBwRERFVk2bOttgxPQAjOrtDFIElBy5j9OpjuK0ukDoaVQHLERERUTWyNDfBZ6+3wzcj2sPK3ATHrt5HvyVROHLpjtTR6CmxHBEREdWAIR0aYPeMALR0VeBeXiHGRhzHF3uTUFyilToaPQHLERERUQ1p7GiDbW/7Y7SvB0QRWH7wCkZ9H4cM1UOpo1ElWI6IiIhqkIWZCT59tS2WjeoAG7kpjl+/j6AlUTiYdFvqaFQBliMiIqJaMKCdG3bPCECbBgo8yC/C+LUnsDAyEUWcZtM7LEdERES1xMvBGr9N88c4fy8AwKojVzFiVSzSHuRLG4zKYDkiIiKqRXJTE3w0qDVWjukIWwtTnErNRv/waPx5IVPqaPT/sRwRERFJ4JU2rogMDYSPux1UD4vw1k/xmL/rIgqLOc0mNZYjIiIiibjbW2HLFD9MCmgEAPjh6DUMWxmDm/c5zSYlliMiIiIJmZvK8MGAVlgd3BlKSzOcSVMhKDwKf5zLkDpancVyREREpAf6tHJG5MxAdPKsh5yCYkzbcApzd5xHQVGJ1NHqHJYjIiIiPdHAzhK/vNUNU3s2AQD8GHsDQ1fE4PrdPImT1S0sR0RERHrEzESGOf28ETG+C+ytzXHhlhoDlkZj55lbUkerM1iOiIiI9NALLZwQGRqIrl72yNUUI/Tn0wjbeo7TbLWA5YiIiEhPuSgtsHGyL2a82BSCAPx8PBVDlh/FlTu5UkczaixHREREeszURIbZL7fAjxO6wsHGHEmZORi4NBpbT6VJHc1osRwREREZgMBmjoicGQj/JvWRX1iCWZvP4L0tZ5BfWCx1NKPDckRERGQgnGwt8NNEX7zbpzlkArAlPg2Dlx3FpawcqaMZFZYjIiIiA2IiEzCzTzNsmNQNTrZyXL6di0HLorH55E2Ioih1PKPAckRERGSA/JrUR+TMQAQ2c0BBkRb//vUsZm0+gzwNp9meF8sRERGRgXKwkWPd+K54r28LmMgEbDudjoHLopGYoZY6mkFjOSIiIjJgMpmA6S80xS9vdYOLwgJX7+Rh8PKj2BiXymm2ZyRpOfLy8oIgCGWWRYsWVbpNQUEBpk+fjvr168PGxgZDhw5FVlZWLSUmIiLST1287BE5MxAvejuhsFiL/2w7h9BfEpBTUCR1NIMj+StH8+fPR0ZGhm6ZMWNGpePfffdd7Nq1C1u2bMHhw4dx69YtvPbaa7WUloiISH/ZW5tjdXBn/CfIG6YyAbvO3MLApdE4n66SOppBkbwc2drawsXFRbdYW1tXOFalUmHNmjX46quv8OKLL6JTp06IiIhATEwMjh07VoupiYiI9JNMJuCtHk2weaofGthZ4vq9fLz2bQx+jL3OabanJHk5WrRoEerXr48OHTrgiy++QHFxxVfZx8fHo6ioCH369NGt8/b2hoeHB2JjYyvcTqPRQK1Wl1mIiIiMWUePeogMDcRLrZxRWKLF3B0X8PaGU1A95DTbk0hajkJDQ/HLL7/g4MGDmDJlCv73v//h3//+d4XjMzMzYW5uDjs7uzLrnZ2dkZmZWeF2CxcuhFKp1C3u7u7VdQhERER6S2llhu/e7IS5A1rBzETAH+czMWBpFM7czJY6ml6r9nI0Z86cxy6y/ueSlJQEAJg1axZ69eqFdu3aYerUqfjyyy+xdOlSaDSaas0UFhYGlUqlW27evFmt+yciItJXgiBgQkAj/DbNHx72Vrh5/yFeXxmDNdHXOM1WAdPq3uHs2bMxbty4Ssc0bty43PW+vr4oLi7G9evX0aJFi8fud3FxQWFhIbKzs8u8epSVlQUXF5cKH08ul0Mulz9VfiIiImPUrqEddocGYM5vZxF5LhMLdl9E7JV7WDysHeyszKWOp1eqvRw5OjrC0dHxmbZNSEiATCaDk5NTufd36tQJZmZmOHDgAIYOHQoASE5ORmpqKvz8/J45MxERUV2gsDDD8lEdsT4uFQt2X8T+xCz0D49G+MgO6ORZT+p4ekOya45iY2PxzTff4MyZM7h69So2bNiAd999F2PGjEG9en+foPT0dHh7e+P48eMAAKVSiYkTJ2LWrFk4ePAg4uPjMX78ePj5+aFbt25SHQoREZHBEAQBb3bzxLa3/dHIwRrp2Q8xYlUsVh2+Aq2W02yAhOVILpfjl19+Qc+ePdG6dWt8+umnePfdd/Hdd9/pxhQVFSE5ORn5+fm6dV9//TUGDBiAoUOHokePHnBxccHWrVulOAQiIiKD1dpNiV0zAjDIxw3FWhEL/0jCxHUncD+vUOpokhPEOng1llqthlKphEqlgkKhkDoOEVWTvDzAxubvn3NzgUo+No2I/j9RFPHLiZv4aOcFaIq1cFFYIHxkB3RtZC91tMfU1vO35J9zRERERNIRBAEju3pgR0h3NHG0Rqa6ACO/P4blB1Pq7DQbyxERERHB20WBnSEBeK1jA5RoRXyxNxljI47jbm71fryOIWA5IiIiIgCAtdwUXw1vjy9ebwdLMxNEXb6LfkuiEHPlrtTRahXLEREREZUxrLM7doZ0R3NnG9zJ0WDM6jh8s/8SSurINBvLERERET2mmbMtdkwPwIjO7tCKwDf7L2PM6jjcVhdIHa3GsRwRERFRuSzNTfDZ6+3wzYj2sDI3QezVewgKj0LU5TtSR6tRLEdERERUqSEdGmDXjAB4u9jibm4hgn84jsV7k1FcopU6Wo1gOSIiIqInauJog+3Tu2O0rwdEEVh2MAWjvo9Dhuqh1NGqHcsRERERPRULMxN8+mpbLB3ZATZyUxy/fh9BS6JwMOm21NGqFcsRERERVclAHzfsnhGANg0UeJBfhPFrT2BhZCKKjGSajeWIiIiIqszLwRq/TfPHOH8vAMCqI1cxYlUs0rMNf5qN5YiIiIieidzUBB8Nao2VYzrC1sIUp1KzsSMhXepYz81U6gBERERk2F5p44rWbkpEHL2OKT2aSB3nubEcERER0XNzt7fC3IGtpI5RLTitRkRERFQKyxERERFRKSxHRERERKWwHBERERGVwnJEREREVArLEREREVEpLEdEREREpbAcEREREZXCckRERERUCssRERERUSksR0RERESlsBwRERERlcJyRERERFQKyxERERFRKSxHRERERKWwHBERERGVwnJEREREVArLEREREVEpLEdEREREpbAcEREREZXCckRERERUimTl6NChQxAEodzlxIkTFW7Xq1evx8ZPnTq1FpMTERGRMTOV6oH9/f2RkZFRZt2HH36IAwcOoHPnzpVuO3nyZMyfP19328rKqkYyEhERUd0jWTkyNzeHi4uL7nZRURF27NiBGTNmQBCESre1srIqsy0RERFRddGba4527tyJe/fuYfz48U8cu2HDBjg4OKBNmzYICwtDfn5+peM1Gg3UanWZhYiIiKg8kr1y9E9r1qxB37590bBhw0rHjRo1Cp6ennBzc8PZs2fx/vvvIzk5GVu3bq1wm4ULF+Ljjz+u7shERERkhARRFMXq3OGcOXPw2WefVTomMTER3t7euttpaWnw9PTE5s2bMXTo0Co93l9//YXevXsjJSUFTZo0KXeMRqOBRqPR3Var1XB3d4dKpYJCoajS4xGR/srLA2xs/v45NxewtpY2DxFVL7VaDaVSWePP39X+ytHs2bMxbty4Ssc0bty4zO2IiAjUr18fgwYNqvLj+fr6AkCl5Ugul0Mul1d530RERFT3VHs5cnR0hKOj41OPF0URERERCA4OhpmZWZUfLyEhAQDg6upa5W2JiIiI/knyC7L/+usvXLt2DZMmTXrsvvT0dHh7e+P48eMAgCtXrmDBggWIj4/H9evXsXPnTgQHB6NHjx5o165dbUcnIiIiIyT5Bdlr1qyBv79/mWuQHikqKkJycrLu3Wjm5ubYv38/vvnmG+Tl5cHd3R1Dhw7FBx98UNuxiYiIyEhV+wXZhqC2LugiotrFC7KJjFttPX9LPq1GREREpE9YjoiIiIhKYTkiIiIiKoXliIiIiKgUliMiIiKiUliOiIiIiEphOSIiIiIqheWIiIiIqBSWIyIiIqJSWI6IiIiISmE5IiIiIiqF5YiIiIioFJYjIiIiolJYjoiIiIhKYTkiIiIiKoXliIiIiKgUliMiIiKiUliOiIiIiEphOSIiIiIqheWIiIiIqBSWIyIiIqJSWI6IiIiISmE5IiIiIiqF5YiIiIioFJYjIiIiolJYjoiIiIhKYTkiIiIiKoXliIiIiKgUliMiIiKiUliOiIiIiEphOSIiIiIqheWIiIiIqBSWIyIiIqJSWI6IiIiISmE5IiIiIiqF5YiIiIiolBorR59++in8/f1hZWUFOzu7csekpqaif//+sLKygpOTE9577z0UFxdXut/79+9j9OjRUCgUsLOzw8SJE5Gbm1sDR0BERER1UY2Vo8LCQgwbNgzTpk0r9/6SkhL0798fhYWFiImJwbp167B27VrMnTu30v2OHj0aFy5cwL59+7B7924cOXIEb731Vk0cAhEREdVBgiiKYk0+wNq1a/HOO+8gOzu7zPo//vgDAwYMwK1bt+Ds7AwAWLlyJd5//33cuXMH5ubmj+0rMTERrVq1wokTJ9C5c2cAwJ49exAUFIS0tDS4ubmVm0Gj0UCj0ehuq1QqeHh44ObNm1AoFNV0pEQktbw84NGfgVu3AGtrafMQUfVSq9Vwd3dHdnY2lEplzT2QWMMiIiJEpVL52PoPP/xQ9PHxKbPu6tWrIgDx1KlT5e5rzZo1op2dXZl1RUVFoomJibh169YKM8ybN08EwIULFy5cuHAxguXKlStV7iNVYQqJZGZm6l4xeuTR7czMzAq3cXJyKrPO1NQU9vb2FW4DAGFhYZg1a5budnZ2Njw9PZGamlqzzVPPPGrcde0VMx43j7su4HHzuOuCRzM/9vb2Nfo4VSpHc+bMwWeffVbpmMTERHh7ez9XqOoml8shl8sfW69UKuvUP6pHFAoFj7sO4XHXLTzuuqWuHrdMVrNvtq9SOZo9ezbGjRtX6ZjGjRs/1b5cXFxw/PjxMuuysrJ091W0ze3bt8usKy4uxv379yvchoiIiKgqqlSOHB0d4ejoWC0P7Ofnh08//RS3b9/WTZXt27cPCoUCrVq1qnCb7OxsxMfHo1OnTgCAv/76C1qtFr6+vtWSi4iIiOq2GntdKjU1FQkJCUhNTUVJSQkSEhKQkJCg+0yil19+Ga1atcKbb76JM2fOYO/evfjggw8wffp03RTY8ePH4e3tjfT0dABAy5Yt8corr2Dy5Mk4fvw4jh49ipCQELzxxhsVvlOtPHK5HPPmzSt3qs2Y8bh53HUBj5vHXRfwuGv2uGvsrfzjxo3DunXrHlt/8OBB9OrVCwBw48YNTJs2DYcOHYK1tTXGjh2LRYsWwdT07xe0Dh06hBdeeAHXrl2Dl5cXgL8/BDIkJAS7du2CTCbD0KFDER4eDhsbm5o4DCIiIqpjavxzjoiIiIgMCb9bjYiIiKgUliMiIiKiUliOiIiIiEphOSIiIiIqxSjL0aeffgp/f39YWVnBzs6u3DGpqano378/rKys4OTkhPfeew/FxcWV7vf+/fsYPXo0FAoF7OzsMHHiRN1HE+ijQ4cOQRCEcpcTJ05UuF2vXr0eGz916tRaTP78vLy8HjuGRYsWVbpNQUEBpk+fjvr168PGxgZDhw7VfTCpIbh+/TomTpyIRo0awdLSEk2aNMG8efNQWFhY6XaGeL6XL18OLy8vWFhYwNfX97EPlP2nLVu2wNvbGxYWFmjbti0iIyNrKWn1WLhwIbp06QJbW1s4OTlhyJAhSE5OrnSbtWvXPnZeLSwsailx9fjoo48eO4YnfQODoZ9roPy/X4IgYPr06eWON9RzfeTIEQwcOBBubm4QBAHbt28vc78oipg7dy5cXV1haWmJPn364PLly0/cb1X/PpTHKMtRYWEhhg0bhmnTppV7f0lJCfr374/CwkLExMRg3bp1WLt2LebOnVvpfkePHo0LFy5g37592L17N44cOYK33nqrJg6hWvj7+yMjI6PMMmnSJDRq1AidO3eudNvJkyeX2e7zzz+vpdTVZ/78+WWOYcaMGZWOf/fdd7Fr1y5s2bIFhw8fxq1bt/Daa6/VUtrnl5SUBK1Wi1WrVuHChQv4+uuvsXLlSvznP/954raGdL43bdqEWbNmYd68eTh16hR8fHzQt2/fxz49/5GYmBiMHDkSEydOxOnTpzFkyBAMGTIE58+fr+Xkz+7w4cOYPn06jh07hn379qGoqAgvv/wy8vLyKt1OoVCUOa83btyopcTVp3Xr1mWOITo6usKxxnCuAeDEiRNljnnfvn0AgGHDhlW4jSGe67y8PPj4+GD58uXl3v/5558jPDwcK1euRFxcHKytrdG3b18UFBRUuM+q/n2oUI1+ra3EIiIiRKVS+dj6yMhIUSaTiZmZmbp1K1asEBUKhajRaMrd18WLF0UA4okTJ3Tr/vjjD1EQBDE9Pb3as9eEwsJC0dHRUZw/f36l43r27CnOnDmzdkLVEE9PT/Hrr79+6vHZ2dmimZmZuGXLFt26xMREEYAYGxtbAwlrx+effy42atSo0jGGdr67du0qTp8+XXe7pKREdHNzExcuXFju+OHDh4v9+/cvs87X11ecMmVKjeasSbdv3xYBiIcPH65wTEV//wzJvHnzRB8fn6ceb4znWhRFcebMmWKTJk1ErVZb7v3GcK4BiNu2bdPd1mq1oouLi/jFF1/o1mVnZ4tyuVz8+eefK9xPVf8+VMQoXzl6ktjYWLRt2xbOzs66dX379oVarcaFCxcq3MbOzq7MKy59+vSBTCZDXFxcjWeuDjt37sS9e/cwfvz4J47dsGEDHBwc0KZNG4SFhSE/P78WElavRYsWoX79+ujQoQO++OKLSqdN4+PjUVRUhD59+ujWeXt7w8PDA7GxsbURt0aoVKqn+vZqQznfhYWFiI+PL3OeZDIZ+vTpU+F5io2NLTMe+Pu/d0M/rwCeeG5zc3Ph6ekJd3d3DB48uMK/b/rs8uXLcHNzQ+PGjTF69GikpqZWONYYz3VhYSHWr1+PCRMmQBCECscZw7ku7dq1a8jMzCxzPpVKJXx9fSs8n8/y96EiVfpuNWORmZlZphgB0N3OzMyscJtH3wH3iKmpKezt7SvcRt+sWbMGffv2RcOGDSsdN2rUKHh6esLNzQ1nz57F+++/j+TkZGzdurWWkj6/0NBQdOzYEfb29oiJiUFYWBgyMjLw1VdflTs+MzMT5ubmj12j5uzsbDDn959SUlKwdOlSLF68uNJxhnS+7969i5KSknL/+01KSip3m4r+ezfU86rVavHOO++ge/fuaNOmTYXjWrRogR9++AHt2rWDSqXC4sWL4e/vjwsXLjzxb4C+8PX1xdq1a9GiRQtkZGTg448/RmBgIM6fPw9bW9vHxhvbuQaA7du3Izs7u9IvfTeGc/1Pj85ZVc7ns/x9qIjBlKM5c+bgs88+q3RMYmLiEy/WMwbP8rtIS0vD3r17sXnz5ifuv/R1VG3btoWrqyt69+6NK1euoEmTJs8e/DlV5bhnzZqlW9euXTuYm5tjypQpWLhwocF9F9GznO/09HS88sorGDZsGCZPnlzptvp6vql806dPx/nz5yu99gb4+4u6/fz8dLf9/f3RsmVLrFq1CgsWLKjpmNWiX79+up/btWsHX19feHp6YvPmzZg4caKEyWrPmjVr0K9fv0q/P9QYzrW+MZhyNHv27EqbMwA0btz4qfbl4uLy2NXrj96V5OLiUuE2/7ygq7i4GPfv369wm5ryLL+LiIgI1K9fH4MGDary4/n6+gL4+5UIKZ8sn+ffgK+vL4qLi3H9+nW0aNHisftdXFxQWFiI7OzsMq8eZWVl1fr5/aeqHvetW7fwwgsvwN/fH999912VH09fznd5HBwcYGJi8ti7CCs7Ty4uLlUar89CQkJ0bwap6isCZmZm6NChA1JSUmooXc2zs7ND8+bNKzwGYzrXwN/fP7p///4qv4prDOf60TnLysqCq6urbn1WVhbat29f7jbP8vehQlW6QsnAPOmC7KysLN26VatWiQqFQiwoKCh3X48uyD558qRu3d69ew3igmytVis2atRInD179jNtHx0dLQIQz5w5U83Jas/69etFmUwm3r9/v9z7H12Q/euvv+rWJSUlGdwF2WlpaWKzZs3EN954QywuLn6mfej7+e7atasYEhKiu11SUiI2aNCg0guyBwwYUGadn5+fQV2kq9VqxenTp4tubm7ipUuXnmkfxcXFYosWLcR33323mtPVnpycHLFevXrikiVLyr3fGM51afPmzRNdXFzEoqKiKm1niOcaFVyQvXjxYt06lUr1VBdkV+XvQ4V5qjTaQNy4cUM8ffq0+PHHH4s2Njbi6dOnxdOnT4s5OTmiKP79D6dNmzbiyy+/LCYkJIh79uwRHR0dxbCwMN0+4uLixBYtWohpaWm6da+88orYoUMHMS4uToyOjhabNWsmjhw5staPr6r2798vAhATExMfuy8tLU1s0aKFGBcXJ4qiKKakpIjz588XT548KV67dk3csWOH2LhxY7FHjx61HfuZxcTEiF9//bWYkJAgXrlyRVy/fr3o6OgoBgcH68b887hFURSnTp0qenh4iH/99Zd48uRJ0c/PT/Tz85PiEJ5JWlqa2LRpU7F3795iWlqamJGRoVtKjzH08/3LL7+IcrlcXLt2rXjx4kXxrbfeEu3s7HTvPn3zzTfFOXPm6MYfPXpUNDU1FRcvXiwmJiaK8+bNE83MzMRz585JdQhVNm3aNFGpVIqHDh0qc17z8/N1Y/553B9//LG4d+9e8cqVK2J8fLz4xhtviBYWFuKFCxekOIRnMnv2bPHQoUPitWvXxKNHj4p9+vQRHRwcxNu3b4uiaJzn+pGSkhLRw8NDfP/99x+7z1jOdU5Oju75GYD41VdfiadPnxZv3LghiqIoLlq0SLSzsxN37Nghnj17Vhw8eLDYqFEj8eHDh7p9vPjii+LSpUt1t5/09+FpGWU5Gjt2rAjgseXgwYO6MdevXxf79esnWlpaig4ODuLs2bPLtPODBw+KAMRr167p1t27d08cOXKkaGNjIyoUCnH8+PG6wqXPRo4cKfr7+5d737Vr18r8blJTU8UePXqI9vb2olwuF5s2bSq+9957okqlqsXEzyc+Pl709fUVlUqlaGFhIbZs2VL83//+V+ZVwX8etyiK4sOHD8W3335brFevnmhlZSW++uqrZYqFvouIiCj3333pF4iN5XwvXbpU9PDwEM3NzcWuXbuKx44d093Xs2dPcezYsWXGb968WWzevLlobm4utm7dWvz9999rOfHzqei8RkRE6Mb887jfeecd3e/I2dlZDAoKEk+dOlX74Z/DiBEjRFdXV9Hc3Fxs0KCBOGLECDElJUV3vzGe60f27t0rAhCTk5Mfu89YzvWj59l/Lo+OTavVih9++KHo7OwsyuVysXfv3o/9Pjw9PcV58+aVWVfZ34enJYiiKFZtIo6IiIjIeNXJzzkiIiIiqgjLEREREVEpLEdEREREpbAcEREREZXCckRERERUCssRERERUSksR0RERESlsBwRERERlcJyRERERFQKyxERERFRKSxHRERERKX8P42tWicBlgLkAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " \n", + "Code test passed\n", + "Go on to the next step\n" + ] + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "\n", + "xmin = -10\n", + "xmax = 10\n", + "ymin = -10\n", + "ymax = 10\n", + "\n", + "fig, ax = plt.subplots()\n", + "plt.axis([xmin,xmax,ymin,ymax]) # window size\n", + "plt.plot([xmin,xmax],[0,0],'b') # blue x axis\n", + "plt.plot([0,0],[ymin,ymax], 'b') # blue y axis\n", + "\n", + "x = np.linspace(-9,9,36)\n", + "\n", + "# Only change the next line to graph y = -x + 3\n", + "plt.plot(x, -x + 3)\n", + "\n", + "\n", + "\n", + "plt.show()\n", + "\n", + "\n", + "# Only change code above this line\n", + "import math_code_test_b as test\n", + "test.step09(In[-1].split('# Only change code above this line')[0])" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Q19Wm90DF5zf" + }, + "source": [ + "# Step 10 - Creating Interactive Graphs" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "JNEjD9DxF5zh" + }, + "source": [ + "Like the previous graphs, you will graph a line. This time, you will create two sliders to change the slope and the y intecept. Notice the additional imports and other changes: You define a function with two arguments. All of the graphing happens within that `f(m,b)` function. The `interactive()` function calls your defined function and sets the boundaries for the sliders. Run this code then adjust the sliders and notice how they affect the graph." + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": { + "id": "9lh41CENF5zh" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Code test Passed\n", + "Go on to the next step\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "d6383a6f6753416885483724ae1c2bef", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "interactive(children=(IntSlider(value=0, description='m', max=9, min=-9), IntSlider(value=0, description='b', …" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "%matplotlib inline\n", + "from ipywidgets import interactive\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "\n", + "# Define the graphing function\n", + "def f(m, b):\n", + " xmin = -10\n", + " xmax = 10\n", + " ymin = -10\n", + " ymax = 10\n", + " plt.axis([xmin,xmax,ymin,ymax]) # window size\n", + " plt.plot([xmin,xmax],[0,0],'black') # black x axis\n", + " plt.plot([0,0],[ymin,ymax], 'black') # black y axis\n", + " plt.title('y = mx + b')\n", + " x = np.linspace(-10, 10, 1000)\n", + " plt.plot(x, m*x+b)\n", + " plt.show()\n", + "\n", + "# Set up the sliders\n", + "interactive_plot = interactive(f, m=(-9, 9), b=(-9, 9))\n", + "interactive_plot\n", + "\n", + "\n", + "# Just run this code and use the sliders\n", + "import math_code_test_b as test\n", + "test.step01()\n", + "interactive_plot" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "YSY2k7S3F6d7" + }, + "source": [ + "# Step 11 - Graphing Systems" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "8MG28-VPF6d8" + }, + "source": [ + "When you graph two equations on the same coordinate plane, they are a system of equations. Notice how the `points` variable defines the number of points and the `linspace()` function uses that variable. Run this code to see the graph, then change `y2` so that it graphs y = -x - 3." + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": { + "id": "wYHGm-PAF6d9" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkcAAAGiCAYAAADtImJbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABg3ElEQVR4nO3deVxUhf7G8c+wCwioIIjivuCGmhVpuaW5pKW5VGa5ZC5d7VaaJd3SykpTW27LL61MK9vUXMpM09wyzTX3JXFDVHAFBGSbOb8/priaoKLMnAGe9+s1rzwz58w8x5Hhab7nzFgMwzAQEREREQDczA4gIiIi4kpUjkREREQuonIkIiIichGVIxEREZGLqByJiIiIXETlSEREROQiKkciIiIiF1E5EhEREbmIypGIiIjIRVSORERERC7i0HK0evVq7rnnHsLDw7FYLMyfP/+S2w3DYMyYMVSoUIFSpUrRrl079u/ff9X7/eCDD6hatSo+Pj5ER0ezYcMGB+2BiIiIlDQOLUdpaWk0atSIDz74IM/bJ06cyLvvvsuUKVNYv349fn5+dOjQgYyMjHzv89tvv2XEiBGMHTuWLVu20KhRIzp06MDJkycdtRsiIiJSglic9cWzFouFefPm0a1bN8D+rlF4eDgjR47kmWeeASA5OZnQ0FBmzJjBgw8+mOf9REdHc8stt/D+++8DYLPZiIiI4IknnmD06NHO2BUREREpxjzMeuBDhw6RkJBAu3btcq8LDAwkOjqadevW5VmOsrKy2Lx5MzExMbnXubm50a5dO9atW5fvY2VmZpKZmZm7bLPZOHv2LOXKlcNisRTSHomIiIgjGYbB+fPnCQ8Px83NccMv08pRQkICAKGhoZdcHxoamnvbP50+fRqr1ZrnNnv37s33scaPH8/LL798g4lFRETEFRw9epRKlSo57P5NK0fOFBMTw4gRI3KXk5OTqVy5MkePHiUgIMDEZCJSmNLSIDzc/ufjx8HPz9w84jhzN8cz5vtdeHq4MWfIbdQoX9rsSOIEKSkpREREULq0Y59v08pRWFgYAImJiVSoUCH3+sTERBo3bpznNsHBwbi7u5OYmHjJ9YmJibn3lxdvb2+8vb0vuz4gIEDlSKQYcXf/358DAlSOiqvjSRd4c+VR3Lx9ebZTJE1qVjQ7kjiZow+JMe1zjqpVq0ZYWBi//PJL7nUpKSmsX7+eZs2a5bmNl5cXTZs2vWQbm83GL7/8ku82IiJSfBiGwXPfbed8Zg5NKgfxWIvqZkeSYsih7xylpqYSGxubu3zo0CG2bt1K2bJlqVy5Mk899RSvvvoqtWrVolq1arz44ouEh4fnntEG0LZtW+677z6GDx8OwIgRI+jXrx8333wzt956K++88w5paWkMGDDAkbsiIiIu4JuNR/l1/2m8PdyY3KsR7m46qUYKn0PL0aZNm2jTpk3u8t/H/fTr148ZM2bw7LPPkpaWxuDBg0lKSuKOO+5g8eLF+Pj45G5z4MABTp8+nbv8wAMPcOrUKcaMGUNCQgKNGzdm8eLFlx2kLSIixUv8uXReXbgbgGfa16FGiL/JiaS4ctrnHLmSlJQUAgMDSU5O1jFHIsVIWhr4//X7MjVVxxwVJ4Zh8PC09fwWe4abq5Th2yHN9K5RCeSs39/6bjUREXF5X66P47fYM/h4ujFJ4zRxMJUjERFxaUfPpvP6oj0APNshkmrBektQHEvlSEREXJbNZjBqzjbSs6zcWrUs/ZtXNTuSlAAqRyIi4rK++P0Ivx88SylPdyb1isJN4zRxApUjERFxSUfOpDHhJ/tXQ8XcHUmVchqniXOoHImIiMux2QxGzd7OhWwrzaqX4+HoKmZHkhJE5UhERFzOjLWH2XD4LL5e7kzsqXGaOJfKkYiIuJRDp9OYuMQ+Tnv+7rpElPU1OZGUNCpHIiLiMqw2g1Gzt5GRbeOOmsH0ia5sdiQpgVSORETEZUz/7RCbjpzD39uDCT0aOvzb10XyonIkIiIuIfZkKpOW7APghc51qVRG4zQxh8qRiIiYzmozeGb2NjJzbLSsHcIDt0SYHUlKMJUjEREx3ce/HmTr0SRKe3swobvGaWIulSMRETHV/sTzvLX0TwBevKce4UGlTE4kJZ3KkYiImCbHauOZ2dvIyrHRpk4IvZpWMjuSiMqRiIiYZ+rqg2yLT6a0jwfju0dpnCYuQeVIRERMsTchhXeW2cdpY++pT1igj8mJROxUjkRExOmy/xqnZVsN2tUtT4+bKpodSSSXypGIiDjdlJUH2HkshcBSnrx+n85OE9eiciQiIk61+3gK7y7fD8DL99anfIDGaeJaVI5ERMRpsnL+N05rXy+Uro3DzY4kchmVIxERcZoPVsSy+0QKZXw9eU3jNHFRKkciIuIUO48l88GKWABe6dqAkNLeJicSyZvKkYiIONzf47Qcm8HdDcPoElXB7Egi+VI5EhERh3tv+X72JpynrJ8Xr3RtoHGauDSVIxERcajt8Un838oDAIzr2oBgf43TxLWpHImIiMNk5lh5ZvY2rDaDLlEV6KxxmhQBKkciIuIw/122nz8TUwn2t4/TRIoClSMREXGIrUeTmLLKPk57tVtDyvp5mZxI5NqoHImISKHLyLYyctZWbAZ0bRxOxwZhZkcSuWYqRyIiUujeXvonB06lEVLam5fuqW92HJECUTkSEZFCtfnIOT769SAAr9/XkDIap0kRo3IkIiKFJiPbyqjZ2zAM6N6kInfVCzU7kkiBqRyJiEihmbxkHwdPp1G+tDdjNU6TIkrlSERECsXGw2eZ9tshACb0aEigr6fJiUSuj+nlqGrVqlgslssuw4YNy3P9GTNmXLauj4+Pk1OLiMjF0rNycsdpPZtW4s5IjdOk6PIwO8DGjRuxWq25yzt37uSuu+6iV69e+W4TEBDAvn37cpf1HT0iIuaauHgfh8+kExbgw4td6pkdR+SGmF6OQkJCLlmeMGECNWrUoFWrVvluY7FYCAvTZ2aIiLiC3w+eYcbaw8Bf47RSGqdJ0Wb6WO1iWVlZzJw5k0cfffSK7walpqZSpUoVIiIi6Nq1K7t27bri/WZmZpKSknLJRUREblxaZg7PztkOwIO3RNC6TnmTE4ncOJcqR/PnzycpKYn+/fvnu06dOnX49NNPWbBgATNnzsRms9G8eXPi4+Pz3Wb8+PEEBgbmXiIiIhyQXkSk5Hlj8V7izqYTHujDfzrXNTuOSKGwGIZhmB3ibx06dMDLy4sffvjhmrfJzs6mbt269O7dm3HjxuW5TmZmJpmZmbnLKSkpREREkJycTEBAwA3nFhHXkJYG/v72P6emgp+fuXmKu7Wxp3nok/UAzBwYzR21gk1OJMVdSkoKgYGBDv/9bfoxR387cuQIy5YtY+7cuQXaztPTkyZNmhAbG5vvOt7e3nh7e99oRBER+UtqZg7Pfmcfpz0UXVnFSIoVlxmrTZ8+nfLly9O5c+cCbWe1WtmxYwcVKlRwUDIREfmn8Yv2EH/uAhWDSvH83RqnSfHiEuXIZrMxffp0+vXrh4fHpW9m9e3bl5iYmNzlV155hZ9//pmDBw+yZcsWHn74YY4cOcJjjz3m7NgiIiXSr/tP8eX6OAAm9YzC39tlhhAihcIl/kUvW7aMuLg4Hn300ctui4uLw83tfx3u3LlzDBo0iISEBMqUKUPTpk1Zu3Yt9erpczVERBztfEY2z/11dlrfZlVoXlPjNCl+XOqAbGdx1gFdIuJcOiDb8WLmbufrDUepXNaXn55sgZ/eNRInctbvb5cYq4mIiOtb9ecpvt5wFICJPaNUjKTYKtnl6OQesxOIiBQJyRf+N07r37wqt1UvZ3IiEccp2eVoRhfY/BmUvMmiiEiBvLpwNwkpGVQt58uzHeuYHUfEoUp2ObJmwg//hu8eg8zzZqcREXFJK/aeZPbmeCwWmNSrEb5eGqdJ8Vayy1HrGLC4w845MLUlnNhmdiIREZeSnJ7N6Ln2cdqjt1fjlqplTU4k4ngluxw1GwYDfoKASnD2IHxyF2z4WGM2EZG/vLxwF4kpmVQP9uOZ9hqnSclQsssRQOVoGPor1O5kH7MtegZm94OMZLOTiYiYatnuROZuOYbbX+O0Ul7uZkcScQqVIwDfstD7a2j/Grh5wO4F9jHbsS1mJxMRMUVSehYx83YAMKhFdZpWKWNyIhHnUTn6m8UCzYfDo0sgsDKcOwzT2sPvH2rMJiIlzkvf7+LU+UxqhPjx9F21zY4j4lQqR/9U6WYYuhoiu4AtGxaPhm8fhgvnzE4mIuIUi3cmMH/rcdws8Ob9jfHx1DhNShaVo7yUKgMPzIROE8HdC/YuhCkt4ehGs5OJiDjU2bQsXphvH6cNaVWDxhFB5gYSMYHKUX4sFogeAgN/hjJVITkOpneE394Fm83sdCIiDjFmwU5Op2ZRO9Sfp9rVMjuOiClUjq4mvAkMWQ317wNbDix9Eb5+ENLPmp1MRKRQLdpxgoXbT+DuZmFyr0Z4e2icJiWTytG18AmEntOh81vg7g37l8CUO+DIOrOTiYgUitOpmbwwfycA/2pdg6hKQeYGEjGRytG1sljgloEw6BcoVxNSjsGMzvDrWxqziUiRZhgGL87fydm0LCLDSvPEnRqnScmmclRQYQ1h8EpoeD8YVvjlZfiyJ6SeMjuZiMh1Wbj9BD/tTMDjr3Gal4d+NUjJpp+A6+FdGrp/BPe+Bx6l4MAv9jHb4TVmJxMRKZBT5zMZs8A+ThvWpiYNKgaanEjEfCpH18tigZv6wqDlEFwHUhPgs3tg1USwWc1OJyJyVYZh8ML8HZxLz6ZehQCGtalpdiQRl6BydKNC68HgFdC4Dxg2WPEafHEfnE80O5mIyBV9v+04S3Yl4umucZrIxfSTUBi8/KDb/0G3KeDpC4dW2cdsB1eanUxEJE8nUzIYs2AXAE/cWYt64QEmJxJxHSpHhalxbxi8CsrXg7ST8Hk3WP6axmwi4lIMw+D5eTtIvpBNg4oBPN66htmRRFyKylFhC6ltPw7ppn6AAasnwmf3QsoJs5OJiAAw749jLNtzEk93C2/2aoynu34ViFxMPxGO4FkK7n0XekwDL384sgam3A6xy8xOJiIlXEJyBi99bx+nPdWuNnXCSpucSMT1qBw5UsOe9jFbWENIPwMze8Cyl8CaY3YyESmBDMMgZu52UjJyaFQpkCEtq5sdScQlqRw5WnBNGLgMbnnMvrzmbfsnayfHm5tLREqc2ZvjWbHvFF7ubkzu1QgPjdNE8qSfDGfw9IHOb0KvGeAdAEd/t5/Ntm+x2clEpIQ4nnSBcT/sBmBE+9rUCtU4TSQ/KkfOVP8+GLIawpvAhXPw9QOw5D+Qk2V2MhEpxgzDYPTcHZzPzKFJ5SAGtdA4TeRKVI6crWw1eHQJRD9uX173PkzvBOeOmJtLRIqtbzceZfWfp/DycGNSz0a4u1nMjiTi0lSOzODhDZ0mwANfgk8gHNsEU1vAnoVmJxORYib+XDqv/rgHgGc71KFmeX+TE4m4PpUjM9XtAkPXQMWbISMZvu0DPz0HOZlmJxORYsAwDEZ/t4PUzBxurlKGAbdXMzuSSJGgcmS2oMrw6GJo/oR9ef0UmNYezh40N5eIFHlfbYhjTexpfDzdmNgzSuM0kWukcuQK3D2h/avw0CwoVRZObIWprWDXPLOTiUgRdfRsOq/ljtMiqR6icZrItVI5ciW1O9jHbBG3QWYKzO4PC0dAdobZyUSkCLHZDJ6ds530LCu3Vi1L/+ZVzY4kUqSoHLmawIrQ/0e4Y4R9edM0mNYOzhwwN5eIFBkz1x9h3cEzlPJ0Z1KvKNw0ThMpEJUjV+TuAe3GwsPfgW8wJOyAqS1hxxyzk4mIi4s7k874RXsBGN0pkirl/ExOJFL0mF6OXnrpJSwWyyWXyMjIK24ze/ZsIiMj8fHxoWHDhixatMhJaZ2sZjv7mK1qC8hKhe8GwvdPQPYFs5OJiAuy2QyembONC9lWbqtelkduq2J2JJEiyfRyBFC/fn1OnDiRe1mzZk2+665du5bevXszcOBA/vjjD7p160a3bt3YuXOnExM7UUAF6LsAWj0HWGDL5/DxnXBqn9nJRMTFfLbuMBsOncXXy51JPRtpnCZynVyiHHl4eBAWFpZ7CQ4Oznfd//73v3Ts2JFRo0ZRt25dxo0bx0033cT777/vxMRO5uYObZ6HvvPBrzyc3A0ftYatX5udTERcxKHTabyx2D5Oe/7uukSU9TU5kUjR5RLlaP/+/YSHh1O9enX69OlDXFxcvuuuW7eOdu3aXXJdhw4dWLduXb7bZGZmkpKScsmlSKreGh7/zf7f7HSYPxTm/wuy0sxOJiImstoMRs3eRka2jdtrlqNPdGWzI4kUaaaXo+joaGbMmMHixYv58MMPOXToEC1atOD8+fN5rp+QkEBoaOgl14WGhpKQkJDvY4wfP57AwMDcS0RERKHug1P5l4eH50KbF8DiBlu/hI/aQOJus5OJiEmm/3aITUfO4eflzhs9orBYNE4TuRGml6NOnTrRq1cvoqKi6NChA4sWLSIpKYlZs2YV2mPExMSQnJycezl69Gih3bcp3Nyh1SjotxBKV4DT++zHIW35HAzD7HQi4kQHTqUyaYn9GMQXutSjUhmN00RulOnl6J+CgoKoXbs2sbGxed4eFhZGYmLiJdclJiYSFhaW7316e3sTEBBwyaVYqHq7/Wy2mu0g54L9TLa5gyEz73fdRKR4+Xuclpljo0WtYB68pQi/Ky7iQlyuHKWmpnLgwAEqVKiQ5+3NmjXjl19+ueS6pUuX0qxZM2fEcz1+wfDQbGj3EljcYccs+8HaCTvMTiYiDjZtzUG2xCVR2ttD4zSRQmR6OXrmmWdYtWoVhw8fZu3atdx33324u7vTu3dvAPr27UtMTEzu+k8++SSLFy/mzTffZO/evbz00kts2rSJ4cOHm7UL5nNzgzuehgE/QUAlOBMLH7eFjdM0ZhMppmJPnmfyz38C8GKXeoQHlTI5kUjxYXo5io+Pp3fv3tSpU4f777+fcuXK8fvvvxMSEgJAXFwcJ06cyF2/efPmfPXVV3z00Uc0atSIOXPmMH/+fBo0aGDWLriOytEw9Feo3QmsmfDjCJgzADKSzU4mIoUox2pj5OztZOXYaF0nhF43VzI7kkixYjGMkvfWQkpKCoGBgSQnJxef448uZhiw7gNYNhZsOVCmGvSaDuFNzE4m4lBpaeD/15fPp6aCXzH95oz/WxnLxMX7KO3jwdKnWxEW6GN2JBGncNbvb9PfORIHsFig+XB4dAkEVoZzh2Bae1g/VWM2kSLuz8TzvLN0PwBj76mvYiTiACpHxVmlm2HoaojsAtYs+OlZ+PZhuHDO7GQich2yrTZGztpGltVG28jy9LipotmRRIollaPirlQZeGAmdJoI7l6wdyFMbQnxm8xOJiIFNHXVAXYcSyawlCevd2+os9NEHETlqCSwWCB6CAz8GcpUhaQ4+LQDrH1fYzaRImLPiRT++4t9nPbyvfUJDdA4TcRRVI5KkvAmMGQ11L/PfqD2z/+Brx+E9LNmJxORK8i22nhm9jayrQbt64XStXG42ZFEijWVo5LGJxB6TofOb4G7N/y5GKa0gLj1ZicTkXz834oD7DqeQpCvJ6/e10DjNBEHUzkqiSwWuGUgPLYMytaAlHiY3gnWvA02m9npROQiu44n895y+zjtla4NKF9a4zQRR1M5KskqRMGQVdCwFxhWWPYSfNUL0k6bnUxEgKwc+9lpOTaDTg3CuCcq769VEpHCpXJU0nmXhu4fw73vgYcPxC6DKXfA4d/MTiZS4r2/fD97E85T1s+Lcd00ThNxFpUjsY/ZbuoLg1ZAcG04fwI+6wKrJoHNanY6kRJp57FkPlh5AIBxXRsQ7O9tciKRkkPlSP4ntB4MXgmNHgLDBitehS/ug9STZicTKVEyc6yMnLUNq82gc1QFOmucJuJUKkdyKS8/uO9D6PYhePrCoVXw4e1wcKXZyURKjHd/2c++xPME+3sxrqu+VFvE2VSOJG+NH7KP2ULqQtpJ+LwbrHhdYzYRB9t2NIkP/xqnvdqtIWX9vExOJFLyqBxJ/spHwqDl0OQRwIBVb8DnXSHlhNnJRIqljGwrI2dvw2bAvY3C6dggzOxIIiWSypFcmZcvdH0fun8CXv5w+Ff72Wyxy8xOJlLsvLNsP7EnUwn29+ble+ubHUekxFI5kmsT1QsGr4LQhpB+Gmb2sH8ukjXH7GQixcKWuHN8tNo+Tnv9vgaU0ThNxDQqR3LtgmvaP1X75kfty2vehhmdITne3FwiRVxGtpVn/hqndW9Skfb1NU4TMZPKkRSMpw90edv+/WxepeHo7/Yx259LzE4mUmS9+fM+Dp5Ko3xpb8beo3GaiNlUjuT6NOgOQ1dDhcZw4Rx8dT/8/AJYs81OJlKkbD5ylk/WHAJgfPeGBPp6mpxIRFSO5PqVrQ4Df4Zbh9iX174Hn3aEc0fMzSVSRFzIsvLM7O0YBvS4qRJt64aaHUlEUDmSG+XhDXdPhAdmgk8gHNsEU1vAnoVmJxNxeZOW7OPQ6TTCAnwYc089s+OIyF9UjqRw1L0HhvwKFZtCRjJ82wd+Gg05mWYnE3FJ6w+eYfrav8ZpPRoSWErjNBFXoXIkhadMFRiwGJoNty+v/xCmtYezh8zNJeJi0rNyGDXHPk574OYI2tQpb3YkEbmIypEULg8v6PAa9P4GSpWBE1thakvYNd/sZCIuY+LifcSdTSc80If/dKlrdhwR+QeVI3GMOp3sY7aIaMhMgdn94MeRkJ1hdjIRU607cIYZaw8D8EbPKAJ8NE4TcTUqR+I4QRHQ/0e442n78sZPYFo7OHPA3FwiJknLzGHUnG0APBRdmRa1QkxOJCJ5UTkSx3L3hHYvQZ/vwLccJOywj9l2zDE7mYjTjf9pD/HnLlAxqBTP361xmoirUjkS56jVDoaugSq3Q1YqfDcQvn8Csi+YnUzEKX6LPc3M3+MAmNgzCn9vD5MTiUh+VI7EeQLCoe/30HIUYIEtn8PHd8KpfWYnE3Go8xnZPDtnOwCP3FaF22sGm5xIRK5E5Uicy90D7nwBHpkHfuXh5G74qDVs/drsZCIO8/qivRxLukBE2VKM7hRpdhwRuQqVIzFHjTb2MVu1lpCdDvOHwvx/QVaa2clECtXqP0/x9Qb7OG1Sz0b4aZwm4vJUjsQ8pUPhkfnQ5j9gcYOtX8JHbSBxt9nJRApFSkY2z31nH6f1b16V26qXMzmRiFwLlSMxl5s7tHrWfiySfxic3mc/DmnL52AYZqcTuSGvLtzNieQMqpTz5dmOdcyOIyLXSOVIXEO1FvYxW407IeeC/Uy2uYMh87zZyUSuy4p9J5m1KR6LxT5O8/XSOE2kqFA5EtfhH2L/PKS2Y8HiDjtm2Q/WTthhdjKRAklOz2b0X+O0R2+vxq3VypqcSEQKQuVIXIubG7QYYf9k7YCKcCYWPm4LG6dpzCZFxisLd5OYkkm1YD+eaa9xmkhRY3o5Gj9+PLfccgulS5emfPnydOvWjX37rvy5NzNmzMBisVxy8fHxcVJicYoqzezfzVarA1gz4ccRMGcAZKSYnUzkipbtTuS7LfZx2uReUZTycjc7kogUkOnlaNWqVQwbNozff/+dpUuXkp2dTfv27UlLu/Ip3QEBAZw4cSL3cuTIESclFqfxKwe9v4H2r4KbB+yaZ//qkeN/mJ1MJE9J6VnEzLOPgQe1qE7TKhqniRRFph8huHjx4kuWZ8yYQfny5dm8eTMtW7bMdzuLxUJYWNg1PUZmZiaZmZm5yykpevehyHBzg+ZPQMRtMOdROHcIprW3F6ZbB4PFYnZCkVwv/7CbU+czqR7ix4i7apsdR0Suk+nvHP1TcnIyAGXLXvn/uFJTU6lSpQoRERF07dqVXbt25bvu+PHjCQwMzL1EREQUamZxgohbYOhqiOwC1iz46VmY9QhcSDI7mQgAS3YlMO+PY7hZ4M1ejfDx1DhNpKiyGIbrHOVqs9m49957SUpKYs2aNfmut27dOvbv309UVBTJyclMnjyZ1atXs2vXLipVqnTZ+nm9cxQREUFycjIBAQEO2RdxEMOA9VPh5xfAlg1BlaHnDKjU1Oxk4gLS0sDf3/7n1FTw83PO455Ny6L926s4nZrF0FY19BUhIg6SkpJCYGCgw39/u1Q5evzxx/npp59Ys2ZNniUnP9nZ2dStW5fevXszbty4q67vrL9ccaBjW+wHaJ87bD8eqd3L0GyYxmwlnFnl6Imv/+CHbcepVd6fH564Q+8aiTiIs35/u8xYbfjw4SxcuJAVK1YUqBgBeHp60qRJE2JjYx2UTlxOxZtgyGqo1w1sOfDzf+Dr3pB+1uxkUsL8tOMEP2w7jrubhckap4kUC6aXI8MwGD58OPPmzWP58uVUq1atwPdhtVrZsWMHFSpUcEBCcVk+gdBrBnR+E9y94c+fYEoLiFtvdjIpIc6kZvLC/J0APN6qBo0igswNJCKFwvRyNGzYMGbOnMlXX31F6dKlSUhIICEhgQsXLuSu07dvX2JiYnKXX3nlFX7++WcOHjzIli1bePjhhzly5AiPPfaYGbsgZrJY4JbH4LFlULYGpMTD9E6w5m2w2cxOJ8XcmAW7OJOWRZ3Q0jzRtqbZcUSkkJhejj788EOSk5Np3bo1FSpUyL18++23uevExcVx4sSJ3OVz584xaNAg6taty913301KSgpr166lXr16ZuyCuIIKUTBkFTToCYYVlr0EX90PaafNTibF1MLtx/lxxwnc3Sy8eX8jvD00ThMpLlzqgGxn0QHZxZhhwJbP7af652RA6QrQYxpUvd3sZOIEzjog+9T5TNq/vYpz6dn8u20tfaaRiJOUuAOyRQqFxQJN+8Gg5RBcG86fgM+6wKpJYLOanU6KAcMweGH+Ds6lZ1O3QgDD22icJlLcqBxJ8RRaHwatgEa9wbDBildhZndIPWl2Minivt92nCW7EvFwszC5VxReHnoZFSlu9FMtxZe3P9w3Bbp9CJ6+cHAlTLkDDq4yO5kUUSdTMhizwP5p/E/cWYv64YEmJxIRR1A5kuKv8UP2d5FC6kJqInzeFVa8rjGbFIhhGDw/bwfJF7KpHx7Av9rUMDuSiDiIypGUDOUj7cchNXkEMGDVG/aSlHLiqpuKAMz74xjL9pzE091+dpqnu14+RYor/XRLyeHlC13fh+6fgJc/HP7VPmaL/cXsZOLiElMyeOl7+zjtyba1iAzTWa4ixZnKkZQ8Ub1g8CoIbQjpp+0Hai97Gaw5ZicTF2QYBjFzd5CSkUPDioEMbaVxmkhxp3IkJVNwTfunat/8qH15zVv2U/6Tj5mbS1zOnM3xLN97Ei93N968vxEeGqeJFHv6KZeSy9MHurwNPaeDV2mIW2cfs/25xOxk4iJOJF/glR92A/D0XbWpHVra5EQi4gwqRyINusPQ1VChEVw4a//akZ9fAGu22cnERIZhMPq7HZzPzKFRRBCDWhT8S7FFpGhSORIBKFsdBi6FW4fYl9e+Z/8C26Q4c3OJaWZtOsqqP0/h5eHGm72iNE4TKUH00y7yNw9vuHsi3P8FeAdC/Eb7mG3vj2YnEyc7lnSBcQv3APBM+9rULK9xmkhJonIk8k/17rWP2So2hYxk+OYh+Gk05GSZnUycwDAMnpuzndTMHG6qHMTAO6qbHUlEnEzlSCQvZarCgMXQbLh9ef2H8Gl7OHvI1FjieF9tiGNN7Gm8PdyY3KsR7m4WsyOJiJOpHInkx8MLOrwGvb8BnyA4/gdMbQm75pudTBzk6Nl0Xv/RPk4b1aEO1UP8TU4kImZQORK5mjqdYOgaiIiGzBSY3Q9+HAnZGWYnk0Jksxk899120rKs3FK1DANu19lpIiWVypHItQiKgP4/wu1P2Zc3fgLT2sGZA6bGksLz5fojrD1wBh9PNyb11DhNpCRTORK5Vu6ecNfL0GcO+JaDhB32MduOOWYnkxsUdyad1xftBWB0x0iqBvuZnEhEzKRyJFJQte6yj9kqN4esVPhuIHz/b8i+YHYyuQ42m8GoOdu4kG0lulpZ+jaranYkETGZypHI9QgIh34/QMtRgAW2fAYft4VTf5qdTAro83WHWX/oLL5e7kzq2Qg3jdNESjyVI5Hr5e4Bd74Aj8wDvxA4uQs+agVbvzY7mVyjw6fTmLDYPk6L6RRJ5XK+JicSEVegciRyo2q0sY/ZqrWE7HSYPxTm/wuy0sxOJlfw9zgtI9tG8xrl6BNdxexIIuIiVI5ECkPpMHhkPrR+HixusPVL+KgNJO42O5nkY/raw2w8fA4/L3fe6BGlcZqI5FI5Eiksbu7Q+jno+z34h8HpffDxnbDlczAMs9PJRQ6eSmXiX+O0/3SuR0RZjdNE5H9UjkQKW7UW9jFbjTsh5wJ8/wTMHQyZqWYnE8BqM3hm9jYyc2y0qBVM71sjzI4kIi5G5UjEEfxDoM930HYMWNxhxyz7wdoJO8xOVuJNW3OQLXFJ+Ht7MKFHFBaLxmkicimVIxFHcXODFiPtn6xdOhzOxNpP99/0qcZsJok9eZ7JP9s/buHFLnWpGFTK5EQi4opUjkQcrUoz+5itVgewZsLCp2HOo5CRYnayEiXHamPk7O1k5dhoVTuE+2/WOE1E8qZyJOIMfuWg9zdw1zhw84Bdc+1fPXJ8q9nJSoyPfz3EtqNJlPbxYEKPhhqniUi+VI5EnMXNDW7/NwxYDIERcO4QTLsL1n+kMZuD/Zl4nreX2sdpY7rUo0Kgxmkikj+VIxFni7gFhqyGOp3BmgU/jYJZj8CFJLOTFUs5VhvPzN5GltXGnZHl6dm0ktmRRMTFqRyJmMG3LDz4JXScAG6esOcHmNoC4jebnazYmbr6INvjkwnw8WB8d43TROTqVI5EzGKxwG2Pw8AlEFQFkuLg0w6w7gON2QrJ3oQU3llmH6e93LU+oQE+JicSkaJA5UjEbBWbwtBfoV5XsGXDkufhm4cg/azZyYq0bKuNkbO2kW01aFc3lG6NK5odSUSKCJUjEVfgEwi9PoO7J4O7F+xbBFNawNENZicrsj757QC7jqcQ5OvJ690baJwmItfMJcrRBx98QNWqVfHx8SE6OpoNG678C2H27NlERkbi4+NDw4YNWbRokZOSijiQxQK3DoLHlkHZ6pASD592hDXvgM1mdroixbN8MlN+3Q/Ay/fWp3xpjdNE5Np5mB3g22+/ZcSIEUyZMoXo6GjeeecdOnTowL59+yhfvvxl669du5bevXszfvx4unTpwldffUW3bt3YsmULDRo0KNBjp6WBu3th7YlIIQloBI+sxvvnp/DYMweWjSXnwBoy754KvuXMTufS0tIANxvBd28nx2bQLjKMtjXD7deLSJHnrJ9li2GYe+RndHQ0t9xyC++//z4ANpuNiIgInnjiCUaPHn3Z+g888ABpaWksXLgw97rbbruNxo0bM2XKlDwfIzMzk8zMzNzllJQUIiIigGQgoFD3R6TwGDx202e82/E5SnlmEJ8STu/vprEmrrnZwVxa4B1/EnT7fqzpXhyf1hJburfZkUSk0KQAgSQnJxMQ4Ljf36aO1bKysti8eTPt2rXLvc7NzY127dqxbt26PLdZt27dJesDdOjQId/1AcaPH09gYGDuxV6MRFydhU+29OfWT5az51RtKgUcZ0W/LsTcMRkLGrPlxSs0mcDbYgE4u7S+ipGIXBdTx2qnT5/GarUSGhp6yfWhoaHs3bs3z20SEhLyXD8hISHfx4mJiWHEiBG5y3+/c3T8ODiweIoUkvqQtYLsZc/guetrXm87jnGPriGj88fgF2J2OJeRlWOl18fbiD1tkLa3AodWhePnZ3YqESlMKSkQHu74xzH9mCNn8Pb2xtv78v+D9PNDL55SNPj5Q68pULMFLHoG9yMr8Pv8dujxCVRraXY6l/DhklhiT5/HmubF2Z/r6+dbpBiyWp3zOKaO1YKDg3F3dycxMfGS6xMTEwkLC8tzm7CwsAKtL1KsNOkDg1ZASF1ITYTPu8LKCWBz0iuGi9oen8SHqw4AcPbnBtguaJwmItfP1HLk5eVF06ZN+eWXX3Kvs9ls/PLLLzRr1izPbZo1a3bJ+gBLly7Nd32RYqd8JAxaDk0eAcMGK8fbS9L5/EfLxVlmjpWRs7ZhtRncXT+c9D8rmB1JRIo40z/naMSIEXz88cd89tln7Nmzh8cff5y0tDQGDBgAQN++fYmJicld/8knn2Tx4sW8+eab7N27l5deeolNmzYxfPhws3ZBxPm8fKHr+9D9Y/D0g8O/wpQ74MBys5M53TvL9rP/ZCrB/t78p2N9s+OISDFg+jFHDzzwAKdOnWLMmDEkJCTQuHFjFi9enHvQdVxcHG5u/+twzZs356uvvuKFF17g+eefp1atWsyfP7/An3EkUixE3Q/hTWB2f0jcCV90hxYjoXUMuJv+4+1wf8SdY+pf47TX72tAkK+XyYlEpDgw/XOOzJCSkkJgoOM/J0HEabIv2L+TbdOn9uXKze0HawcW3+8Ty8i20vndXzlwKo37mlTk7Qcak5YG/v7221NTdUC2SHHjrN/fpo/VRKQQeJaCLm9Dz0/BqzTErbWP2fYvNTuZw7y99E8OnEqjfGlvxt5Tz+w4IlKMqByJFCcNesCQVVChEVw4C1/2hKVjwJptdrJCtfnIOT7+9SAA47s31DhNRAqVypFIcVOuBgxcCrcOsS//9l+YfjckHTU3VyG5kGXlmdnbsBnQ46ZKtK0bevWNREQKQOVIpDjy8Ia7J8L9X4B3IMRvsI/Z9i4yO9kNm/zzPg6dTiM0wJsxGqeJiAOoHIkUZ/XuhaGrIfwmyEiCb3rD4uchJ8vsZNdl4+GzfPrbIQAm9IgisJSnyYlEpDhSORIp7spUhUeXwG3D7Mu/fwCfdoBzh81MVWDpWTmMmr0Nw4AHbo6gTZ3yZkcSkWJK5UikJPDwgo6vQ+9vwCcIjm+BKS1h9/dmJ7tmExfv4/CZdCoE+vCfLnXNjiMixZjKkUhJUqcTDF0DlW6FzGSY9QgsGgXZGWYnu6LfD55hxtrDALzRI4oAH43TRMRxVI5ESpqgCBiwCG5/0r684SOYdhecOWBurnykZeYwas42AHrfWpmWtUNMTiQixZ3KkUhJ5O4Jd70CfeaAbzlI2A5TW8HO78xOdpk3Fu/l6NkLVAwqxX86a5wmIo6nciRSktW6yz5mq9wcss7DnEfhh6fsX0fiAtbGnubzdUcAmNgzCn/v4v99cSJiPpUjkZIuIBz6/QAtRwEW2DwdPmkHp/ebGis1M4dRc7YD8PBtlbm9ZrCpeUSk5FA5EhFw94A7X4BH5oJfCCTutI/Ztn1rWqTXF+3hWNIFKpUpRUwnjdNExHlUjkTkf2rcaR+zVW0B2WkwbzAsGAZZ6U6N8ev+U3y1Pg6AST0b4adxmog4kcqRiFyqdBj0XQCtnweLG/wxEz5uAyf3OOXhz2dk89xf47R+zarQrEY5pzyuiMjfVI5E5HJu7tD6OXtJ8g+FU3vhozb2omQYDn3o137cw/HkDCqX9eW5TpEOfSwRkbyoHIlI/qq1hKG/QfU2kHPBPmKbNxQyUx3ycCv3neSbjUexWGByr0b4emmcJiLOp3IkIlfmHwIPz4U7X7SP2bZ/Ax+1hoSdhfowyReyGf3dDgD6N6/KrdXKFur9i4hcK5UjEbk6Nzdo+Qz0/xFKh8OZ/fBJW9g0vdDGbOMW7iYhJYOq5Xx5toPGaSJiHpUjEbl2VZrbz2areRfkZMDCp+C7gZCRckN3u3xvInM2x+eO00p5uRdOXhGR66ByJCIF41cOHppl//oRi7v9K0c+agUntl3X3SWn/2+c9tgd1bi5qsZpImIulSMRKTg3N/sX1z66GAIj4OxB+6dqb/i4wGO2l3/YxcnzmVQP9mNk+zoOCiwicu1UjkTk+kXcCkNWQ527wZoFi56BWX3hQtI1bf7zrgTm/nEMNwtMvr8RPp4ap4mI+VSOROTG+JaFB7+CDuPBzRP2fA9TW8KxzVfc7FxaFs/Ps5/xNqhldW6qXMYZaUVErkrlSERunMUCzf4FA5dAUGVIOgLTOsC6/8t3zPbSD7s4nZpJzfL+PN2utpMDi4jkT+VIRApPxaYw5Feoew/YsmFJDHzzEKSfvWS1xTtPsGDrcdzdLLzZS+M0EXEtKkciUrhKBcH9X8Ddk8HdC/Ytso/Zjm4A4ExqJv/5a5w2pGV1GkUEmZdVRCQPKkciUvgsFrh1EAxcCmWqQfJRmN4JfvsvYxfs4ExaFrVD/XmyXS2zk4qIXEblSEQcJ7yx/Wy2+t3BlgNLx9B970iC3c7zZq/GeHtonCYirkflSEQcyycAen7K+bsmk4knd7pvZYX/izS07jI7mYhInlSORMThDODZQzfRNXMcR90qUjrrJMzoAqsng81mdjwRkUuoHImIw/2w/QQ/7Uwg1lKF1H7LIOoBMKywfBzM7A6pJ82OKCKSS+VIRBzq5PkMxiywn502/M6a1K0SDvdNha4fgEcpOLgCptwBh1abnFRExE7lSEQcxjAM/jNvJ0np2dSrEMCwNjXtN1gs0ORhGLwCQiIhNRE+7worJ4DNam5oESnxVI5ExGEWbD3O0t2JeLpbePP+Rni6/+Mlp3xdGLQcGj8Mhg1WjreXpPMJ5gQWEcHEcnT48GEGDhxItWrVKFWqFDVq1GDs2LFkZWVdcbvWrVtjsVguuQwdOtRJqUXkWiWmZDD2e/sZaU+2rUXdCgF5r+jlB90+sI/aPP3g8K/2MduB5U5MKyLyPx5mPfDevXux2WxMnTqVmjVrsnPnTgYNGkRaWhqTJ0++4raDBg3ilVdeyV329fV1dFwRKQDDMHh+7g6SL2TTsGIgQ1vVuPpGjR6E8Jtgdn84uQu+6A4tRkLrGHA37aVKREog015xOnbsSMeOHXOXq1evzr59+/jwww+vWo58fX0JCwtzdEQRuU7fbTnGL3tP4uXuxuRejfD45zgtPyG1YdAvsDgGNk+HXyfDkbXQ4xMIrOjY0CIif3GpY46Sk5MpW7bsVdf78ssvCQ4OpkGDBsTExJCenn7F9TMzM0lJSbnkIiKOkZCcwcs/2MdpT91VizphpQt2B56l4J53oMc08CoNcWvtY7b9Sws/rIhIHlymHMXGxvLee+8xZMiQK6730EMPMXPmTFasWEFMTAxffPEFDz/88BW3GT9+PIGBgbmXiIiIwowuIn8xDIPRc7dzPiOHRhFBDG5R/frvrGFPGLIKwqLgwln4sicsHQPW7MILLCKSB4thGEZh3uHo0aN54403rrjOnj17iIyMzF0+duwYrVq1onXr1nzyyScFerzly5fTtm1bYmNjqVEj7+MaMjMzyczMzF1OSUkhIiKC5ORkAgLyOUhURAps1sajPPvddrw83Fj07zuoWb6A7xrlJTsDfn4BNn5sX46Itr+rFHT5/+SkpYG/v/3Pqang53fjDy8iriMlJYXAwECH//4u9HJ06tQpzpw5c8V1qlevjpeXFwDHjx+ndevW3HbbbcyYMQM3t4K9mZWWloa/vz+LFy+mQ4cO17SNs/5yRUqSY0kX6Pj2as5n5hDTKZIh13IQdkHsXgALnoDMZPAJgvumQJ1Ol6yiciRSvDnr93ehH5AdEhJCSEjINa177Ngx2rRpQ9OmTZk+fXqBixHA1q1bAahQoUKBtxWRwmEYBqO/2875zByaVA7isRsZp+WnXlf7iG3Oo3B8C3z9INw2DNq9BB5ehf94IlJimXbM0bFjx2jdujWVK1dm8uTJnDp1ioSEBBISEi5ZJzIykg0bNgBw4MABxo0bx+bNmzl8+DDff/89ffv2pWXLlkRFRZm1KyIl3jcbj/Lr/tN4e9jPTnN3szjmgcpWg0eXwG3/si///gFM7wjnDjvm8USkRDLtVP6lS5cSGxtLbGwslSpVuuS2vyd92dnZ7Nu3L/dsNC8vL5YtW8Y777xDWloaERER9OjRgxdeeMHp+UXELv5cOq8u3A3AqA51qBHi79gH9PCCjuOhaguY/zgc2wxTWkLX96HKvY59bBEpEQr9mKOiQMcciRQOm83g4WnrWXvgDDdXKcO3Q5o57l2jvCTF2cds8RsByG4yGP8er5Jl9dYxRyLFkLN+f7vMqfwiUvR8uSGOtQfO4OPpxiRHjtPyE1QZBvwEtz8JgOcfH7H20buoUeaAc3OISLGiciQi1+Xo2XTGL9oDwHMdI6kWbNLbNO6ecNcr8NBsjFJlaRq+jS1DWuG+d645eUSkyFM5EpECs9kMRs3ZRnqWlVurlaVfs6pmR4La7bnQbw2/HmlGgPd5fH4YAD88BdkXzE4mIkWMypGIFNgXvx/h94NnKeXpzqSeUbg5e5yWD6N0Rdp8tpDXfh2JgcX+/WyftIPT+82OJiJFiMqRiBTI4dNpTPhpLwAxd0dSpZxrHfVsNTx4YfkYMnt+B77BkLgTpraCbd+aHU1EigiVIxG5ZjabwbNztnMh20qz6uV4OLqK2ZHyZa3WFoausZ/yn50G8wbDgmGQdeUvqhYRUTkSkWs2Y+1hNhw+i5+XOxNdaJyWr4AK0HcBtBoNWOCPmfDxnXByr9nJRMSFqRyJyDU5eCqViUv+HqfVJaKsr8mJrpGbO7SJsZck/1A4tQc+ag1/fGl2MhFxUSpHInJVVpvBqDnbyci2cUfNYPpEVzY7UsFVb2Ufs1VvDTkXYMG/YN5QyEw1O5mIuBiVIxG5qk/XHGLzkXP4e3swoUdDLBYXH6flx788PDwP7nwBLG6w7Wv4uA0k7DQ7mYi4EJUjEbmi2JOpTPp5HwAvdK5LpTJFZJyWHzc3aDkK+i2E0hXg9J/wSVvYNB1K3rcpiUgeVI5EJF9Wm8Ezs7eRlWOjZe0QHrglwuxIhafq7fYxW812kJMBC5+C7wZCRorZyUTEZCpHIpKvj389yNajSZT29mBC9yI8TsuPXzA8NBvavQwWd9j5HXzUCk5sMzuZiJhI5UhE8rQ/8Txv/fwnAC92qUd4UCmTEzmImxvc8ZT9C2wDKsHZg/ZP1d7wscZsIiWUypGIXCbHamPk7G1kWW20qRNCr5srmR3J8SpHw9BfoXYnsGbBomdgdj/ISDY7mYg4mcqRiFxm6uqDbI9PprSPB+O7RxW/cVp+fMtC76+hw+vg5gm7F8CUFnBss9nJRMSJVI5E5BJ7E1J4Z5l9nPbSPfUJC/QxOZGTWSzQbBg8ugSCKkPSEZjWAdb9n8ZsIiWEypGI5Mq22nhm9jayrQbt6pan+00VzY5knkpNYcivUPcesGXDkhj4pg+knzU7mYg4mMqRiOT6cOUBdh5LIbCUJ6/fVwzPTiuoUkFw/xfQaRK4e8G+H2FqSzi60exkIuJAKkciAsDu4ym8+8t+AF7pWp/yASVsnJYfiwWiB8PAn6FMNUg+CtM7wm//BZvN7HQi4gAqRyJCVo59nJZjM2hfL5R7G4WbHcn1hDeBIauhfnew5cDSMfD1g5B2xuxkIlLIVI5EhA9WxLL7RAplfD15TeO0/PkEQM9Pocvb4O4N+5fAlDvgyFqzk4lIIVI5Einhdh5L5oMVsQC80rUBIaW9TU7k4iwWuPlRGPQLlKsJ54/DjC6werLGbCLFhMqRSAl28Tjt7oZhdImqYHakoiOsIQxeBVEPgGGF5ePgyx6QesrsZCJyg1SOREqw95bvZ2/Cecr5eTGuawON0wrK2x/umwr3vg8epeDAcphyOxxabXYyEbkBKkciJdT2+CT+b+UBAMZ1a0A5f43TrovFAjc9AoNXQHAdSE2Ez7vCyglgs5qdTkSug8qRSAmUmWNl5KxtWG0GXaIqcHdDjdNuWPm69oLU+GEwbLByPHzRDc4nmJ1MRApI5UikBHpn2X72n0wl2N+LV7o2MDtO8eHlB90+sI/aPP3s47Upd9jHbSJSZKgciZQwW48mMXWVfZz2areGlPXzMjlRMdToQRi8EsrXh7RT8EV3+GUcWHPMTiYi10DlSKQEyci2MnLWVmwGdGscTscGYWZHKr5CattP92/aHzDg18nw2T2QctzsZCJyFSpHIiXI20v/5MCpNEJKe/PSvfXNjlP8eZaCe/4LPaaBlz/ErbWP2fYvNTuZiFyBypFICbH5yDk+/vUgAK/f15AgX43TnKZhT/tXj4Q1hPQz8GVP+9ePWLPNTiYieVA5EikBMrKtjJq9DZsB3ZtU5K56oWZHKnnK1YCBy+CWQfbl3/4LMzpD0lFzc4nIZVSOREqAyUv2cfB0GqEB3oy9R+M003j6QOfJ0Osz8A6Ao+vtY7a9i8xOJiIXUTkSKeY2Hj7LtN8OATChexSBvp4mJxLqd7OP2cKbQEYSfNMbFj8POVlmJxMRTC5HVatWxWKxXHKZMGHCFbfJyMhg2LBhlCtXDn9/f3r06EFiYqKTEosULRey7OM0w4BeTSvRJrK82ZHkb2WrwaM/w23/si///gFM7wjnDpsaS0Rc4J2jV155hRMnTuRennjiiSuu//TTT/PDDz8we/ZsVq1axfHjx+nevbuT0ooULROX7OXwmXQqBPrwQpd6ZseRf/Lwgo7j4cGvwCcQjm2GKS1h9/dmJxMp0UwvR6VLlyYsLCz34ufnl++6ycnJTJs2jbfeeos777yTpk2bMn36dNauXcvvv//uxNQiru/3g2eY/tthACb0iCKwlMZpLiuyMwxdA5VugcxkmPUILBoFOZlmJxMpkUwvRxMmTKBcuXI0adKESZMmkZOT/yfIbt68mezsbNq1a5d7XWRkJJUrV2bdunX5bpeZmUlKSsolF5HiLC0zh2fnbAeg960RtKodYnIiuaqgyjDgJ2j+b/vyho9gWns4e9DcXCIlkKnl6N///jfffPMNK1asYMiQIbz++us8++yz+a6fkJCAl5cXQUFBl1wfGhpKQkL+X+44fvx4AgMDcy8RERGFtQsiLumNxXuJO5tOxaBSPH93XbPjyLVy94T24+ChWVCqLJzYah+z7ZxrdjKREqXQy9Ho0aMvO8j6n5e9e/cCMGLECFq3bk1UVBRDhw7lzTff5L333iMzs3DfSo6JiSE5OTn3cvSoPldEiq+1B07z+bojALzRI4rSPhqnFTm1O9jHbJWbQdZ5mDMAFj4N2RlmJxMpETwK+w5HjhxJ//79r7hO9erV87w+OjqanJwcDh8+TJ06dS67PSwsjKysLJKSki559ygxMZGwsPy/I8rb2xtvb+9ryi9SlKVeNE7rE12ZO2oFm5xIrltgRei3EFa+Dr++BZs+haMbodcMCK5pdjqRYq3Qy1FISAghIdd3fMPWrVtxc3OjfPm8Tzdu2rQpnp6e/PLLL/To0QOAffv2ERcXR7Nmza47s0hxMX7RHuLPXaBSmVLEaJxW9Ll7QNsxUOV2mDsYEnfAR62gyzsQ1cvsdCLFlmnHHK1bt4533nmHbdu2cfDgQb788kuefvppHn74YcqUKQPAsWPHiIyMZMOGDQAEBgYycOBARowYwYoVK9i8eTMDBgygWbNm3HbbbWbtiohLWLP/NF+ujwNgYs8o/L0L/f99xCw129rHbFVbQFYqzH0MFgyHrHSzk4kUS6a9enp7e/PNN9/w0ksvkZmZSbVq1Xj66acZMWJE7jrZ2dns27eP9PT/vQC8/fbbuLm50aNHDzIzM+nQoQP/93//Z8YuiLiM8xnZPPedfZzWt1kVmtfQOK3YCagAfRfAqomw6g344wv75yL1mgEhlx+GICLXz2IYhmF2CGdLSUkhMDCQ5ORkAgICzI4jcsNi5m7n6w1HqVzWl5+ebIFfCX3XKC0N/P3tf05NhSt8bFrRdnAVzB0EqYng6Qud34TGD5mdSsThnPX72/TPORKRG7Pqz1N8vcF+BuaknlElthiVKNVb2cds1VtDdjrMfxzmPQ5ZaWYnEykWVI5EirCUjGxG/zVOG3B7VaKrlzM5kTiNf3l4eB7c+QJY3GDbV/BRa0jcbXYykSJP5UikCHt14W5OJGdQtZwvz3aINDuOOJubG7QcZT/lv3QFOP0nfNwGNn8GJe+ICZFCo3IkUkSt2HuSWZvisVhgcq9GlPJyNzuSmKXq7fYxW812kJMBP/zbfkxS5nmzk4kUSSpHIkVQcno2o+fax2kDb6/GzVXLmpxITOcXDA/NhnYvg8UddsyGqa3gxHazk4kUOSpHIkXQKwt3k5iSSfVgP57poNO45S9ubnDHU/YvsA2oBGcPwCftYOMnGrOJFIDKkUgRs2x3It9ticfNApPvb4SPp8Zp8g+Vo2Hor1C7E1gz4ceRMLs/ZCSbnUykSFA5EilCktKziJm3A4BBLapzU+UyJicSl+VbFnp/De1fAzcP2D0fpraEY1vMTibi8lSORIqQl77fxanzmdQI8ePpu2qbHUdcncUCzYfDoz9DUGU4dximtYffp2jMJnIFKkciRcSSXQnM33ocNwu8eX9jjdPk2lVqCkNWQ2QXsGXD4ufg24fhwjmzk4m4JJUjkSLgbFoW//lrnDa0VQ0aRwSZG0iKnlJl4IGZ0GkSuHvB3oUwpSXEbzI7mYjLUTkSKQLGfr+L06lZ1A7158l2tcyOI0WVxQLRg2Hgz1CmGiTHwacdYO17GrOJXETlSMTFLdpxgh+2HcfdzcLkXo3w9tA4TW5QeBMYsgrq3we2HPj5Bfj6QUg/a3YyEZegciTiwk6nZvLC/J0A/Kt1DaIqBZkbSIoPn0DoOR06vwXu3vDnYphyB8T9bnYyEdOpHIm4sDELdnI2LYvIsNI8cafGaVLILBa4ZSAM+gXK1YSUYzD9bvj1LbDZzE4nYhqVIxEXtXD7cRbtSMDjr3Gal4d+XMVBwhrC4JXQ8H4wrPDLy/BlT0g9ZXYyEVPo1VbEBZ06n8mLf43ThrWpSYOKgSYnkmLPuzR0/wjufR88SsGBX+xjtsNrzE4m4nQqRyIuxjAMXpi/g3Pp2dSrEMCwNjXNjiQlhcUCNz0Cg5ZDcB1ITYDP7oFVE8FmNTudiNOoHIm4mO+3HWfJrkQ83TVOE5OE1oPBK6BxHzBssOI1+OI+OJ9odjIRp9CrrogLOZmSwZgFuwB44s5a1AsPMDmRlFheftDt/6DbFPD0hUOr7GO2gyvNTibicCpHIi7CMAyen7eD5AvZNKgYwOOta5gdSQQa94bBq6B8PUg7CZ93g+WvgTXH7GQiDqNyJOIi5v1xjGV7TuLpbuHNXo3xdNePp7iIkNr245Bu6gcYsHoifH4vpJwwO5mIQ+jVV8QFJCRn8NL39nHaU+1qUyestMmJRP7BsxTc+y70mAZe/nDkN5hyO+xfZnYykUKnciRiMsMwiJm7nZSMHKIqBTKkZXWzI4nkr2FPGLLa/tlI6Wfgyx6w7CWN2aRYUTkSMdnszfGs2HcKL3c33uzVCA+N08TVlasBA5fBLY/Zl9e8DTM6Q3K8ublEColehUVMdCL5AuN+2A3AiPa1qRWqcZoUEZ4+0PlN6PUZeAfA0d/tZ7PtW2x2MpEbpnIkYhLDMHjuux2cz8yhSeUgBrXQOE2KoPrd7GO28CZw4Rx8/QAs+Q/kZJmdTOS6qRyJmOTbjUdZ/ecpvDzcmNSzEe5uFrMjiVyfstXg0SUQ/bh9ed37ML0TnDtibi6R66RyJGKCY0kXePXHPQCMal+HmuX9TU4kcoM8vKHTBHjwK/AJhGObYGoL2LPQ7GQiBaZyJOJkhmHw3JztpGbm0LRKGR69o5rZkUQKT2RnGLoGKt4MGcnwbR/46TnIyTQ7mcg1UzkScbKvNsSxJvY0Pp5uTOoZpXGaFD9BleHRxdD8Cfvy+ikwrT2cPWhuLpFrpHIk4kRHz6bz2l/jtGc7RFI9ROM0KabcPaH9q/DQLChVBk5shamtYNc8s5OJXJXKkYiT2GwGz87ZTnqWlVurlqV/86pmRxJxvNod7GO2iNsgMwVm94eFIyA7w+xkIvlSORJxkpnrj7Du4BlKebozsWcUbhqnSUkRWAn6/wh3jLAvb5oG09rBmQPm5hLJh8qRiBPEnUln/KK9AIzuFEnVYD+TE4k4mbsHtBsLD38HvsGQsAOmtoQdc8xOJnIZ08rRypUrsVgseV42btyY73atW7e+bP2hQ4c6MblIwdhsBs/M2caFbCu3VS/LI7dVMTuSiHlqtrOP2arcAVmp8N1A+P4JyL5gdjKRXKaVo+bNm3PixIlLLo899hjVqlXj5ptvvuK2gwYNumS7iRMnOim1SMF9tu4wGw6dxdfLnUk9G2mcJhJQAfougFbPARbY8jl8fCec2md2MhEAPMx6YC8vL8LCwnKXs7OzWbBgAU888QQWy5V/efj6+l6yrYirOnQ6jTcW28dpMXfXJaKsr8mJRFyEuwe0eR6qNIfvBsHJ3fBRa+j8FjTubXY6KeFc5pij77//njNnzjBgwICrrvvll18SHBxMgwYNiImJIT09/YrrZ2ZmkpKScslFxNGsNoNRs7eRkW3j9prl6HNrZbMjibie6q3tY7ZqrSA7HeYPhfn/gqw0s5NJCeYy5WjatGl06NCBSpUqXXG9hx56iJkzZ7JixQpiYmL44osvePjhh6+4zfjx4wkMDMy9REREFGZ0kTxN/+0Qm46cw8/LnTd66Ow0kXyVDoVH5kGb/4DFDbZ+CR+1gcTdZieTEspiGIZRmHc4evRo3njjjSuus2fPHiIjI3OX4+PjqVKlCrNmzaJHjx4Ferzly5fTtm1bYmNjqVGjRp7rZGZmkpn5v4+uT0lJISIiguTkZAICAgr0eCLX4sCpVO7+769k5tgY370hvfWukVOkpYH/X5+rmZoKfjopsOg5vAa+ewzOnwAPH7h7EjR5BK5yuIWUDCkpKQQGBjr893ehH3M0cuRI+vfvf8V1qlevfsny9OnTKVeuHPfee2+BHy86OhrgiuXI29sbb2/vAt+3yPWw2gyemb2NzBwbLWoF8+AteqdS5JpVvcM+Zps7GA78Yj+T7dCv0OUt8C5tdjopIQq9HIWEhBASEnLN6xuGwfTp0+nbty+enp4FfrytW7cCUKFChQJvK+IIn/x6kD/ikijt7cEbPaKueoKBiPyDXzD0mQO/vQPLX4Uds+D4Fug1A8Iamp1OSgDTjzlavnw5hw4d4rHHHrvstmPHjhEZGcmGDRsAOHDgAOPGjWPz5s0cPnyY77//nr59+9KyZUuioqKcHV3kMrEnz/Pm0j8BeKFLXcKDSpmcSKSIcnODFiNgwCIIqAhnYuHjtrBxGhTu0SAilzG9HE2bNo3mzZtfcgzS37Kzs9m3b1/u2WheXl4sW7aM9u3bExkZyciRI+nRowc//PCDs2OLXCbHamPk7O1k5dhoXSeE+2/WOE3khlW+zT5mq90RrJnw4wiYMwAyks1OJsVYoR+QXRQ464AuKVn+b2UsExfvo7SPB0ufbkVYoI/ZkUocHZBdjBkGrPsAlo0FWw6UqWofs4U3MTuZOJGzfn+b/s6RSHGwL+E87yzdD8DYe+qrGIkUNosFmg+HR5dAYGU4dximtYf1UzVmk0KnciRyg7KtNp6ZvY0sq422keXpcVNFsyOJFF+VboahqyGyC1iz4Kdn4duH4cI5s5NJMaJyJHKDpqw8wI5jyQSW8uT17g11dpqIo5UqAw/MhI5vgJsn7F0IU1tC/Cazk0kxoXIkcgP2nEjh3eX2cdrL99YnNEDjNBGnsFjgtqEw8Gf78UdJcfBpB1j7nsZscsNUjkSuU7bVxshZ28i2GrSvF0rXxuFmRxIpeSreBENWQ71u9gO1f34Bvn4Q0s+anUyKMJUjkev0wYpYdp9IIcjXk1fva6BxmohZfALtZ651fhPcveHPxTClBcT9bnYyKaJUjkSuw67jyby/PBaAV7o2oHxpjdNETGWxwC2PwWPLoGwNSImH6XfDr2+BzWZ2OiliVI5ECigrxz5Oy7EZdGoQxj1R+uoaEZdRIQqGrIKGvcCwwi8vw1e9IO202cmkCFE5Eimg95fvZ2/Cecr6eTGum8ZpIi7HuzR0/xjueRc8fCB2GUy5Aw6vMTuZFBEqRyIFsCM+mQ9WHgBgXNcGBPt7m5xIRPJksUDTfjBoOQTXhvMn4LN7YNUksFnNTicuTuVI5Bpl5lgZOXsrVptB56gKdNY4TcT1hdaHwSuhUW8wbLDiVfjiPjifaHYycWEqRyLX6L/L9vNnYirB/l6M69rA7Dgicq28/OC+KdDtQ/D0hUOr7GO2gyvNTiYuSuVI5BpsO5rElFX2cdqr3RpS1s/L5EQiUmCNH4JBKyCkLqSdhM+7wYrXNWaTy6gciVxFRraVkbO3YTOga+NwOjYIMzuSiFyv8pH245Bu6gsYsOoN+OxeSDlhdjJxISpHIlfx9rI/iT2ZSkhpb166p77ZcUTkRnn5wr3vQfdPwMsfjqyxj9lil5mdTFyEypHIFWw+co6PVx8E4PX7GlJG4zSR4iOqFwxeBaENIf00zOwBy14Ca47ZycRkKkci+cjItjLqr3HafU0qcle9ULMjiUhhC65p/1Ttmwfal9e8DTM6Q3K8ubnEVCpHIvl48+d9HDydRnmN00SKN08f6PIW9JwOXqXh6O/2MdufS8xOJiZRORLJw6bDZ/lkzSEAJvRoSKCvp8mJRMThGnSHoauhQmO4cA6+uh+W/Aes2WYnEydTORL5hwtZVp6ZvQ3DgJ5NK3FnpMZpIiVG2eow8GeIHmpfXvc+fNoRzh0xN5c4lcqRyD9MXLKXw2fSCQvw4cUu9cyOIyLO5uENnd6AB2aCTyAc2wRTW8CehWYnEydRORK5yPqDZ5j+22Hgr3FaKY3TREqsuvfAkF+hYlPISIZv+8BPoyEn0+xk4mAqRyJ/Sc/KYdSc7QA8eEsEreuUNzmRiJiuTBUYsBiaDbcvr/8QprWHswfNzSUOpXIk8pc3ftpL3Nl0wgN9+E/numbHERFX4eEFHV6D3t9AqTJwYitMbQW75pmdTBxE5UgEWHvgNJ+tsx9w+UbPKEr7aJwmIv9QpxMMXQMR0ZCZArP7w8IRkJ1hdjIpZCpHUuKlZubw7F/jtIeiK9OiVojJiUTEZQVWgv4/wh1P25c3TYNp7eDMAXNzSaFSOZISb/yiPcSfu0DFoFI8f7fGaSJyFe6e0O4l6PMd+JaDhB0wtSXsmGN2MikkKkdSoq3Zf5ov18cBMKlnFP7eHiYnEpEio1Y7+5ityu2QlQrfDYTvn4DsC2YnkxukciQl1vmMbJ77zj5Oe+S2KjSvGWxyIhEpcgLCoe/30PJZwAJbPoeP74RT+8xOJjdA5UhKrNcX7eFY0gUiypZidKdIs+OISFHl7gF3/gcemQd+5eHkbvioNWz92uxkcp1UjqREWvXnKb7ecBSAST0b4adxmojcqBpt7GO2ai0hOx3mD4X5/4KsNLOTSQGpHEmJk5KRzei/xmn9m1flturlTE4kIsVG6VB4ZD60+Q9Y3GDrl/BRG0jcbXYyKQCVIylxXl24mxPJGVQp58uzHeuYHUdEihs3d2j1rP1YJP8wOL3PfhzSls/BMMxOJ9dA5UhKlBV7TzJrUzwWi32c5uulcZqIOEi1FvYxW422kHPBfibb3MGQed7sZHIVKkdSYiSnZzN6rn2c9ujt1bi1WlmTE4lIsecfAn3mQNuxYHGHHbPsB2sn7DA7mVyBypGUGC8v3EViSibVgv14pr3GaSLiJG5u0GKE/ZO1AyrCmVj4uC1snKYxm4tyWDl67bXXaN68Ob6+vgQFBeW5TlxcHJ07d8bX15fy5cszatQocnJyrni/Z8+epU+fPgQEBBAUFMTAgQNJTU11wB5IcbJsdyJztxzDYoHJvaIo5eVudiQRKWmqNLOP2Wp1AGsm/DgC5gyAjBSzk8k/OKwcZWVl0atXLx5//PE8b7darXTu3JmsrCzWrl3LZ599xowZMxgzZswV77dPnz7s2rWLpUuXsnDhQlavXs3gwYMdsQtSTCSlZxEzz/4W9qAW1WlaReM0ETGJb1no/Q20fxXcPGDXPPtXjxz/w+xkchGLYTj2Pb0ZM2bw1FNPkZSUdMn1P/30E126dOH48eOEhoYCMGXKFJ577jlOnTqFl5fXZfe1Z88e6tWrx8aNG7n55psBWLx4MXfffTfx8fGEh4fnmSEzM5PMzMzc5eTkZCpXrszRo0cJCAgopD0VV/XcnG38uCOBqsG+zBnaHB9PvWtUXKWlwd8vA8ePg5+fuXlErih+MywYBinx4OYJbV+EpgPAYjE7mctKSUkhIiKCpKQkAgMDHfdAhoNNnz7dCAwMvOz6F1980WjUqNEl1x08eNAAjC1btuR5X9OmTTOCgoIuuS47O9twd3c35s6dm2+GsWPHGoAuuuiiiy666FIMLgcOHChwHykI085jTkhIyH3H6G9/LyckJOS7Tfny5S+5zsPDg7Jly+a7DUBMTAwjRozIXU5KSqJKlSrExcU5tnm6mL8bd0l7x0z7rf0uCbTf2u+S4O/JT9myjj08okDlaPTo0bzxxhtXXGfPnj1ERrrW91R5e3vj7e192fWBgYEl6h/V3wICArTfJYj2u2TRfpcsJXW/3dwce7J9gcrRyJEj6d+//xXXqV69+jXdV1hYGBs2bLjkusTExNzb8tvm5MmTl1yXk5PD2bNn891GREREpCAKVI5CQkIICQkplAdu1qwZr732GidPnswdlS1dupSAgADq1auX7zZJSUls3ryZpk2bArB8+XJsNhvR0dGFkktERERKNoe9LxUXF8fWrVuJi4vDarWydetWtm7dmvuZRO3bt6devXo88sgjbNu2jSVLlvDCCy8wbNiw3BHYhg0biIyM5NixYwDUrVuXjh07MmjQIDZs2MBvv/3G8OHDefDBB/M9Uy0v3t7ejB07Ns9RW3Gm/dZ+lwTab+13SaD9dux+O+xU/v79+/PZZ59ddv2KFSto3bo1AEeOHOHxxx9n5cqV+Pn50a9fPyZMmICHh/0NrZUrV9KmTRsOHTpE1apVAfuHQA4fPpwffvgBNzc3evTowbvvvou/v78jdkNERERKGId/zpGIiIhIUaLvVhMRERG5iMqRiIiIyEVUjkREREQuonIkIiIicpFiWY5ee+01mjdvjq+vL0FBQXmuExcXR+fOnfH19aV8+fKMGjWKnJycK97v2bNn6dOnDwEBAQQFBTFw4MDcjyZwRStXrsRiseR52bhxY77btW7d+rL1hw4d6sTkN65q1aqX7cOECROuuE1GRgbDhg2jXLly+Pv706NHj9wPJi0KDh8+zMCBA6lWrRqlSpWiRo0ajB07lqysrCtuVxSf7w8++ICqVavi4+NDdHT0ZR8o+0+zZ88mMjISHx8fGjZsyKJFi5yUtHCMHz+eW265hdKlS1O+fHm6devGvn37rrjNjBkzLntefXx8nJS4cLz00kuX7cPVvoGhqD/XkPfrl8ViYdiwYXmuX1Sf69WrV3PPPfcQHh6OxWJh/vz5l9xuGAZjxoyhQoUKlCpVinbt2rF///6r3m9BXx/yUizLUVZWFr169eLxxx/P83ar1Urnzp3Jyspi7dq1fPbZZ8yYMYMxY8Zc8X779OnDrl27WLp0KQsXLmT16tUMHjzYEbtQKJo3b86JEycuuTz22GNUq1aNm2+++YrbDho06JLtJk6c6KTUheeVV165ZB+eeOKJK67/9NNP88MPPzB79mxWrVrF8ePH6d69u5PS3ri9e/dis9mYOnUqu3bt4u2332bKlCk8//zzV922KD3f3377LSNGjGDs2LFs2bKFRo0a0aFDh8s+Pf9va9eupXfv3gwcOJA//viDbt260a1bN3bu3Onk5Ndv1apVDBs2jN9//52lS5eSnZ1N+/btSUtLu+J2AQEBlzyvR44ccVLiwlO/fv1L9mHNmjX5rlscnmuAjRs3XrLPS5cuBaBXr175blMUn+u0tDQaNWrEBx98kOftEydO5N1332XKlCmsX78ePz8/OnToQEZGRr73WdDXh3w59GttTTZ9+nQjMDDwsusXLVpkuLm5GQkJCbnXffjhh0ZAQICRmZmZ533t3r3bAIyNGzfmXvfTTz8ZFovFOHbsWKFnd4SsrCwjJCTEeOWVV664XqtWrYwnn3zSOaEcpEqVKsbbb799zesnJSUZnp6exuzZs3Ov27NnjwEY69atc0BC55g4caJRrVq1K65T1J7vW2+91Rg2bFjustVqNcLDw43x48fnuf79999vdO7c+ZLroqOjjSFDhjg0pyOdPHnSAIxVq1blu05+r39FydixY41GjRpd8/rF8bk2DMN48sknjRo1ahg2my3P24vDcw0Y8+bNy1222WxGWFiYMWnSpNzrkpKSDG9vb+Prr7/O934K+vqQn2L5ztHVrFu3joYNGxIaGpp7XYcOHUhJSWHXrl35bhMUFHTJOy7t2rXDzc2N9evXOzxzYfj+++85c+YMAwYMuOq6X375JcHBwTRo0ICYmBjS09OdkLBwTZgwgXLlytGkSRMmTZp0xbHp5s2byc7Opl27drnXRUZGUrlyZdatW+eMuA6RnJx8Td9eXVSe76ysLDZv3nzJ8+Tm5ka7du3yfZ7WrVt3yfpg/3kv6s8rcNXnNjU1lSpVqhAREUHXrl3zfX1zZfv37yc8PJzq1avTp08f4uLi8l23OD7XWVlZzJw5k0cffRSLxZLvesXhub7YoUOHSEhIuOT5DAwMJDo6Ot/n83peH/JToO9WKy4SEhIuKUZA7nJCQkK+2/z9HXB/8/DwoGzZsvlu42qmTZtGhw4dqFSp0hXXe+ihh6hSpQrh4eFs376d5557jn379jF37lwnJb1x//73v7npppsoW7Ysa9euJSYmhhMnTvDWW2/luX5CQgJeXl6XHaMWGhpaZJ7ff4qNjeW9995j8uTJV1yvKD3fp0+fxmq15vnzu3fv3jy3ye/nvag+rzabjaeeeorbb7+dBg0a5LtenTp1+PTTT4mKiiI5OZnJkyfTvHlzdu3addXXAFcRHR3NjBkzqFOnDidOnODll1+mRYsW7Ny5k9KlS1+2fnF7rgHmz59PUlLSFb/0vTg81//093NWkOfzel4f8lNkytHo0aN54403rrjOnj17rnqwXnFwPX8X8fHxLFmyhFmzZl31/i8+jqphw4ZUqFCBtm3bcuDAAWrUqHH9wW9QQfZ7xIgRuddFRUXh5eXFkCFDGD9+fJH7LqLreb6PHTtGx44d6dWrF4MGDbritq76fEvehg0bxs6dO6947A3Yv6i7WbNmucvNmzenbt26TJ06lXHjxjk6ZqHo1KlT7p+joqKIjo6mSpUqzJo1i4EDB5qYzHmmTZtGp06drvj9ocXhuXY1RaYcjRw58orNGaB69erXdF9hYWGXHb3+91lJYWFh+W7zzwO6cnJyOHv2bL7bOMr1/F1Mnz6dcuXKce+99xb48aKjowH7OxFm/rK8kX8D0dHR5OTkcPjwYerUqXPZ7WFhYWRlZZGUlHTJu0eJiYlOf37/qaD7ffz4cdq0aUPz5s356KOPCvx4rvJ85yU4OBh3d/fLziK80vMUFhZWoPVd2fDhw3NPBinoOwKenp40adKE2NhYB6VzvKCgIGrXrp3vPhSn5xrs3z+6bNmyAr+LWxye67+fs8TERCpUqJB7fWJiIo0bN85zm+t5fchXgY5QKmKudkB2YmJi7nVTp041AgICjIyMjDzv6+8Dsjdt2pR73ZIlS4rEAdk2m82oVq2aMXLkyOvafs2aNQZgbNu2rZCTOc/MmTMNNzc34+zZs3ne/vcB2XPmzMm9bu/evUXugOz4+HijVq1axoMPPmjk5ORc1324+vN96623GsOHD89dtlqtRsWKFa94QHaXLl0uua5Zs2ZF6iBdm81mDBs2zAgPDzf+/PPP67qPnJwco06dOsbTTz9dyOmc5/z580aZMmWM//73v3neXhye64uNHTvWCAsLM7Kzswu0XVF8rsnngOzJkyfnXpecnHxNB2QX5PUh3zwFWruIOHLkiPHHH38YL7/8suHv72/88ccfxh9//GGcP3/eMAz7P5wGDRoY7du3N7Zu3WosXrzYCAkJMWJiYnLvY/369UadOnWM+Pj43Os6duxoNGnSxFi/fr2xZs0ao1atWkbv3r2dvn8FtWzZMgMw9uzZc9lt8fHxRp06dYz169cbhmEYsbGxxiuvvGJs2rTJOHTokLFgwQKjevXqRsuWLZ0d+7qtXbvWePvtt42tW7caBw4cMGbOnGmEhIQYffv2zV3nn/ttGIYxdOhQo3Llysby5cuNTZs2Gc2aNTOaNWtmxi5cl/j4eKNmzZpG27Ztjfj4eOPEiRO5l4vXKerP9zfffGN4e3sbM2bMMHbv3m0MHjzYCAoKyj379JFHHjFGjx6du/5vv/1meHh4GJMnTzb27NljjB071vD09DR27Nhh1i4U2OOPP24EBgYaK1euvOR5TU9Pz13nn/v98ssvG0uWLDEOHDhgbN682XjwwQcNHx8fY9euXWbswnUZOXKksXLlSuPQoUPGb7/9ZrRr184IDg42Tp48aRhG8Xyu/2a1Wo3KlSsbzz333GW3FZfn+vz587m/nwHjrbfeMv744w/jyJEjhmEYxoQJE4ygoCBjwYIFxvbt242uXbsa1apVMy5cuJB7H3feeafx3nvv5S5f7fXhWhXLctSvXz8DuOyyYsWK3HUOHz5sdOrUyShVqpQRHBxsjBw58pJ2vmLFCgMwDh06lHvdmTNnjN69exv+/v5GQECAMWDAgNzC5cp69+5tNG/ePM/bDh06dMnfTVxcnNGyZUujbNmyhre3t1GzZk1j1KhRRnJyshMT35jNmzcb0dHRRmBgoOHj42PUrVvXeP311y95V/Cf+20YhnHhwgXjX//6l1GmTBnD19fXuO+++y4pFq5u+vTpef67v/gN4uLyfL/33ntG5cqVDS8vL+PWW281fv/999zbWrVqZfTr1++S9WfNmmXUrl3b8PLyMurXr2/8+OOPTk58Y/J7XqdPn567zj/3+6mnnsr9OwoNDTXuvvtuY8uWLc4PfwMeeOABo0KFCoaXl5dRsWJF44EHHjBiY2Nzby+Oz/XflixZYgDGvn37LrutuDzXf/+e/efl732z2WzGiy++aISGhhre3t5G27ZtL/v7qFKlijF27NhLrrvS68O1shiGYRRsECciIiJSfJXIzzkSERERyY/KkYiIiMhFVI5ERERELqJyJCIiInIRlSMRERGRi6gciYiIiFxE5UhERETkIipHIiIiIhdRORIRERG5iMqRiIiIyEVUjkREREQu8v+HBlQdm9MUJAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " \n", + "Code test passed\n", + "Go on to the next step\n" + ] + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "\n", + "\n", + "xmin = -10\n", + "xmax = 10\n", + "ymin = -10\n", + "ymax = 10\n", + "points = 2*(xmax-xmin)\n", + "\n", + "# Define the x values once\n", + "x = np.linspace(xmin,xmax,points)\n", + "\n", + "fig, ax = plt.subplots()\n", + "plt.axis([xmin,xmax,ymin,ymax]) # window size\n", + "plt.plot([xmin,xmax],[0,0],'b') # blue x axis\n", + "plt.plot([0,0],[ymin,ymax], 'b') # blue y axis\n", + "\n", + "# line 1\n", + "y1 = 2*x\n", + "plt.plot(x, y1)\n", + "\n", + "# line 2\n", + "y2 = -x - 3\n", + "plt.plot(x, y2)\n", + "\n", + "plt.show()\n", + "\n", + "\n", + "# Only change code above this line\n", + "import math_code_test_b as test\n", + "test.step11(In[-1].split('# Only change code above this line')[0])" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "ykj42UNeF7K5" + }, + "source": [ + "# Step 12 - Systems of Equations - Algebra" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "n_-rpo6nF7K7" + }, + "source": [ + "In a system of equations, the solution is the point where the two equations intersect, the (x,y) values that work in each equation. To work with algabraic expressions, you will import `sympy` and define x and y as symbols. If you have two equations and two variables, set each equation equal to zero. The `linsolve()` function takes the non-zero side of each equation and the variables used. Notice the syntax. Run the code, then change the two equations to solve 2x + y - 15 = 0 and 3x - y = 0." + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": { + "id": "6dFzZfqRF7K7" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{(3, 9)}\n", + " \n", + "Code test passed\n", + "Go on to the next step\n" + ] + } + ], + "source": [ + "from sympy import *\n", + "x,y = symbols('x y')\n", + "\n", + "\n", + "# Change the equations in the following line:\n", + "print(linsolve([2*x + y - 15, 3*x - y], (x, y)))\n", + "\n", + "\n", + "# Only change code above this line\n", + "import math_code_test_b as test\n", + "test.step12(In[-1].split('# Only change code above this line')[0])" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "QSKeBTgXHRAv" + }, + "source": [ + "# Step 13 - Solutions as Coordinates" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "D2Ca3L-fHCzi" + }, + "source": [ + "The `linsolve()` function returns a finite set, and you can convert that \"finite set\" into (x,y) coordinates. Notice how the code parses the `solution` variable into two separate variables. Just run the code to see how this works." + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": { + "id": "7uhBD85SHK3S" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "x = 0\n", + "y = 0\n", + " \n", + "Solution: ( 0 , 0 )\n", + "Code test Passed\n", + "Go on to the next step\n" + ] + } + ], + "source": [ + "from sympy import *\n", + "x,y = symbols('x y')\n", + "\n", + "# Use variables for each equation\n", + "first = x + y\n", + "second = x - y\n", + "\n", + "# parse finite set answer as coordinate pair\n", + "solution = linsolve([first, second], (x, y))\n", + "x_solution = solution.args[0][0]\n", + "y_solution = solution.args[0][1]\n", + "\n", + "print(\"x = \", x_solution)\n", + "print(\"y = \", y_solution)\n", + "print(\" \")\n", + "print(\"Solution: (\",x_solution,\",\",y_solution,\")\")\n", + "\n", + "\n", + "# Just run this code\n", + "import math_code_test_b as test\n", + "test.step01()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "0epVLhL0F88U" + }, + "source": [ + "# Step 14 - Systems from User Input" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "VhoI5uNrF88V" + }, + "source": [ + "For more flexibility, you can get each equation as user input (instead of defining them in the code). Run this code and try it out - to solve any system of two equations." + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": { + "id": "8irtXhucF88W" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Remember to use Python syntax with x and y as variables\n", + "Notice how each equation is already set equal to zero\n" + ] + }, + { + "name": "stdin", + "output_type": "stream", + "text": [ + "Enter the first equation: 0 = 1.5*x-6\n", + "Enter the second equation: 0 = -2*x +3*y +9\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "x = 4.00000000000000\n", + "y = -0.333333333333333\n", + " \n", + "If you didn't get a syntax error, code test passed\n" + ] + } + ], + "source": [ + "from sympy import *\n", + "\n", + "x,y = symbols('x y')\n", + "print(\"Remember to use Python syntax with x and y as variables\")\n", + "print(\"Notice how each equation is already set equal to zero\")\n", + "first = input(\"Enter the first equation: 0 = \")\n", + "second = input(\"Enter the second equation: 0 = \")\n", + "solution = linsolve([first, second], (x, y))\n", + "x_solution = solution.args[0][0]\n", + "y_solution = solution.args[0][1]\n", + "\n", + "print(\"x = \", x_solution)\n", + "print(\"y = \", y_solution)\n", + "\n", + "\n", + "# Just run this code and test it with different equations\n", + "import math_code_test_b as test\n", + "test.step14()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "8FCFQaq1Hizh" + }, + "source": [ + "# Step 15 - Solve and graph a system" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "wMwKLQvyHaWp" + }, + "source": [ + "Now you can put it all together: solve a system of equations, graph the system, and plot a point where the two lines intersect. Notice how this code is not like the previous solving equations code or the graphing code or the user input code. Python uses `sympy` to get the (x,y) solution and `numpy` to get the values to graph, so the user inputs nummerical values and the code uses them in two different ways. Think about how you would do this if the user input values for ax + by = c." + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": { + "id": "wLBNm5j6HffY" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "First equation: y = mx + b\n" + ] + }, + { + "name": "stdin", + "output_type": "stream", + "text": [ + "Enter m and b, separated by a comma: 3, -4\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Second equation: y = mx + b\n" + ] + }, + { + "name": "stdin", + "output_type": "stream", + "text": [ + "Enter m and b, separated by a comma: -2, 7\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAGdCAYAAAA8F1jjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABNJ0lEQVR4nO3deXhU5eH28e9k3xPISiAQFtmUTZawKiqyqAhqrbVqQcG2gFjApdIq1gVxaV1qUd+fiNi61raC4IqIrAEEDW6ggoQEQgIEkiGBrHPePw6kUlkCzMwzy/25rrmuJzMnM/cYMrk9zznPcViWZSEiIiLig0JMBxARERE5HhUVERER8VkqKiIiIuKzVFRERETEZ6moiIiIiM9SURERERGfpaIiIiIiPktFRURERHxWmOkAZ8rlclFUVER8fDwOh8N0HBEREWkEy7I4cOAAmZmZhIQcf7+J3xeVoqIisrKyTMcQERGR01BYWEiLFi2O+7jfF5X4+HjAfqMJCQmG04gxtVXw4iVQ+h10GgWjZ5tOFNAqKyEz0x4XFUFsrNk8cnyLvylm6hsbSYwO46Npg4mOCDUdSQQAp9NJVlZWw9/x4/H7onJkuichIUFFJaglwLX/D+ZcDD+8DTuuhs6Xmw4VsEJ/9LcuIUFFxZe99vlXhETGMOb8dqSnNDEdR+QnTnbYhg6mlcDRvCcMnGKPF02Fyr1G44iY9nnBftZv309EaAi/6tfKdByR06KiIoHl/N9DWmc4uBfevd10GhGj5qzcBsDl3TNJS4gynEbk9KioSGAJi4TRz4IjFL5+y76JBKHCfQd578tdAIwb2NpwGpHTp6IigSezOwy6zR6/cxtU7DEaR8SEeavzcVkw6KwUOjXT8Xviv1RUJDCddweknwMHS+GdaWBZphOJeI2zqpY3Pi0EtDdF/J+KigSmsAh7CigkDDa9DV/923QiEa95fV0BFdV1nJUWx/ntU03HETkjKioSuJp1hfPutMfv3g4HSszmEfGC2noX81blAzB+UGut2C1+T0VFAtugaZDRFQ7tt09Z1hSQBLh3v9xFUXkVKXERjOre3HQckTOmoiKBLTT88BRQOHz7Dnz5pulEIh5jWRYvHD4l+Ya+2USFaxVa8X8qKhL4Ms6Bwb+3x+/eAc5dZvOIeMi6bfv4Ykc5kWEhXN+3pek4Im6hoiLBYcBUyOwBVWWwaIqmgCQgHVng7aqeLUiOizScRsQ9PFpUZs2aRe/evYmPjyctLY3Ro0fz7bffHrVNVVUVkyZNIjk5mbi4OK666ipKSnTQo7hZaJg9BRQaAd+9DxtfM51IxK227a3ko032Z+dNA3RKsgQOjxaVZcuWMWnSJNasWcPixYupra1l6NChVFZWNmwzdepUFi5cyJtvvsmyZcsoKiriyiuv9GQsCVZpnWDwdHv83l3gLDKbR8SN5q7chmXBRR3TaJcWZzqOiNs4LMt7+8D37NlDWloay5Yt47zzzqO8vJzU1FReffVVfvaznwGwefNmOnXqRG5uLn379j3pczqdThITEykvL9fVk+Xk6utg7lDYuQHaXQzXvQk6ffOUVVZC3OG/hRUVunqyafsra+j38BKqal28enMO/dummI4kclKN/fvt1WNUysvLAWjatCkAGzZsoLa2liFDhjRs07FjR1q2bElubu4xn6O6uhqn03nUTaTRGqaAImHLYvj8ZdOJRM7Yq+sKqKp1cXZmAv3aJJuOI+JWXisqLpeLKVOmMGDAAM455xwAiouLiYiIICkp6aht09PTKS4uPubzzJo1i8TExIZbVlaWp6NLoEntABf+0R6/Px3KCs3mETkD1XX1zFudD2iBNwlMXisqkyZN4quvvuL1118/o+eZPn065eXlDbfCQv2RkdPQ7xZo0RtqDsDbk3UWkPitt/OK2HOgmoyEKC7tkmk6jojbeaWo3HLLLSxatIilS5fSokWLhvszMjKoqamhrKzsqO1LSkrIyMg45nNFRkaSkJBw1E3klIWE2lNAYVHww1LYMM90IpFT9uMF3sb0zyYiTCtOSODx6L9qy7K45ZZbeOutt/j4449p3froU+Z69uxJeHg4S5Ysabjv22+/paCggH79+nkymgiknAUXzbDHH94NZQVm84icopVb9rK5+AAxEaH8so8WeJPAFObJJ580aRKvvvoqCxYsID4+vuG4k8TERKKjo0lMTGTcuHFMmzaNpk2bkpCQwOTJk+nXr1+jzvgROWM5v4Vv3obCNbBgEtywAEL0f6XiH+assPem/LxXFokx4YbTiHiGRz+Rn332WcrLyxk8eDDNmjVruL3xxhsN2zzxxBNcdtllXHXVVZx33nlkZGTwn//8x5OxRP4rJBRGPwNh0bBtOWyYazqRSKN8V3KAZd/tweGAGwdkm44j4jFeXUfFE7SOirjFmufg/d9DeCxMXA1Nsk0n8mlaR8W83//rC95YX8jwszN47oaepuOInDKfXEdFxGf1+TW0GgC1lbDgFnC5TCcSOa49B6p56/OdANx8npbLl8CmoiIC9nEpo2ZDeAzkr4BP55hOJHJc/1iznZp6F92zkji3ZRPTcUQ8SkVF5IimreHi++3xR/fCvh/M5hE5hqrael5esx2Amwe10QJvEvBUVER+rNc4yB4EtQdh/iRNAYnP+c9nO9lXWUPzpGiGnZ1uOo6Ix6moiPzYkSmgiDgoWA1rnzOdSKSBy2UxZ6W9p++mga0JC9VHuAQ+/SsX+V9NWv13CmjJ/bB3i9k8Iod98t1ufthTSXxkGD/v1eLk3yASAFRURI6l103QZjDUHYIFE8FVbzqRCM8vtxd4uzanJfFRWuBNgoOKisixOBxw+dMQEQ+Fa2HNM6YTSZD7amc5uT+UEhriYEz/bNNxRLxGRUXkeJJawrCZ9njJA7DnO7N5JKgdufjgpV2a0Twp2nAaEe9RURE5kXN/BW0vgvpqmD9BU0BiRHF5FQs3FgEwfpAWeJPgoqIiciJHpoAiE2Hnelj9tOlEEoTmrc6nzmXRp3VTurZIMh1HxKtUVEROJrE5DJ9lj5fOhN2bzeaRoFJZXcera+0F3sYP1N4UCT4qKiKN0f2XcNYwqK+B+b+F+jrTiSRIvLm+EGdVHdnJMQzppAXeJPioqIg0hsMBI5+CqEQo+hxWPWE6kQSBepfF3FX5AIwb2JqQEC2XL8FHRUWksRKawYhH7fEnj0DJ12bzSMBb/E0xBfsOkhQTzlU9tcCbBCcVFZFT0fUa6HAJuGrhrd9Cfa3pRBLA5qywT0m+LqclMRFhhtOImKGiInIqHA647EmIbgLFX8BKTQGJZ3xesJ/12/cTHupgTL9s03FEjFFRETlV8ekw4jF7vOwR2PWF2TwSkOYcXuDt8m7NSUuIMpxGxBwVFZHT0eVn0PEycNXB/IlQV2M6kQSQwn0Hee/LXYAWeBNRURE5HQ4HXPYERDeFki9hxV9MJ5IAMm91Pi4LBrZLoVOzBNNxRIxSURE5XXFpcOnhgrLiz1CUZzSOBAZnVS1vfFoIaG+KCKioiJyZc66EzqM0BSRu88a6Qiqq6zgrLY7z26eajiNinIqKyJm69HGISYHdX8PyR02nET9WW+/ixVX2QbTjB7XG4dACbyIqKiJnKjYFLnvcHq94HHZ+ZjaP+K33viqmqLyKlLgIRnVvbjqOiE9QURFxh86j4OwrwaqH+ROgrtp0IvEzlmUxZ8UPANzQN5uo8FDDiUR8g4qKiLtc8meITYU9m+GTWabTiJ/5NH8/X+woJzIshOv7tjQdR8RnqKiIuEtssn3KMsCqp2DHBrN5xK88f3hvypXnNic5LtJwGhHfoaIi4k6dRkKXn4Plgvm/hdoq04nED2zbW8lHm0oAGDewjeE0Ir5FRUXE3UY8AnHpsPc7WDrTdBrxA3NXbsOy4MKOabRLizMdR8SnqKiIuFtMU/vChQCrn4aCtUbjiG8rO1jDmxsOL/A2UAu8ifwvFRURT+h4CXS7FrBgwUSoPWQ6kfioV9YWUFXronOzBPq1TTYdR8TnqKiIeMrwWRDfDEq3wMcPmk4jPqi6rp55q/MBLfAmcjwqKiKeEt0ERv7VHufOhu25ZvOIz1m4cRd7DlSTnhDJZV0zTccR8UkqKiKe1H4odL+ehimgmkrTicRH/HiBt7H9WxMRpo9jkWPRb4aIpw2bCQnNYd8PsOR+02nER6zaUsrm4gPERITyyz5a4E3keDxaVJYvX87IkSPJzMzE4XAwf/78ox4fO3YsDofjqNvw4cM9GUnE+6KT4PLDU0Brn4P8lUbjiG84ssDbz3tlkRgTbjiNiO/yaFGprKykW7duzJ49+7jbDB8+nF27djXcXnvtNU9GEjGj3RA4d4w9XjAJqivM5hGjvis5wLLv9uBwwI0Dsk3HEfFpYZ588hEjRjBixIgTbhMZGUlGRoYnY4j4hqEPwtaPYX8+fPQnuPTPphOJIS+s2AbAsM4ZtEqONZxGxLcZP0blk08+IS0tjQ4dOjBhwgRKS0tPuH11dTVOp/Oom4hfiEqAy5+2x58+Dz8sM5tHjNhzoJq3Pt8J2Kcki8iJGS0qw4cP5+9//ztLlizhkUceYdmyZYwYMYL6+vrjfs+sWbNITExsuGVlZXkxscgZansB9LrJHr99C1QfMJtHvO4fa7ZTU++ie1YSPVs1MR1HxOc5LMuyvPJCDgdvvfUWo0ePPu42P/zwA23btuWjjz7ioosuOuY21dXVVFdXN3ztdDrJysqivLychIQEd8cWcb/qA/BsfygrsEvLkSsu+5HKSog7fEmaigqI1exFo1TV1tP/4Y/ZV1nD337ZQ2unSFBzOp0kJiae9O+38amfH2vTpg0pKSls2bLluNtERkaSkJBw1E3Er0TGw6jDB5ivn2sftyJB4T+f7WRfZQ3Nk6IZfraOzRNpDJ8qKjt27KC0tJRmzZqZjiLiWa3Pgz6/tscLJkOVjrUKdC6XxZyV9inJNw1sTVioT338ivgsj/6mVFRUkJeXR15eHgDbtm0jLy+PgoICKioquOOOO1izZg35+fksWbKEUaNG0a5dO4YNG+bJWCK+YcifoEk2OHfAh380nUY87JPvdvPDnkriI8P4ea8WpuOI+A2PFpX169fTo0cPevToAcC0adPo0aMHM2bMIDQ0lC+++ILLL7+c9u3bM27cOHr27MmKFSuIjIz0ZCwR3xARC6Oescef/R22fGQ2j3jU88vtU5KvzWlJfJQWeBNpLI+uozJ48GBOdKzuBx984MmXF/F92QMgZwKsfdaeApqYa69kKwHlq53l5P5QSmiIgzH9s03HEfErmiQVMe2iGdC0DRwogg80BRSIXlhp7025tEszmidFG04j4l9UVERMi4iB0c8CDsh7Gb7TnsZAUlxexcKNRYAWeBM5HSoqIr6gZV/oN8kev30rHNpvNo+4zbzV+dS5LPq0bkrXFkmm44j4HRUVEV9x4d2Q3A4qiuH96abTiBtUVtfx6trtAIwfqL0pIqdDRUXEV4RHw+jnwBECG1+Dze+aTiRn6M31hTir6shOjmFIp3TTcUT8koqKiC/J6g39J9vjhb+Dg/vM5pHTVu+ymLsqH4BxA1sTEuIwG0jET6moiPiawX+AlA5QuRveu9N0GjlNi78ppmDfQZJiwrmqpxZ4EzldKioiviY8yj4LyBECX74JmxaaTiSnYc4K+5Tk63JaEhPh0SWrRAKaioqIL2rREwZMsceLpkJlqdE4cmo+L9jP+u37CQ91MKZftuk4In5NRUXEVw2+C1I7QeUeePd202nkFMw5vMDb5d2ak5YQZTiNiH9TURHxVWGRcMWz4AiFr/8DX79lOpE0QuG+g7z35S5AC7yJuIOKiogvy+wBg6bZ43dug4o9ZvPISc1bnY/LgoHtUujULMF0HBG/p6Ii4uvOuxPSz4GDpfDONDjBhT7FLGdVLW98Wghob4qIu6ioiPi6sAgY/QyEhMGmt+1pIPFJb6wrpKK6jrPS4ji/farpOCIBQUVFxB806waDDh9Q+85tcKDEbB75idp6Fy+usg+iHT+oNQ6HFngTcQcVFRF/Meg2yOhiX7BQU0A+572viikqryIlLoJR3ZubjiMSMFRURPxFWIS9EFxIOGxeBF/+y3QiOcyyLOas+AGAG/pmExUeajiRSOBQURHxJxld4Pzf2+N3b4cDxWbzCACf5u/nix3lRIaFcH3flqbjiAQUFRURfzNwin3MSlUZLJyiKSAf8PzhvSlXntuC5LhIw2lEAouKioi/CQ2H0c/ZU0DfvQcbXzedKKht21vJR5vsg5vHDdQpySLupqIi4o/SO8MF0+3x+78HZ5HZPEFs7sptWBZc2DGNdmlxpuOIBBwVFRF/1f93kHkuVJXDwt9pCsiAsoM1vLnh8AJv2psi4hEqKiL+KjTMPgsoNAK+/xDyXjGdKOi8sraAqloXnZsl0K9tsuk4IgFJRUXEn6V1hAv+aI/fnw7lO83mCSLVdfXMW50PaIE3EU9SURHxd/0nQ4veUO2EtydrCshLFm3cxZ4D1aQnRHJZ10zTcUQCloqKiL8LCYVRz0BoJGxdAp/93XSigGdZVsMpyWP6ZxMRpo9SEU/Rb5dIIEhtDxfdY48/+COUFZjNE+BWby1lc/EBosNDua5PK9NxRAKaiopIoOg7EbJyoOYALLhFU0AedGRvys97tSAxJtxwGpHApqIiEiiOTAGFRcO2ZbB+rulEAen7kgN88u0eHA64Sacki3iciopIIElpB0Putccf3gP7843GCUQvrNwGwLDOGbRKjjWcRiTwqaiIBJo+v4GW/aG20p4CcrlMJwoYeyuq+c/n9ing4wdpb4qIN6ioiASakBAYPRvCYyB/Bax/wXSigPGP3O3U1LnonpVEz1ZNTMcRCQoqKiKBqGkbuPh+e7x4Buz7wWyeAFBVW8/La7YDWuBNxJtUVEQCVa9xkD0Iag/C/EmaAjpDb32+k9LKGponRTP87AzTcUSChoqKSKAKCYFRf4PwWChYDev+n+lEfsvlshoOor1xQDZhofroFPEWj/62LV++nJEjR5KZmYnD4WD+/PlHPW5ZFjNmzKBZs2ZER0czZMgQvv/+e09GEgkuTbJh6AP2+KP7oHSr0Tj+atl3e9iyu4L4yDCu6Z1lOo5IUPFoUamsrKRbt27Mnj37mI8/+uij/PWvf+W5555j7dq1xMbGMmzYMKqqqjwZSyS49LoJ2gyGukMwfyK46k0n8jtzVtrH+PyiTxbxUVrgTcSbPFpURowYwYMPPsgVV1zxk8csy+LJJ5/k7rvvZtSoUXTt2pW///3vFBUV/WTPi4icAYcDLn8aIuKhcA2sedZ0Ir/ydVE5q7aUEhriYOwAnZIs4m3GJlq3bdtGcXExQ4YMabgvMTGRnJwccnNzTcUSCUxJLWHYg/b44wdgz3dm8/iRI8emXNqlGc2Tog2nEQk+xopKcXExAOnp6Ufdn56e3vDYsVRXV+N0Oo+6iUgjnDsG2l4IdVWwQFNAjVHirGLhxiJAC7yJmOJ3h67PmjWLxMTEhltWlg5sE2mUI1NAkQmw41PI/ZvpRD7vpdX51NZb9GndlK4tkkzHEQlKxopKRoa9DkFJSclR95eUlDQ8dizTp0+nvLy84VZYWOjRnCIBJbEFDJ9ljz+eCbs3m83jww7W1PHK2gIAxuvigyLGGCsqrVu3JiMjgyVLljTc53Q6Wbt2Lf369Tvu90VGRpKQkHDUTUROQffr4KyhUF8N8ydAfZ3pRD7pzfU7KD9US3ZyDEM6pZ/8G0TEIzxaVCoqKsjLyyMvLw+wD6DNy8ujoKAAh8PBlClTePDBB3n77bf58ssv+dWvfkVmZiajR4/2ZCyR4OZwwMinICoRij6D1U+ZTuRz6l0Wc1fZB9GOG9iakBAtly9iSpgnn3z9+vVccMEFDV9PmzYNgDFjxjBv3jzuvPNOKisr+fWvf01ZWRkDBw7k/fffJyoqypOxRCQhE4Y/AvN/C588DO1HQHpn06l8xuJvStheepCkmHCu6tnCdByRoOawLMsyHeJMOJ1OEhMTKS8v1zSQyKmwLHjtWvjuPWjWHcZ/BKGNW8ysshLi4uxxRQXExnoupglXP7eaT/P3M+mCttwxrKPpOCIBqbF/v/3urB8RcROHA0Y+CVFJsCsPVj5pNo+PyCss49P8/YSHOhjTL9t0HJGgp6IiEsziM+CSx+zxskeg+CuzeXzAnBX2cvmXd2tOWoKmoUVMU1ERCXZdroaOl4Gr1j5mpb7WdCJjduw/yHtf2QtOaoE3Ed+goiIS7BwOuPRxiG4CxV/Cir+YTmTMi6vyqXdZDGyXQqdmOuZNxBeoqIgIxKfDJX+2x8sfg11fmM1jgLOqljc+tReQHKe9KSI+Q0VFRGznXAWdLgdXnb0QXF2N6URe9ca6Qiqq6zgrLY7B7VNNxxGRw1RURMR2ZAooJhlKvoLlj5pO5DV19S5ePLzA2/hBrXE4tMCbiK9QURGR/4pLhUsPH6Oy4nEo+txsHi9596tiisqrSImLYFT35qbjiMiPqKiIyNHOvsK+WfXw1gSoqzadyKMsy2o4JfmGvtlEhYcaTiQiP6aiIiI/dclfIDYV9myyl9gPYJ/m7+eLHeVEhoVwfd+WpuOIyP9QURGRn4pNhsuesMernoSdG4zG8aQje1OuPLcFyXGRhtOIyP9SURGRY+s00l4MznLZU0C1VaYTud22vZUs3lQC2FdJFhHfo6IiIsc34lGIS4e938InD5lO43YvrtqGZcGFHdNolxZnOo6IHIOKiogcX0xTuOxJe7z6aShcZzSOO5UdrOHN9TsAGK+9KSI+S0VFRE6s4yXQ9Rf2FND8CVB7yHQit3hlbQGHauvp3CyBfm2TTccRkeNQURGRkxvxMMRlQOkWWPKA6TRnrKbOxUur8wEt8Cbi61RUROTkopvA5X+1x2ueIWRHrtk8Z2jhxiJ2H6gmPSGSy7pmmo4jIiegoiIijdN+GHS/HrCIfG8i0WEHTSc6LZZlMWelvVz+mP7ZRITpY1DEl+k3VEQab9hMSGhOSNkPPHTR/abTnJbVW0vZtMtJdHgov+yjBd5EfJ2Kiog0XnRSwxTQlL7Pcl6rlWbznIbnDy/w9vNeLUiKiTCcRkRORkVFRE5NuyHUdv0VAHMvnwQ1FYYDNd73JQf45Ns9OBxw4wCdkiziD1RUROSU1QyeSUF5C9o2zSdi+Z9Mx2m0Fw4fmzK0czrZKbGG04hIY6ioiMipi0xg3NtPAxD++fOwbbnhQCe3t6Ka/3y+E4Dxg9oYTiMijaWiIiKn5aMfLuS59TfaXyyYBNUHzAY6iX/kbqemzkW3rCR6tWpiOo6INJKKioictjsWP4AroSWUFcCH95iOc1xVtfW8vGY7YC+XrwXeRPyHioqInLaKmniqh//N/mLDi7B1qdlAx/HW5zsprayheVI0I87JMB1HRE6BioqInBFXq/Oh93j7i7cnQ5XTbKD/4XJZDQfR3jggm7BQfeyJ+BP9xorImRtyHyS1gvJC+PBu02mOsuy7PWzZXUFcZBjX9M4yHUdETpGKioicucg4GP2MPf7sJdjykdk8PzJnpb3A2y96ZxEfFW44jYicKhUVEXGP7IGQ81t7/PatUFVuNg/wdVE5q7aUEhriYOyAbNNxROQ0qKiIiPtcNAOatAbnTvjgD6bTNBybMuKcDFo0iTGcRkROh4qKiLhPROzhKSAHfP4yfPehsSglzioWbiwCtMCbiD9TURER92rVH/pOtMcLb4VD+43EeGl1PrX1Fr2zm9A9K8lIBhE5cyoqIuJ+F94Nye3gwC543/tTQAdr6nhlbQGgvSki/k5FRUTcLyIGRh2eAtr4Knz7nldf/l8bdlB+qJZWyTEM6ZTu1dcWEfdSURERz2iZA/1vsccLfwcH93nlZet/tMDbuIGtCQ3Rcvki/sx4UfnTn/6Ew+E46taxY0fTsUTEHS74I6S0h4oSeP8ur7zkR5tK2F56kMTocH7Ws4VXXlNEPMd4UQE4++yz2bVrV8Nt5cqVpiOJiDuER8PoZ8ERAl+8AZsWefwl56ywF3i7LqclMRFhHn89EfEsnygqYWFhZGRkNNxSUlJMRxIRd2nRCwb8zh4vmgKVpR57qbzCMj7N3094qIMx/bM99joi4j0+UVS+//57MjMzadOmDddddx0FBQXH3ba6uhqn03nUTUR83ODpkNoJKvfAe3d47GWO7E0Z2S2T9IQoj72OiHiP8aKSk5PDvHnzeP/993n22WfZtm0bgwYN4sCBA8fcftasWSQmJjbcsrJ0kTERnxcWaS8E5wiFr/4N3yxw+0vs2H+Q974qBmD8QJ2SLBIoHJZlWaZD/FhZWRmtWrXi8ccfZ9y4cT95vLq6murq6oavnU4nWVlZlJeXk5CQ4M2oIkGrshLi4uxxRQXExjbyG5c8ACv+DDEpMGktxLpvmvfBRd8wZ+U2BrRL5pXxfd32vCLiGU6nk8TExJP+/Ta+R+V/JSUl0b59e7Zs2XLMxyMjI0lISDjqJiJ+4vw7Ie1sOLgX3rnNbU/rrKrl9U8LAS3wJhJofK6oVFRUsHXrVpo1a2Y6ioi425EpoJAw+Ga+PQ3kBv/8tJCK6jrapcVx/lmpbnlOEfENxovK7bffzrJly8jPz2f16tVcccUVhIaGcu2115qOJiKekNkdBt1uj9+5HSp2n9HT1dW7eHFVPgDjB7YmRAu8iQQU40Vlx44dXHvttXTo0IGf//znJCcns2bNGlJT9X9FIgFr0G2Q0QUO7YNFU+EMDpV776tidpYdIjk2gtE9mrsxpIj4AuOrIb3++uumI4iIt4VF2AvB/d9g2LzIngLq8rNTfhrLshpOSb6+byuiwkPdHFRETDO+R0VEglRGFzj/9/b4ndvgQPEpP8X67fvZuKOciLAQbujXys0BRcQXqKiIiDkDp0KzblBVBgunnPIU0PPL7b0pV53bnJS4SPfnExHjVFRExJzQcBj9HISEw3fv2dcDaqT8vZUs3lQC2FdJFpHApKIiImald4bBh6+s/N6d4NzVqG+bu2oblgUXdEilXVq8BwOKiEkqKiJi3oApkNkDqsph4e9OOgVUdrCGN9fvALTAm0igU1EREfNCw+wpoNAI+P4DyHvlhJu/sraAQ7X1dGqWQP+2yV4KKSImqKiIiG9I6wgX/MEevz8dyncec7OaOhcvrc4H7AXeHA4t8CYSyFRURMR39JsMzXtBtRPennzMKaCFG4vYfaCatPhIRnbLNBBSRLxJRUVEfEdomL0QXGgkbF0Cn//jqIcty2LOym0AjOmfTUSYPsJEAp1+y0XEt6S2h4vuscfv/wHKChseWr21lE27nESHh3JdTktDAUXEm4wvoS8i8hN9J8KmhVC4FuZPglZTobiYFXllhFjNubpXK5JiIkynFBEvUFEREd8TEgqjnoHJPeGJReBcCMBdwK/iUwjr/BRwjtGIIuIdKioi4puWfwGvO39yd7MDe3HcdD0kRMGVVxoIJiLepGNURMT31NfD7353zIcaTkaeMsXeTkQCmoqKiPieFStgx47jP25ZUFhobyciAU1FRUR8z67GXe+n0duJiN9SURER39OsmXu3ExG/paIiIr5n0CBo0QLrRMvjZ2XZ24lIQFNRERHfExoKTz0FgOt42zxwl72diAQ0FRUR8U1XXsmTv32I4viUo+9vGgU/j4a6BeDSWT8igU5FRUR80jdFTp5K6ML5E+ey5+334NVXYelS+PZr6NYECtfA2udMxxQRD9OCbyLik+as/AGAYV2bkzry3KMfHPogLJoCS+6Hs4ZBSjvvBxQRr9AeFRHxOSXOKhZuLAJg/KA2P92g51hocwHUVcH8CZoCEglgKioi4nNeWp1Pbb1F7+wmdM9K+ukGDgdc/jRExMOOdZA72+sZRcQ7VFRExKccrKnjlbUFAIwbeIy9KUckZcHwh+zxxw/Cnm+9kE5EvE1FRUR8yr827KD8UC2tkmO4uHP6iTfucQO0GwL11fYUUH2dd0KKiNeoqIiIz6h3WcxduQ2Amwa0JjTkBAu+gT0FNPKvEJkIOzdA7tNeSCki3qSiIiI+46NNJeSXHiQhKoyre7Vo3DclNofhs+zx0odg9ybPBRQRr1NRERGf8cIKe2/KdX1bERNxCqsndP+lfZpyfQ289Vuor/VQQhHxNhUVEfEJGwvLWJe/j/BQB2P7Z5/aNzscMPIpiEqEXXmw6kkPJBQRE1RURMQnzDl8bMrIbpmkJ0Sd+hMkNIMRj9njTx6B4q/cmE5ETFFRERHjdpYd4t0vdwEw/kSnJJ9M159Dh0vBVXv4LCBNAYn4OxUVETFu3qpt1LssBrRLpnNmwuk/kcMBlz0B0U2g+AtY8bj7QoqIESoqImLUgapaXl9XCJzh3pQj4tPhkj/b4+WPwq4vzvw5RcQYFRURMeqNTws5UF1Hu7Q4zm+f6p4nPecq6DQSXHX2FFBdjXueV0S8zieKyuzZs8nOziYqKoqcnBzWrVtnOpKIeEFdvYsXV+UDMG5ga0JOtsBbYzkccOkTEJMMJV/B8sfc87wi4nXGi8obb7zBtGnTuPfee/nss8/o1q0bw4YNY/fu3aajiYiHvf91MTvLDpEcG8EVPZq798njUuHSv9jjFX+Bojz3Pr+IeIXDsizLZICcnBx69+7N3/72NwBcLhdZWVlMnjyZu+6666Tf73Q6SUxMpKionISEMzgIT0QarbIS0g9fhqekBGJjT/05LMvi2rmr+bKojEnnncXE89u7N+RhkW+PJezbt3CldObQDZ9AWKRHXkdETo3T6SQzM5Hy8hP//T6FpR/dr6amhg0bNjB9+vSG+0JCQhgyZAi5ubnH/J7q6mqqq6sbvnY6nQBkZno2q4gcW/pJrht4PJHN95NxfRlWXQh3Xd2KOw+6N9cRKTF/5uuJK0jjG5688hHu/niGZ15IRDzC6NTP3r17qa+vJ/1/PunS09MpLi4+5vfMmjWLxMTEhltWVpY3ooqImyX0/gGAiq+a4zroub0cew+mMOEd+zTluwY8Qa/MDR57LRFxP6N7VE7H9OnTmTZtWsPXTqeTrKwsiopAMz8i3nGmUz8F+yq5ZHYJFrD0uda0ddPJPsc3irpFPyNs079Ye9dEDv1qGYSdxuq3IuI2TmfjZkOMFpWUlBRCQ0MpKSk56v6SkhIyMjKO+T2RkZFERv70/75iY09vnlxEzszp/O69/tE2LGBwh1S6Zsd7JNdPjHwMCpYTUrqZ2HWz4OL7vPO6InJM9fWN287o1E9ERAQ9e/ZkyZIlDfe5XC6WLFlCv379DCYTEU8pO1jDP9fvAODmQW5Y4K2xYprCyCft8eq/QuGn3nttETltxk9PnjZtGs8//zwvvfQSmzZtYsKECVRWVnLjjTeajiYiHvDqugIO1dbTqVkC/dsme/fFO14KXa8By2UvBFd7yLuvLyKnzPgxKtdccw179uxhxowZFBcX0717d95///2fHGArIv6vps7FS6vzARg/sDUOh5sWeDsVIx6BH5ZB6fewdCYMfdD7GUSk0YzvUQG45ZZb2L59O9XV1axdu5acnBzTkUTEAxZ9UUSJs5q0+EhGdjO0pkB0Exj5lD1e/TcoWGsmh4g0ik8UFREJfJZl8fyKbQCM6Z9NRJjBj58Ow6HbLwHLngKq8dAiLiJyxlRURMQrcreWsmmXk+jwUK7LaWk6DgyfBfHNYN9W+PgB02lE5DhUVETEK55fYS/wdnWvFiTFRBhOA0QnweVP2+M1z8L21UbjiMixqaiIiMdt2X2Apd/uweGAmwa0Nh3nv866GHpcjz0FNBFqKk0nEpH/oaIiIh73wkr72JSLO6WTneJjKzMOewgSmsP+bfCRFoET8TUqKiLiUXsrqvn3ZzsBuPk8Ly7w1lhRif+dAlr3/yB/pdk8InIUFRUR8aiX12ynps5FtxaJ9GrVxHScY2t3EfQca4/nT4TqCqNxROS/VFRExGOqauv5R+52AMYPamNmgbfGGvogJLaEsu3w0b2m04jIYSoqIuIx8z/fSWllDc2TohlxzrEvNOozIuPh8r/a40/n2KvXiohxKioi4hEul8WcwwfRju2fTVioH3zctL0Aeo2zxwtugeoDZvOIiIqKiHjGsu/3sGV3BXGRYVzTJ8t0nMa7+H5IagnlBfDhPabTiAQ9FRUR8Yg5hxd4+0XvLBKiwg2nOQWRcTDqGXu84UXYssRsHpEgp6IiIm73TZGTVVtKCQ1xMHZAtuk4p671IOjzG3v89q1QVW42j0gQU1EREbebs9LemzLinAxaNIkxnOY0DbkXmrQG5w748G7TaUSCloqKiLhVibOKhRuLAPuUZL8VEQujnwEc8Nnf4fuPTCcSCUoqKiLiVi+tzqe23qJ3dhO6ZyWZjnNmWvWHvhPs8duT4VCZ0TgiwUhFRUTc5mBNHa+sLQBg3EA/3pvyYxfeA03bwoEieH+66TQiQUdFRUTc5l8bdlB+qJZWyTFc3DnddBz3iIiB0c8CDtj4Knz3gelEIkFFRUVE3KLeZTH38AJvNw1oTWiIDy+Xf6pa5kD/W+zx27fCof1m84gEERUVEXGLjzaVkF96kMTocK7u1cJ0HPe74I+Q0h4qiuG9u0ynEQkaKioi4hYvrLD3pvwypyUxEWGG03hAeLQ9BeQIgS9eh83vmE4kEhRUVETkjG0sLGNd/j7CQx2M7Z9tOo7ntOgF/W+1xwunwMF9RuOIBAMVFRE5Y0cuPjiyaybpCVGG03jY4OmQ2hEqd8O7d5hOIxLwVFRE5IwUlR/i3S93ATBuUGvDabwgPMpeCM4RCl/9C75ZYDqRSEBTURGRM/LKum3Uuyz6t03m7MxE03G8o3lPGDjFHi+aBpV7jcYRCWQqKiJy2hwRtfzr80IAbvbn5fJPx/m/h7TOcHAvvHOb6TQiAUtFRUROW1zXQiqq62ibGsv57VNNx/GusMjDZwGFwjfz4av/mE4kEpBUVETk9DhcJPTKB+yLD4YE0gJvjZXZHc673R6/cxtU7DYaRyQQqaiIyGmJ6VBMWOIhmsZEcEWP5qbjmDPodkjvAof2wTvTwLJMJxIJKCoqInLKLMsiobd9SvIverUiKjzUcCKDwiLss4BCwmDTQvjq36YTiQQUFRUROWWf79hPZGYZVl0Iv+jVynQc85p1hfPutMfv3g4HSszmEQkgKioicspeyv0BgIqvm5McG2k4jY8YNA0yutoXLFw0VVNAIm6ioiIip2R7aSVLvrX3GBz4NAgWeGus0HD7LKCQcPj2Hfjin6YTiQQEFRUROSVzV27DAg5tTaW2NN50HN+ScQ4M/r09fu9OcO4ym0ckAKioiEijlR+s5Z/rdwDg/DTIFnhrrAFToVl3qCqDRVM0BSRyhowWlezsbBwOx1G3hx9+2GQkETmBV9Zt51BtPe3T4qnanmw6jm8KDYMrnoPQCPjufdj4mulEIn7N+B6V+++/n127djXcJk+ebDqSiBxDTZ2Ll1bnAzCmbxsgCBd4a6y0TvZVlgHeuwucRWbziPgx40UlPj6ejIyMhltsbKzpSCJyDIu+KKLEWU1afCSXnJNpOo7v63+rffHC6nJ4+1ZNAYmcJuNF5eGHHyY5OZkePXrw2GOPUVdXd8Ltq6urcTqdR91ExLMsy2LOCnuBtzH9s4kINf7R4ftCw+yzgEIjYcti+Pxl04lE/JLRT5tbb72V119/naVLl/Kb3/yGhx56iDvvvPOE3zNr1iwSExMbbllZWV5KKxK8creW8s0uJ9HhoVyX09J0HP+R2gEu/KM9/uAPUFZoNo+IH3JYlnv3R95111088sgjJ9xm06ZNdOzY8Sf3z507l9/85jdUVFQQGXnsRaSqq6uprq5u+NrpdJKVlUV5eTkJCQlnFl5EjunGF9ex9Ns93NC3FQ+MPofKSoiLsx+rqADN2J6Aqx7mDoMdn0KbC+CGt8Ch43tEnE4niYmJJ/37HebuF77tttsYO3bsCbdp0+bYpzXm5ORQV1dHfn4+HTp0OOY2kZGRxy0xIuJ+W3YfYOm3e3A4YNxALfB2ykJC7Smg5wbCD0vhs5eg51jTqUT8htuLSmpqKqmpqaf1vXl5eYSEhJCWlubmVCJyul5YaR+bcnGndLJTtOvktKScBRfNsKd/PvgjtL0QkjSFJtIYbi8qjZWbm8vatWu54IILiI+PJzc3l6lTp3L99dfTpEkTU7FE5EdKK6r592c7ARg/SAu8nZGc38I3b0PhGlgwCW5YACE6KFnkZIz9lkRGRvL6669z/vnnc/bZZzNz5kymTp3K//3f/5mKJCL/4x9rtlNT56Jbi0R6Z+t/IM5ISCiMfgbComHbctgw13QiEb9gbI/Kueeey5o1a0y9vIicRFVtPf/I3Q7AuEFtcOgA0DOX3BaG/Ane/z18OAPaDYEm2aZTifg07XcUkWOa//lOSitraJ4UzSXnZJiOEzj6/BpaDYDaSlhwC7hcphOJ+DQVFRH5CZfLYs7hg2jH9s8mTAu8uU9ICIyaDeGxkL8CPp1jOpGIT9Onj4j8xLLv97BldwVxkWFc00eLKrpd09Zw8X32+KN7oXSr2TwiPkxFRUR+Ys6KHwD4Re8sEqLCDacJUL3GQfYgqD1onwWkKSCRY1JREZGjfFPkZNWWUkJDHIwdkG06TuA6MgUUEQcFubD2OdOJRHySioqIHGXOSntvyohzMmjRJMZwmgDXpBUMfcAeL7kP9m4xm0fEB6moiEiDEmcVCzcWAVrgzWt63ghtBkNdFcyfYF8bSEQaqKiISIOXVudTW2/RO7sJ3bOSTMcJDg4HXP43iIiHHesgd7bpRCI+RUVFRAA4WFPHK2sLABg3UHtTvCopC4bNtMcfPwh7vjObR8SHqKiICAD/2rCD8kO1tEqO4eLO6abjBJ9zfwVtL4L6apj/W6ivM51IxCeoqIgI9S6LuYcXeLtpQGtCQ7Rcvtc5HHD50xCZCDs3QO7TphOJ+AQVFRHho00l5JceJDE6nKt7tTAdJ3glNofhD9njpQ/B7s1m84j4ABUVEeGFFfbelF/mtCQmwti1SgWg+3Vw1lCor9EUkAgqKiJBb2NhGevy9xEe6mBs/2zTccThgJFPQVQiFH0Oq540nUjEKBUVkSB35OKDI7tmkp4QZTiNAJCQCSMetcefPAwlX5vNI2KQiopIENtZdoh3v9wFwLhBrQ2nkaN0vQY6XAKuWnshuPpa04lEjFBREQli81Zto95l0b9tMmdnJpqOIz/mcMBlT0BUEuzaCCseN51IxAgVFZEgdaCqltfXFQJws5bL903xGXDJn+3x8keh+EuzeUQMUFERCVJvfFrIgeo62qbGcn77VNNx5Hi6/Aw6XgauOnsKqK7GdCIRr1JREQlCdfUuXlyVD9gXHwzRAm++68gUUHRTe4/Kir+YTiTiVSoqIkHo/a+L2Vl2iKaxEVzRo7npOHIycWlw6eEpoBV/hqI8o3FEvElFRSTIWJbF84cXeLuhbyuiwkMNJ5JGOftK6Dzq8BTQRE0BSdBQUREJMhu272djYRkRYSHc0K+V6TjSWA4HXPo4xKTA7q/tg2tFgoCKikiQeX7FDwBc2aM5KXGRhtPIKYlNgcsOn6a84nHY+ZnZPCJeoKIiEkS2l1by4TclAIwbqAXe/FLnUfY0kFV/+CygatOJRDxKRUUkiMxduQ3LgsEdUjkrPd50HDldl/wZYlNhz2b4ZJbpNCIepaIiEiTKD9byz/U7ABg/UAu8+bXYZPuUZYBVT8GO9WbziHiQiopIkHhl3XYO1dbTMSOeAe2STceRM9VpJHT5OVguewqotsp0IhGPUFERCQI1dS5eWp0P2Au8ORxa4C0gjHgE4tJh73ewdKbpNCIeoaIiEgQWfVFEibOatPhILu+WaTqOuEtMUxj5lD1e/TQUrjObR8QDVFREApxlWcw5vMDbmP7ZRITp1z6gdBgB3a4FrMNTQIdMJxJxK31iiQS43K2lfLPLSXR4KNfltDQdRzxh+CyIbwalW+DjB02nEXErFRWRADdnpb035Wc9W5AUE2E4jXhEdBMY+Vd7nDsbtueazSPiRioqIgFsy+4KPt68G4cDbtICb4Gt/VDocT1gwYKJUHPQdCIRt1BREQlgLxzemzKkUzqtU2INpxGPG/YQJDSHfT/AkvtNpxFxC48VlZkzZ9K/f39iYmJISko65jYFBQVceumlxMTEkJaWxh133EFdXZ2nIokEldKKav7zmb3A282DtMBbUIhKhMsPTwGtfRbyV5rNI+IGHisqNTU1XH311UyYMOGYj9fX13PppZdSU1PD6tWreemll5g3bx4zZszwVCSRoPLymgKq61x0bZFI7+wmpuOIt7QbAueOsccLJkF1hdk8ImfIY0XlvvvuY+rUqXTp0uWYj3/44Yd88803vPzyy3Tv3p0RI0bwwAMPMHv2bGpqajwVSyQoVNXW8481+YAWeAtKQx+ExCzYnw8f/cl0GpEzYuwYldzcXLp06UJ6enrDfcOGDcPpdPL1118f9/uqq6txOp1H3UTkaAvydrK3oobmSdFcck6G6TjibVEJcPnT9vjT52HbcrN5RM6AsaJSXFx8VEkBGr4uLi4+7vfNmjWLxMTEhltWVpZHc4r4mx8v8Da2fzZhoTpmPii1vQB63WSPF0yC6gNm84icplP6BLvrrrtwOBwnvG3evNlTWQGYPn065eXlDbfCwkKPvp6Iv/nkuz18v7uCuMgwrumjIh/ULr4fklpCWQEs1vF/4p/CTmXj2267jbFjx55wmzZtGnd2QUZGBuvWHX1dipKSkobHjicyMpLIyMhGvYZIMHrh8N6Ua3pnkRAVbjiNGBUZD6Nmw0sjYf1c+4rLbS80nUrklJxSUUlNTSU1NdUtL9yvXz9mzpzJ7t27SUtLA2Dx4sUkJCTQuXNnt7yGSLD5psjJyi17CXHAjQOyTccRX9D6POjza1j3f7BgMkzMtY9hEfETHpu8LigoIC8vj4KCAurr68nLyyMvL4+KCvtUuaFDh9K5c2duuOEGNm7cyAcffMDdd9/NpEmTtMdE5DQdWeBtRJdmtGgSYziN+Iwhf4Im2eDcAR/+0XQakVPisaIyY8YMevTowb333ktFRQU9evSgR48erF+/HoDQ0FAWLVpEaGgo/fr14/rrr+dXv/oV99+v1RRFTkeJs4q3N+4EtMCb/I+IWBj1jD3+7O/w/Udm84icAodlWZbpEGfC6XSSmJhIeXk5CQnanSnB67EPNjN76VZ6Zzfhzd/29+hrVVZCXJw9rqiAWK3O7x/eu8tesTY+054Cik4ynUiCWGP/fuu8RZEAcLCmjpfXFAAwbqD2pshxXDQDmraFA0XwgaaAxD+oqIgEgH9v2EH5oVpaJcdwcef0k3+DBKeIGBj9DOCAvJfhuw9MJxI5KRUVET9X77IaDqK9aUBrQkO0XL6cQMu+0G+SPX77Vji032wekZNQURHxc0s2lZBfepDE6HCu7tXCdBzxBxfeDcntoKLYPm5FxIepqIj4uSPL5f8ypyUxEae0NJIEq/BoGP0cOELgi9dh87umE4kcl4qKiB/bWFjGuvx9hIc6GNs/23Qc8SdZvaH/ZHu8aAoc3Gc0jsjxqKiI+LE5h49NGdk1k/SEKMNpxO8M/gOkdICKEnjvTtNpRI5JRUXET+0sO8S7X+4CYNyg1obTiF8Kj4LRz9pTQF++CZsWmk4k8hMqKiJ+at6qbdS7LPq3TebszETTccRftegJA6bY40VTobLUaByR/6WiIuKHDlTV8vq6QkDL5YsbDL4LUjtB5R5493bTaUSOoqIi4ofe+LSQA9V1tE2N5fz27rmiuQSxsEi44llwhMLX/4Gv3zKdSKSBioqIn6mrd/HiqnwAxg9qQ4gWeBN3yOwBg6bZ43dug4o9ZvOIHKaiIuJn3v+6mJ1lh0iOjeCKHs1Nx5FAct6dkH4OHCyFd6aBf1+zVgKEioqIH7Esi+cPL/B2fd9WRIWHGk4kASUswr4WUEgYbHrbngYSMUxFRcSPbNi+n42FZUSEhXBDv1am40ggatYNBh0+oPad26Fit9k8EvRUVET8yJHl8q/s0ZyUuEjDaSRgDboNMrrAoX32KcuaAhKDVFRE/MT20ko++KYYgHEDtcCbeFBYhL0QXEg4bF4EX/7LdCIJYioqIn7ixVX5WBYM7pDKWenxpuNIoMvoAucfXlb/3dvhQLHZPBK0VFRE/ED5wVr+ud5e4G38QC3wJl4ycKp9zEpVGSycoikgMUJFRcQPvLqugIM19XTMiGdAu2TTcSRYhIbD6OfsKaDv3oMv3jCdSIKQioqIj6upczFvtX0Q7fhBbXA4tMCbeFF6Z7hguj1+705wFpnNI0FHRUXEx73zZRElzmrS4iO5vFum6TgSjPr/DjLPhapyWPg7TQGJV6moiPgwy7J4frm9N2VM/2wiwvQrKwaEhtlnAYVGwvcfQt4rphNJENGnnogPy/2hlG92OYkOD+W6nJam40gwS+sIF/zBHr8/Hcp3mM0jQUNFRcSHHVng7Wc9W5AUE2E4jQS9/pOhRW+odsLbkzUFJF6hoiLio7bsruDjzbtxOOAmLfAmviAk1J4CCouCrR/DZy+ZTiRBQEVFxEe9sNLemzKkUzqtU2INpxE5LOUsuPAee/zBH6GswGweCXgqKiI+qLSimv98Zh8DcPMgLfAmPqbvBMjqCzUVsOAWTQGJR6moiPigl9cUUF3nomuLRHpnNzEdR+RoIaEw+hkIi4Zty2D9XNOJJICpqIj4mKraev6xJh/QAm/iw5LbwpB77fGH98D+fKNxJHCpqIj4mAV5O9lbUUNmYhQjzskwHUfk+Pr8Blr2h9pKewrI5TKdSAKQioqID7Esq+GU5BsHtCY8VL+i4sNCQmD0bAiPgfwVsP4F04kkAOlTUMSHLPtuD9/vriAuMoxr+mSZjiNyck3bwJD77PHiGbDvB7N5JOCoqIj4kCOnJF/TO4uEqHDDaUQaqfd4yB4EtQdh/iRNAYlbqaiI+IhNu5ys+H4vIQ4Y2z/bdByRxgsJgVF/g/BYKFgN6/6f6UQSQDxWVGbOnEn//v2JiYkhKSnpmNs4HI6f3F5//XVPRRLxaUf2pozo0oyspjGG04icoibZMPQBe/zRfVC61WgcCRweKyo1NTVcffXVTJgw4YTbvfjii+zatavhNnr0aE9FEvFZu51VLMjbCcB4LZcv/qrXTdD6fKg7BPMngqvedCIJAGGeeuL77rMPrpo3b94Jt0tKSiIjQ6dgSnD7e+52austerVqQo+WWuBN/JTDYU8BPdMPCtfAmmeh/y2mU4mfM36MyqRJk0hJSaFPnz7MnTsXS0sxS5A5WFPHy2u3AzB+kPamiJ9LagnDZtrjjx+APd+ZzSN+z2N7VBrj/vvv58ILLyQmJoYPP/yQiRMnUlFRwa233nrc76murqa6urrha6fT6Y2oIh7z7892UnawllbJMVzcWXsXJQCcOwa+WWBfYXn+BBj3ob3svshpOKU9KnfdddcxD4D98W3z5s2Nfr577rmHAQMG0KNHD37/+99z55138thjj53we2bNmkViYmLDLStLa02I/3K5LOYePoj2pgGtCQ3RcvkSABwOuPxpiEyAnesh92+mE4kfO6Wictttt7Fp06YT3tq0Of0rvebk5LBjx46j9pj8r+nTp1NeXt5wKywsPO3XEzFtyebdbNtbSUJUGD/r2cJ0HBH3SWwBwx6yxx/PhN2N/59YkR87pamf1NRUUlNTPZWFvLw8mjRpQmRk5HG3iYyMPOHjIv7k+RX2Kp7X9W1FbKTRmVgR9+txvT0FtGXx4SmgxRCqf+dyajz2L6agoIB9+/ZRUFBAfX09eXl5ALRr1464uDgWLlxISUkJffv2JSoqisWLF/PQQw9x++23eyqSiE/5ckc567btIyzEwZh+2abjiLifwwGX/xVm94Wiz2D1UzDoNtOpxM94rKjMmDGDl156qeHrHj16ALB06VIGDx5MeHg4s2fPZurUqViWRbt27Xj88ce5+eabPRVJxKcc2ZsyslsmGYlRhtOIeEhCJox4BOb/Fj55GNqPgPTOplOJH3FYfn4+sNPpJDExkfLychISEkzHEWmUorJDDHp0KfUui3duHcjZmYmmI52SykqIi7PHFRUQG2s2j/g4y4LXroXv3oNm3WH8RxCqa1kFu8b+/Ta+jopIMJq3Op96l0X/tsl+V1JETpnDASOfhKgk2JUHK580m0f8ioqKiJcdqKrltbUFgBZ4kyASnwGXHF5+YtkjUPyl2TziN1RURLzsn+t3cKC6jrapsQxun2Y6joj3dLkaOl4Grlr7LKD6WtOJxA+oqIh4UV29q2GBt3ED2xCiBd4kmDgccNkTEN3U3qOy4i+mE4kfUFER8aIPvi5hZ9khmsZGcOW5zU3HEfG+uDS49M/2ePljsGuj2Tzi81RURLzEsqyGU5Kv79uKqHBd+0SC1NlXQudR4KqDtyZAXY3pROLDVFREvOSzgv3kFZYRERbCDX1bmY4jYo7DAZf8BWKSYffXsPxR04nEh6moiHjJ88vtY1Ou6N6c1HhdBkKCXFwqXHr4GJUVj8POz8zmEZ+loiLiBdtLK/ngm2IAxumUZBHb2VfY00BWPcyfCHXHvyCtBC8VFREveHFVPpYF57dPpX16vOk4Ir7jkj9DbCrs2QSfzDKdRnyQioqIh5UfrOWf6wsBuHlQG8NpRHxMbDJc9qQ9XvUU7NhgNI74HhUVEQ97dV0BB2vq6ZgRz4B2yabjiPieTpfZi8FZLvvihbVVphOJD1FREfGgmjoX81YfWeCtNQ6HFngTOaYRj0JcOuz9Dj55yHQa8SEqKiIe9M6XRZQ4q0mNj+Ty7pmm44j4rpim/50CWv00FK4zGkd8h4qKiIdYltVwSvLY/tlEhmmBN5ET6ngJdP3F4SmgCVB7yHQi8QEqKiIekvtDKd/schIVHsIv+7Q0HUfEP4x4GOIyoHQLfPyg6TTiA1RURDxkzgp7b8rVPbNoEhthOI2In4huApf/1R7nzoaCNWbziHEqKiIesGV3BR9v3o3DATcN1AJvIqek/TDofh1g2VNANQdNJxKDVFREPOCFlfbelCGd0mmdEms4jYgfGvYQxGfCvh9gyX2m04hBKioiblZaUc1/PtsBwHjtTRE5PdFJcPnT9njtc5C/0mgcMSfMdIAzZVkWAE6n03ASEdsLn2zlUGUFZ2cm0DE5LCD/bVZW/nfsdEJ9vbksEsDS+0DHX8DG1+CN38JNH0JknOlU4iZHPhuP/B0/Hod1si183I4dO8jKyjIdQ0RERE5DYWEhLVq0OO7jfl9UXC4XRUVFxMfH+8yqn06nk6ysLAoLC0lISDAdx2v0vvW+g4Het953MPDG+7YsiwMHDpCZmUlIyPGPRPH7qZ+QkJATNjGTEhISguof9hF638FF7zu46H0HF0+/78TExJNuo4NpRURExGepqIiIiIjPUlHxgMjISO69914iIyNNR/EqvW+972Cg9633HQx86X37/cG0IiIiEri0R0VERER8loqKiIiI+CwVFREREfFZKioiIiLis1RU3GzmzJn079+fmJgYkpKSjrmNw+H4ye3111/3blA3a8z7Ligo4NJLLyUmJoa0tDTuuOMO6urqvBvUw7Kzs3/ys3344YdNx/KI2bNnk52dTVRUFDk5Oaxbt850JI/605/+9JOfbceOHU3Hcrvly5czcuRIMjMzcTgczJ8//6jHLctixowZNGvWjOjoaIYMGcL3339vJqwbnex9jx079ic//+HDh5sJ6yazZs2id+/exMfHk5aWxujRo/n222+P2qaqqopJkyaRnJxMXFwcV111FSUlJV7NqaLiZjU1NVx99dVMmDDhhNu9+OKL7Nq1q+E2evRo7wT0kJO97/r6ei699FJqampYvXo1L730EvPmzWPGjBleTup5999//1E/28mTJ5uO5HZvvPEG06ZN49577+Wzzz6jW7duDBs2jN27d5uO5lFnn332UT/blSsD74q+lZWVdOvWjdmzZx/z8UcffZS//vWvPPfcc6xdu5bY2FiGDRtGVVWVl5O618neN8Dw4cOP+vm/9tprXkzofsuWLWPSpEmsWbOGxYsXU1tby9ChQ6n80VVHp06dysKFC3nzzTdZtmwZRUVFXHnlld4NaolHvPjii1ZiYuIxHwOst956y6t5vOV47/vdd9+1QkJCrOLi4ob7nn32WSshIcGqrq72YkLPatWqlfXEE0+YjuFxffr0sSZNmtTwdX19vZWZmWnNmjXLYCrPuvfee61u3bqZjuFV//tZ5XK5rIyMDOuxxx5ruK+srMyKjIy0XnvtNQMJPeNYn9FjxoyxRo0aZSSPt+zevdsCrGXLllmWZf9sw8PDrTfffLNhm02bNlmAlZub67Vc2qNiyKRJk0hJSaFPnz7MnTv3pJe59ne5ubl06dKF9PT0hvuGDRuG0+nk66+/NpjM/R5++GGSk5Pp0aMHjz32WMBNb9XU1LBhwwaGDBnScF9ISAhDhgwhNzfXYDLP+/7778nMzKRNmzZcd911FBQUmI7kVdu2baO4uPion31iYiI5OTkB/7MH+OSTT0hLS6NDhw5MmDCB0tJS05Hcqry8HICmTZsCsGHDBmpra4/6eXfs2JGWLVt69eft9xcl9Ef3338/F154ITExMXz44YdMnDiRiooKbr31VtPRPKa4uPiokgI0fF1cXGwikkfceuutnHvuuTRt2pTVq1czffp0du3axeOPP246mtvs3buX+vr6Y/48N2/ebCiV5+Xk5DBv3jw6dOjArl27uO+++xg0aBBfffUV8fHxpuN5xZHf1WP97APp9/hYhg8fzpVXXknr1q3ZunUrf/jDHxgxYgS5ubmEhoaajnfGXC4XU6ZMYcCAAZxzzjmA/fOOiIj4yXGH3v55q6g0wl133cUjjzxywm02bdrU6APr7rnnnoZxjx49qKys5LHHHvO5ouLu9+2vTuW/w7Rp0xru69q1KxEREfzmN79h1qxZPrEUtZy+ESNGNIy7du1KTk4OrVq14p///Cfjxo0zmEy84Re/+EXDuEuXLnTt2pW2bdvyySefcNFFFxlM5h6TJk3iq6++8snjrlRUGuG2225j7NixJ9ymTZs2p/38OTk5PPDAA1RXV/vUHzN3vu+MjIyfnBVy5MjxjIyM08rnLWfy3yEnJ4e6ujry8/Pp0KGDB9J5X0pKCqGhoT858r+kpMTnf5bulJSURPv27dmyZYvpKF5z5OdbUlJCs2bNGu4vKSmhe/fuhlKZ0aZNG1JSUtiyZYvfF5VbbrmFRYsWsXz5clq0aNFwf0ZGBjU1NZSVlR21V8Xbv+sqKo2QmppKamqqx54/Ly+PJk2a+FRJAfe+7379+jFz5kx2795NWloaAIsXLyYhIYHOnTu75TU85Uz+O+Tl5RESEtLwngNBREQEPXv2ZMmSJQ1nq7lcLpYsWcItt9xiNpwXVVRUsHXrVm644QbTUbymdevWZGRksGTJkoZi4nQ6Wbt27UnPdAw0O3bsoLS09KjC5m8sy2Ly5Mm89dZbfPLJJ7Ru3fqox3v27El4eDhLlizhqquuAuDbb7+loKCAfv36eS2nioqbFRQUsG/fPgoKCqivrycvLw+Adu3aERcXx8KFCykpKaFv375ERUWxePFiHnroIW6//Xazwc/Qyd730KFD6dy5MzfccAOPPvooxcXF3H333UyaNMnnCtrpys3NZe3atVxwwQXEx8eTm5vL1KlTuf7662nSpInpeG41bdo0xowZQ69evejTpw9PPvkklZWV3Hjjjaajecztt9/OyJEjadWqFUVFRdx7772EhoZy7bXXmo7mVhUVFUftJdq2bRt5eXk0bdqUli1bMmXKFB588EHOOussWrduzT333ENmZqbfL7FwovfdtGlT7rvvPq666ioyMjLYunUrd955J+3atWPYsGEGU5+ZSZMm8eqrr7JgwQLi4+MbjjtJTEwkOjqaxMRExo0bx7Rp02jatCkJCQlMnjyZfv360bdvX+8F9dr5RUFizJgxFvCT29KlSy3Lsqz33nvP6t69uxUXF2fFxsZa3bp1s5577jmrvr7ebPAzdLL3bVmWlZ+fb40YMcKKjo62UlJSrNtuu82qra01F9rNNmzYYOXk5FiJiYlWVFSU1alTJ+uhhx6yqqqqTEfziKefftpq2bKlFRERYfXp08das2aN6Ugedc0111jNmjWzIiIirObNm1vXXHONtWXLFtOx3G7p0qXH/F0eM2aMZVn2Kcr33HOPlZ6ebkVGRloXXXSR9e2335oN7QYnet8HDx60hg4daqWmplrh4eFWq1atrJtvvvmo5Rb80bHeL2C9+OKLDdscOnTImjhxotWkSRMrJibGuuKKK6xdu3Z5NafjcFgRERERn6N1VERERMRnqaiIiIiIz1JREREREZ+loiIiIiI+S0VFREREfJaKioiIiPgsFRURERHxWSoqIiIi4rNUVERERMRnqaiIiIiIz1JREREREZ+loiIiIiI+6/8DMHiVBzIzNPcAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " \n", + "Solution: ( 2.2 , 2.6 )\n" + ] + } + ], + "source": [ + "from sympy import *\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "\n", + "print(\"First equation: y = mx + b\")\n", + "mb_1 = input(\"Enter m and b, separated by a comma: \")\n", + "mb_in1 = mb_1.split(\",\")\n", + "m1 = float(mb_in1[0])\n", + "b1 = float(mb_in1[1])\n", + "\n", + "print(\"Second equation: y = mx + b\")\n", + "mb_2 = input(\"Enter m and b, separated by a comma: \")\n", + "mb_in2 = mb_2.split(\",\")\n", + "m2 = float(mb_in2[0])\n", + "b2 = float(mb_in2[1])\n", + "\n", + "# Solve the system of equations\n", + "x,y = symbols('x y')\n", + "first = m1*x + b1 - y\n", + "second = m2*x + b2 - y\n", + "solution = linsolve([first, second], (x, y))\n", + "x_solution = round(float(solution.args[0][0]),3)\n", + "y_solution = round(float(solution.args[0][1]),3)\n", + "\n", + "# Make sure the window includes the solution\n", + "xmin = int(x_solution) - 20\n", + "xmax = int(x_solution) + 20\n", + "ymin = int(y_solution) - 20\n", + "ymax = int(y_solution) + 20\n", + "points = 2*(xmax-xmin)\n", + "\n", + "# Define the x values once for the graph\n", + "graph_x = np.linspace(xmin,xmax,points)\n", + "\n", + "# Define the y values for the graph\n", + "y1 = m1*graph_x + b1\n", + "y2 = m2*graph_x + b2\n", + "\n", + "fig, ax = plt.subplots()\n", + "plt.axis([xmin,xmax,ymin,ymax]) # window size\n", + "plt.plot([xmin,xmax],[0,0],'b') # blue x axis\n", + "plt.plot([0,0],[ymin,ymax], 'b') # blue y axis\n", + "\n", + "# line 1\n", + "plt.plot(graph_x, y1)\n", + "\n", + "# line 2\n", + "plt.plot(graph_x, y2)\n", + "\n", + "# point\n", + "plt.plot([x_solution],[y_solution],'ro')\n", + "\n", + "plt.show()\n", + "print(\" \")\n", + "print(\"Solution: (\", x_solution, \",\", y_solution, \")\")\n", + "\n", + "\n", + "# Run this code and test it with different equations\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "BhKPZQJZF9w0" + }, + "source": [ + "# Step 16 - Quadratic Functions" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "BYmD2FYHF9w1" + }, + "source": [ + "Any function that involves x2 is a \"quadratic\" function because \"x squared\" could be the area of a square. The graph is a parabola. The formula is y = ax2 + bx + c, where `b` and `c` can be zero but `a` has to be a number. Here is a graph of the simplest parabola." + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": { + "id": "sfQl_A1CF9w1" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkcAAAGiCAYAAADtImJbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA/aklEQVR4nO3deXhU9d3//9dkJyEL2RMIgQASkFWUNEEFChURW1Fuq9QWUMTqDVaFWkkvFcH2Di4t1qUuvxuh/aJ3BW+KSxXLInhDwg6yCNFEIASSsCZDAkyWOb8/wowTSAKBJGdm8nxc17muzJnPmXkfTjLz4nw+53MshmEYAgAAgCTJx+wCAAAA3AnhCAAAwAXhCAAAwAXhCAAAwAXhCAAAwAXhCAAAwAXhCAAAwAXhCAAAwAXhCAAAwAXhCAAAwEWLhqOvvvpKP/3pT5WYmCiLxaJly5bVed4wDD377LNKSEhQu3btNHLkSH333XeXfN033nhDXbp0UVBQkNLS0rRp06YW2gMAANDWtGg4qqioUP/+/fXGG2/U+/yLL76oV199VW+99ZY2btyokJAQjRo1SufOnWvwNT/44ANNnz5ds2bN0rZt29S/f3+NGjVKR48ebandAAAAbYiltW48a7FY9M9//lNjx46VVHvWKDExUTNmzNBvf/tbSVJZWZni4uK0cOFC3XvvvfW+Tlpamm644Qa9/vrrkiS73a6kpCQ9+uijmjlzZmvsCgAA8GJ+Zr3x/v37VVxcrJEjRzrXhYeHKy0tTTk5OfWGo8rKSm3dulWZmZnOdT4+Pho5cqRycnIafC+bzSabzeZ8bLfbdfLkSUVFRclisTTTHgEAgJZkGIZOnz6txMRE+fi0XOeXaeGouLhYkhQXF1dnfVxcnPO5Cx0/flw1NTX1brNv374G3ysrK0uzZ8++yooBAIA7OHTokDp16tRir29aOGpNmZmZmj59uvNxWVmZOnfurEOHDiksLMzEyoCGTZi/UdsKSvXHsX10x8COZpfjESoqpMTE2p+PHJFCQsytx1PkFls17s0chQT6KnvmCPn6cEYd7slqtSopKUmhoaEt+j6mhaP4+HhJUklJiRISEpzrS0pKNGDAgHq3iY6Olq+vr0pKSuqsLykpcb5efQIDAxUYGHjR+rCwMMIR3Nbgnp20o6RSuaeq+T29TL6+P/wcFkY4ulzf7S2VT2CwrusepQ4R4WaXA1xSSw+JMW2eo65duyo+Pl6rVq1yrrNardq4caPS09Pr3SYgIECDBg2qs43dbteqVasa3AbwVAOTIiRJ2wtKTa0D3m97wSlJ0sCkDiZXAriHFj1zVF5erry8POfj/fv3a8eOHYqMjFTnzp31+OOP6w9/+IN69Oihrl276plnnlFiYqLzijZJGjFihO68805NmzZNkjR9+nRNnDhR119/vQYPHqxXXnlFFRUVuv/++1tyV4BWN7Bz7RfVvuLTOlNZreCANtELDhNsP1QqSRrYOcLUOgB30aKftlu2bNHw4cOdjx3jfiZOnKiFCxfqd7/7nSoqKvTQQw+ptLRUN954o5YvX66goCDnNvn5+Tp+/Ljz8T333KNjx47p2WefVXFxsQYMGKDly5dfNEgb8HTx4UGKDwtSsfWcdhWWKS0lyuyS4IXKzlYp72i5JGnA+bOVQFvXavMcuROr1arw8HCVlZUxlgNu7ZFFW/X57mJljk7Vr4d2M7sct1dRIbVvX/tzeTljji7H/313TL+av0mdI4P11e+GX3oDwESt9f3NvdUAN+bo5mDcEVqK43eLLjXgB4QjwI05xh1tKzilNniSF63gh8HYEeYWArgRwhHgxvokhsvPx6Kjp20qKmv4noPAlTAMw2UwNleqAQ6EI8CNtQvwVa+E2n51utbQ3A6cOKPSM1UK8PNx/p4BIBwBbm+Ac76jU+YWAq/j+J3qkximAD++DgAH/hoAN+cYKLvjfPcH0Fx20KUG1ItwBLg5xxfXrsNlqqy2m1wNvAlXqgH1IxwBbq5LVLAigv1lq7ZrX7HV7HLgJc5W1mhvUe3vE2eOgLoIR4Cbs1gs3GcNzW73kTJV2w3FhgYqMTzo0hsAbQjhCPAAjv/ZMygbzcU5v1HniBa/wzngaQhHgAdwXrHGoGw0E8dZyAFJdKkBFyIcAR6g//lwdPDEGZ2sqDS3GHiFH65UizC1DsAdEY4ADxDezl/dY2vvqLrjEF1ruDpFZWdVVHZOPhapX6dws8sB3A7hCPAQDMpGc9lx/ncoNT5MwQF+5hYDuCHCEeAhfhiUXWpuIfB42+lSAxpFOAI8hGNQ9o5DpaqxG+YWA4/muFLN8TsFoC7CEeAhrolrr+AAX5XbqpV/rNzscuChqmrs2llYJonJH4GGEI4AD+Hn6+McPLuDrjVcodzi07JV2xUW5KeU6BCzywHcEuEI8CDOcUdcsYYr5OxS69xBPj5M/gjUh3AEeBCuWMPVct5slvFGQIMIR4AHGXD+6qLcktMqt1WbWww8EleqAZdGOAI8SGxokDpGtJNhSDu5lQia6FRFpfYfr5DElWpAYwhHgIdx/I+f+6yhqXYUlkqSUqJDFBEcYG4xgBsjHAEehskgcaWcN5ulSw1oFOEI8DCOM0c7Dp2SYTAZJC6f40o15jcCGkc4AjzMtYlhCvD10fHyShWeOmt2OfAQdruhHY7B2Iw3AhpFOAI8TKCfr3onhkmSthUw3xEuz/fHy3X6XLWC/H2UGh9qdjmAWyMcAR5oAPMdoYm2nf9d6dcxQn6+fPQDjeEvBPBAP4w7KjW1DniOHcxvBFw2whHgga47P6D2myNW2aprTK4GnsA5MzbhCLgkwhHggTp1aKfo9gGqdLnDOtAQ67kq5RZbJUkDkrhSDbgUwhHggSwWi9JSoiRJ6/OOm1wN3N2G/BOyG1LX6BDFhweZXQ7g9ghHgIca0i1akpSdd8LkSuDusvNrf0cyukWZXAngGQhHgIca0r32i277oVM6U8lNaNEwx9nFId2jTa4E8AyEI8BDdY4MVseIdqqqMbRp/0mzy4GbOmo9p++OlstikdJTOHMEXA7Tw1GXLl1ksVguWqZOnVpv+4ULF17UNiiIPnS0PRaLxXn2yNFtAlzI8bvROyFMHUK42SxwOfzMLmDz5s2qqfnhUuTdu3frJz/5ie6+++4GtwkLC1Nubq7zscViadEaAXc1pHu0Fm8pZFA2GpSdT5ca0FSmh6OYmJg6j+fOnatu3bpp6NChDW5jsVgUHx/f0qUBbi/9/ADbb4qsOlVRyZkB1GEYhtbnMRgbaCrTu9VcVVZWatGiRXrggQcaPRtUXl6u5ORkJSUl6Y477tCePXsafV2bzSar1VpnAbxBbGiQrolrL8OQcr6naw11FZw8o8OlZ+Xva9HgrpFmlwN4DLcKR8uWLVNpaakmTZrUYJuePXvq3Xff1UcffaRFixbJbrcrIyNDhYWFDW6TlZWl8PBw55KUlNQC1QPmyDh/ST9da7iQ46zRwKQOCg4wvaMA8BhuFY7mz5+v0aNHKzExscE26enpmjBhggYMGKChQ4dq6dKliomJ0dtvv93gNpmZmSorK3Muhw4daonyAVM4xpIwKBsXWn9+vFFGd7rUgKZwm/9KHDx4UCtXrtTSpUubtJ2/v78GDhyovLy8BtsEBgYqMDDwaksE3FJaSqR8LNL+4xU6UnpWiRHtzC4JbsBuN5RzPjAzGBtoGrc5c7RgwQLFxsZqzJgxTdqupqZGu3btUkJCQgtVBri3sCB/9esUIYmuNfxgX/FpnayoVHCAr/qf//0AcHncIhzZ7XYtWLBAEydOlJ9f3ZNZEyZMUGZmpvPxnDlz9O9//1vff/+9tm3bpl/+8pc6ePCgHnzwwdYuG3AbzHeECzku4R/cNVIBfm7xUQ94DLf4i1m5cqUKCgr0wAMPXPRcQUGBioqKnI9PnTqlKVOmqFevXrrttttktVqVnZ2t3r17t2bJgFsZ4jIo2zAMk6uBO3DeMqQbXWpAU7nFmKNbbrmlwQ/0NWvW1Hk8b948zZs3rxWqAjzHdckdFOjno6Onbco/Vq7usaFmlwQTVdXYnbeUYTA20HRuceYIwNUJ8vfV9V06SPrh8m20XV8fKlVFZY0iQwLUKz7M7HIAj0M4ArwE8x3BwRGQ01Oi5OPD7ZWApiIcAV7Ccbn2hu9PqMbOuKO2jPmNgKtDOAK8RN+O4QoN8pP1XLV2Hy4zuxyY5ExltbYXnJLEYGzgShGOAC/h62PRj1JqzxQ4zhyg7dl84JSqagx1jGin5Khgs8sBPBLhCPAiQ87feT2bQdltVvb5MWcZ3aIavYE3gIYRjgAv4hh3tPnASZ2rqjG5GpjBcdaQW4YAV45wBHiR7rHtFRsaKFu1XdvOjztB21F6plJ7jlgl1Z45AnBlCEeAF7FYLM4vRbrW2p6c/BMyDKlHbHvFhgWZXQ7gsQhHgJfJON+dwqDstocuNaB5EI4AL+P4YtxZWKbT56pMrgatyXG2kC414OoQjgAv0zGinbpEBavGbmjj9yfNLgetpKjsrL4/XiEfi5SWQjgCrgbhCPBCdK21PY5bhvTtFKHwdv4mVwN4NsIR4IUcMyMzKLvtcMxvNIQuNeCqEY4AL5R+/gsyt+S0jp22mVwNWpphGAzGBpoR4QjwQpEhAeqdECZJyqZrzevlH6tQidWmAD8fDUruYHY5gMcjHAFeakh35jtqKxwB+PrkDgry9zW5GsDzEY4AL8Wg7LZjfR5dakBzIhwBXmpwl0j5+VhUeOqsCk6cMbsctJAau6GcfOY3ApoT4QjwUiGBfhrYOUISZ4+82Z4jZbKeq1ZooJ/6dgw3uxzAKxCOAC+Wcf6Sfke3C7yPY36jtJQo+fnykQ40B/6SAC/mGIOSk39CdrthcjVoCdnOS/jpUgOaC+EI8GIDkiLUzt9XJyoqlVty2uxy0Mxs1TXafKD2FjEMxgaaD+EI8GIBfj4a3DVSEl1r3mjbwVKdq7IrJjRQPWLbm10O4DUIR4CXc853lM98R97G0aWW0S1KFovF5GoA70E4ArycY1D2xu9PqKrGbnI1aE7O+Y260aUGNCfCEeDleieEqUOwvyoqa7SzsNTsctBMTp+r0teFZZKkDAZjA82KcAR4OR8fi/NGtOu5lYjX2LT/pGrshpKjgtWpQ7DZ5QBehXAEtAHpzHfkdRxBl1mxgeZHOALagCHnv0C3F5TqbGWNydWgOfwwGJvxRkBzIxwBbUDX6BAlhAepssbunBcHnut4uU37imvnreLMEdD8CEdAG2CxWH64lQj3WfN4jmkZUuNDFdU+0ORqAO9DOALaCMd8R4w78nzZjkv4mRUbaBGEI6CNuLFHtCwWafdhq46UnjW7HFyhGruhlXuPSpJu6kE4AloC4QhoI2JDg3R9cgdJ0vLdxSZXgyu15cBJHS+3KSzIj8HYQAsxPRw999xzslgsdZbU1NRGt1myZIlSU1MVFBSkvn376rPPPmulagHPNrpPgiTCkSf7/Pyx+0nveAX4mf4RDnglt/jLuvbaa1VUVORc1q1b12Db7OxsjR8/XpMnT9b27ds1duxYjR07Vrt3727FigHPdGufeEnS5oMnddR6zuRq0FR2u+EMtqPPH0sAzc8twpGfn5/i4+OdS3R0w6eK//KXv+jWW2/Vk08+qV69eun555/Xddddp9dff70VKwY8U2JEOw1IipBhSF/s4eyRp9l+qFTF1nNqH+inGxlvBLQYtwhH3333nRITE5WSkqL77rtPBQUFDbbNycnRyJEj66wbNWqUcnJyGtzGZrPJarXWWYC26ra+tWccPqdrzeMs310kSRrRK1ZB/r4mVwN4L9PDUVpamhYuXKjly5frzTff1P79+3XTTTfp9OnT9bYvLi5WXFxcnXVxcXEqLm74gz4rK0vh4eHOJSkpqVn3AfAkjnFHG74/oRPlNpOrweUyDEOf7XJ0qSWYXA3g3UwPR6NHj9bdd9+tfv36adSoUfrss89UWlqqxYsXN9t7ZGZmqqyszLkcOnSo2V4b8DRJkcHq0zFMdkP69zclZpeDy7TrcJkOl55VO39fDb0mxuxyAK9meji6UEREhK655hrl5eXV+3x8fLxKSup+oJeUlCg+vuHBiYGBgQoLC6uzAG2Z48zDZ7uKTK4El8tx1ujHqbFqF0CXGtCS3C4clZeXKz8/XwkJ9Z82Tk9P16pVq+qsW7FihdLT01ujPMArOK50ysk/odIzlSZXg0sxDMM53mh0X65SA1qa6eHot7/9rdauXasDBw4oOztbd955p3x9fTV+/HhJ0oQJE5SZmels/9hjj2n58uX605/+pH379um5557Tli1bNG3aNLN2AfA4KTHtlRofqmq7oRV0rbm9vUWndeDEGQX6+Wh4z1izywG8nunhqLCwUOPHj1fPnj3185//XFFRUdqwYYNiYmr71AsKClRU9MOp/4yMDL3//vt655131L9/f3344YdatmyZ+vTpY9YuAB7J0bXGVWvu7/PzZ42GXhOjkEA/k6sBvJ/FMAzD7CJam9VqVXh4uMrKyhh/hDbru5LT+sm8r+Tva9HWZ36isCB/s0u6ahUVUvv2tT+Xl0shIebW01xG/GmN8o9V6JV7BmjswI5mlwOYprW+v00/cwTAHD3iQtU9tr2qagytPn8jU7if70pOK/9YhQJ8ffTjXnSpAa2BcAS0YbedH5jNVWvuy3GV2k09or3i7B7gCQhHQBt26/lxR2u/PaYKW7XJ1aA+jvFGt3IvNaDVEI6ANqxXQqi6RAXLVm3Xl7l0rbmb74+Va1/xafn5WPST3nGX3gBAsyAcAW2YxWLR6L7nr1rbxVVr7sZxJWFG92hFBAeYXA3QdhCOgDbOMSHk6n1HdbayxuRq4MrRpTaaLjWgVRGOgDaub8dwdYxop7NVNVr7LV1r7qLgxBntPmyVj0W6hS41oFURjoA2zmKx6Lbzt6RgQkj3sXxP7VmjH6VEKap9oMnVAG0L4QiAc9zRqr1Hda6KrjV34LiE33FsALQewhEADegUofiwIJXbqrXuu+Nml9PmHS49qx2HSmWxSKOupUsNaG2EIwDy8bE459H5bDcTQppt+fnuzRuSIxUbGmRyNUDbQzgCIEm67Xz3zcpvSlRZbTe5mrZtueMqtb5cpQaYgXAEQJI0KLmDYkIDZT1Xrex8utbMUmI9py0HT0liVmzALIQjAJIkXx+Lc3wLE0Ka54s9xTIMaWDnCCWEtzO7HKBNIhwBcLrt/L3W/v1Nsapr6FozgyOYOo4FgNZHOALgNLhrpCJDAnTqTJU27j9pdjltzvFymzbuPyGJLjXATIQjAE5+vj7OrrXPdnHVWmv7954S2Q2pX6dwJUUGm10O0GYRjgDUcev57pwv9hSrxm6YXE3b4riXGmeNAHMRjgDUkdEtSuHt/HW8vFJbDtC11lpOVVQqO7+2S200440AUxGOANTh7+ujn5y/0Sn3Wms9K/aWqMZuqFdCmLpGh5hdDtCmEY4AXOSHG9EWyU7XWqv4/PwYr9voUgNMRzgCcJEh3aMVGuinEqtN2w+dMrscr1d2tkrr8mon3mRWbMB8hCMAFwn089WIXrGSmBCyNazeV6KqGkM9Yture2yo2eUAbR7hCEC9Rp+/19rnu4tlGHSttaTPzgdQx785AHMRjgDUa+g1MQoO8NXh0rPaWVhmdjleq9xWrbXfHpP0w1gvAOYiHAGoV5C/r4an1nat/YsJIVvMqr0lqqy2q2t0iHrG0aUGuAPCEYAG3dE/UZK0eMshna2sMbka7/T3nIOSpJ/1T5TFYjG5GgAS4QhAI0b0ilNSZDuVnqnSP7cfNrscr/P1oVJtPXhK/r4W3fejzmaXA+A8whGABvn6WDQxvYskacH6/QzMbmYL1u+XJP20X6JiQ4NMrgaAA+EIQKN+fkOSQgJ89d3RcudcPLh6JdZz+nRn7Viu+4d0NbkaAK4IRwAaFRbkr7uvT5Ikvbtuv8nVeI//l3NQ1XZDg7tEqm+ncLPLAeCCcATgkiZldJHFIn2Ze0zfHys3uxyPd66qRu9vKpAk3T+ki7nFALgI4QjAJXWJDtGI85f1L8w+YG4xXuCjHYd1sqJSHSPaOW/yC8B9EI4AXJYHzo+L+XBrocrOVplcjecyDEPvrjsgqfaMnJ8vH8OAu+GvEsBlSe8WpZ5xoTpTWaPFmw+ZXY7Hysk/odyS0woO8NXPb0gyuxwA9SAcAbgsFotFD9zYRVJt11p1jd3cgjzUu+cv3/+PQZ0U3s7f5GoA1Mf0cJSVlaUbbrhBoaGhio2N1dixY5Wbm9voNgsXLpTFYqmzBAUxRwjQ0u4Y0FGRIQE6XHpWK74pMbscj3PgeIVW7TsqqbZLDYB7Mj0crV27VlOnTtWGDRu0YsUKVVVV6ZZbblFFRUWj24WFhamoqMi5HDx4sJUqBtquIH9f/WJw7UzOC9YfMLcYD7Qw+4AMQxreM0YpMe3NLgdAA/zMLmD58uV1Hi9cuFCxsbHaunWrbr755ga3s1gsio+/vDtY22w22Ww252Or1XplxQLQr9KT9dbafG06cFK7CsuYo+cyWc9VacmW2rFaD9zIpI+AOzP9zNGFysrKJEmRkZGNtisvL1dycrKSkpJ0xx13aM+ePQ22zcrKUnh4uHNJSmIQJHCl4sKCdHu/BEk/3P4Cl7Z48yFVVNaoR2x73dg92uxyADTCrcKR3W7X448/riFDhqhPnz4NtuvZs6feffddffTRR1q0aJHsdrsyMjJUWFhYb/vMzEyVlZU5l0OHuNIGuBqO2118svOIjp4+Z3I17q/GbuhvOQck1f7bWSwWcwsC0CjTu9VcTZ06Vbt379a6desabZeenq709HTn44yMDPXq1Utvv/22nn/++YvaBwYGKjAwsNnrBdqq/kkRGpTcQVsPntKiDQWa/pNrzC7Jra3cW6JDJ88qIthfdw7saHY5AC7Bbc4cTZs2TZ9++qm+/PJLderUqUnb+vv7a+DAgcrLy2uh6gBcyDEp5HsbDupcVY3J1bg3xz3pfjG4s9oF+JpcDYBLMT0cGYahadOm6Z///KdWr16trl2bPlCxpqZGu3btUkJCQgtUCKA+o66NU2J4kE5UVOqTr4+YXY7b2nOkTBv3n5Svj0W/Sk82uxwAl8H0cDR16lQtWrRI77//vkJDQ1VcXKzi4mKdPXvW2WbChAnKzMx0Pp4zZ47+/e9/6/vvv9e2bdv0y1/+UgcPHtSDDz5oxi4AbZKfr48mnJ+r5931B2QYhrkFuSnHlAe39U1QQng7c4sBcFlMD0dvvvmmysrKNGzYMCUkJDiXDz74wNmmoKBARUVFzsenTp3SlClT1KtXL912222yWq3Kzs5W7969zdgFoM2694YktfP31d4iqzZ8f9LsctzOsdM2fbyj9qzaA0O6mFsMgMtm+oDsy/nf5po1a+o8njdvnubNm9dCFQG4XBHBAbrruo56b2OB3l2/X+ndoswuya28t/GgKmvsGpAUoYGdO5hdDoDLZPqZIwCe7f7zZ0RW7i1RwYkz5hbjRmzVNVq0oUASkz4CnoZwBOCqdI8N1dBrYmQYtbfHQK1Pvy7S8XKb4sOCNLrP5c3mD8A9EI4AXDXH2aPFWw7p9Lkqc4txA4Zh6N3zs4f/Kj1Z/r581AKehL9YAFft5h4x6hYTonJbtT7cWv9M9W3J5gOntOeIVYF+Ps4b9QLwHIQjAFfNx8fivKXIwuwDqrG37cv6HZM+3nVdJ3UICTC5GgBNRTgC0Czuuq6jwoL8dPDEGa3ed9Tsckxz6OQZ/fubYkk/dDcC8CyEIwDNIjjAT+PTaruQFpwfb9MW/T3ngOyGdFOPaF0TF2p2OQCuAOEIQLOZkN5Fvj4WZeef0O7DZWaX0+rKzlTpH5sPSeKsEeDJCEcAmk3HiHa6vV/tPQ4zl+5SdY3d5Ipa1x/+9Y1On6tWj9j2GnZNrNnlALhChCMAzer3t/VSWJCfdh0u03+vazvda199e0xLthbKYpGy7uorHx+L2SUBuEKEIwDNKi4sSE/fXnufwz+v+Fb5x8pNrqjllduqlbl0lyRpYnoXXd8l0uSKAFwNwhGAZnf3oE66qUe0Kqvtmvm/O2X38kv7X1y+T4dLz6pTh3Z6clRPs8sBcJUIRwCancViUdZdfRUS4KvNB07p/204aHZJLWbj9yf095za/Zt7Vz+FBJp+P28AV4lwBKBFdOoQrJmjUyVJLyzfp0Mnve+mtGcra/TU/+6UJN17Q5Ju7BFtckUAmgPhCECLuS8tWYO7RupMZY0yl+6SYXhX99q8ld/qwIkzigsL1O/H9DK7HADNhHAEoMX4+Fj0wrh+CvTz0bq841q85ZDZJTWbHYdK9d//970k6b/u7KuwIH+TKwLQXAhHAFpU1+gQzbjlGknSH/61V8Vl50yu6OrZqmv0uw+/lt2Q7hiQqBG94swuCUAzIhwBaHGTb0xR/6QInT5XraeXeX732htf5uvbknJFhQRo1k+vNbscAM2McASgxfn6WPTSf/STv69FK/ce1cdfHzG7pCv2zRGr/vplniRp9h3XKjIkwOSKADQ3whGAVnFNXKge/XEPSdLsT77RiXKbyRU1XXWNXU/9705V2w2NujZOY/ommF0SgBZAOALQah4Z1k2p8aE6WVGpWR/vMbucJvv//m+/dh0uU1iQn56/o48sFm4RAngjwhGAVuPv66OX/qO/fH0s+nRnkb7YU2x2SZct/1i55q38VpL07E+vVWxYkMkVAWgphCMArapvp3A9dHOKJOnpZbtVdqbK5IourcZu6Hcf7lRltV1Dr4nRuOs6ml0SgBZEOALQ6h4b0UMpMSE6dtqmP/zrG7PLuaS/5xzQ1oOnFBLgq/+6qy/daYCXIxwBaHVB/r566T/6yWKRlmwt1Npvj5ldUoMOnTyjF5fnSpJm3tZLHSPamVwRgJZGOAJgikHJkZqU0UWS9Pulu1Ruqza3oHoYhqGZS3fqbFWN0rpG6r7Bnc0uCUArIBwBMM2To3oqKbKdDpeeVdZne91ucsj3NxVofd4JBfn76IVx/eTjQ3ca0BYQjgCYJjjAT3Pv6idJem9jgaYv/lpnKs0/g2S3G/rLyu/09LLdkqTf3tJTXaJDTK4KQGshHAEw1ZDu0Xr29t7y9bHon9sPa+wb65V3tNy0ek5WVGrSws2at/JbGYY0fnCS7h/S1bR6ALQ+whEA0z1wY1e9/2CaYkMD9W1JuX72+jpTbjGy9eApjXn1//TVt8cU5O+jl+/ur6y7+smX7jSgTSEcAXALaSlR+tdvblJ6SpTOVNboN/+zXc9+tFu26poWf2/DMPTuuv265+0cFZWdU0p0iJZNHaL/GNSpxd8bgPshHAFwGzGhgVr0YJqmDe8uSfp7zkH9/K0cHTp5psXe8/S5Kv3ne9s059NvVG03NKZfgj6aNkSp8WEt9p4A3BvhCIBb8fWx6LejemrBpBsUEeyvrwvLdPtr67R6X0mzv9feIqt+9vp6fb67WP6+Fj330956ffxAhQb5N/t7AfAchCMAbml4aqw+ffRG9U+KUNnZKj2wcIteXL5P1TX2Znn9JVsOaewb67X/eIUSw4O0+NfpmjSkK7NfAyAcAXBfnToEa8mv052TRf51Tb5+OX+jjp4+d8Wvea6qRr/78Gs9+eFO2c7fK+1fv7lJAzt3aKaqAXg6twhHb7zxhrp06aKgoCClpaVp06ZNjbZfsmSJUlNTFRQUpL59++qzzz5rpUoBtLYAPx8997Nr9dr4gQoJ8NWG709qzKvrtOH7E01+rf3HK3TnX7O1eEuhfCzSb2+5Rgsm3aAOIQEtUDkAT2UxTJ6S9oMPPtCECRP01ltvKS0tTa+88oqWLFmi3NxcxcbGXtQ+OztbN998s7KysnT77bfr/fff1wsvvKBt27apT58+l/WeVqtV4eHhOnKkTGFhDLoEPMX+4+V6/MOtyjtWLh+L1CcxQq6dYDV2aeuW2p8HXS/5XvDfv7xj5aqorFZUSIBevHOgftQ1utVqB3D1rFarEhPDVVbWst/fpoejtLQ03XDDDXr99dclSXa7XUlJSXr00Uc1c+bMi9rfc889qqio0Keffupc96Mf/UgDBgzQW2+9Ve972Gw22Ww252Or1aqkpCRJZZIIR4AnsfhXK/KW3Wrf5/AVbX/uUAcd//g61ZQHNXNlAFqeVVLLhyO/Fnvly1BZWamtW7cqMzPTuc7Hx0cjR45UTk5Ovdvk5ORo+vTpddaNGjVKy5Yta/B9srKyNHv27GapGYC5jCo/nfhXf53e1kW+IbZLb+DCXukr26FIyXCLEQUA3JSp4ej48eOqqalRXFxcnfVxcXHat29fvdsUFxfX2764uLjB98nMzKwTqBxnjo4ckehVAzyRRVLERWsrKiTHx0NJiRTC7dAAr2K1SomJLf8+poaj1hIYGKjAwMCL1oeE8OEJeCv+vgHvU9PyE+ZLMvlqtejoaPn6+qqkpO7kbiUlJYqPj693m/j4+Ca1BwAAaApTw1FAQIAGDRqkVatWOdfZ7XatWrVK6enp9W6Tnp5ep70krVixosH2AAAATWF6t9r06dM1ceJEXX/99Ro8eLBeeeUVVVRU6P7775ckTZgwQR07dlRWVpYk6bHHHtPQoUP1pz/9SWPGjNE//vEPbdmyRe+8846ZuwEAALyE6eHonnvu0bFjx/Tss8+quLhYAwYM0PLly52DrgsKCuTj88MJroyMDL3//vt6+umn9fvf/149evTQsmXLLnuOIwAAgMaYPs+RGRyTQLb0PAkAWldFhdS+fe3P5eUMyAa8TWt9fzPZBwAAgAvCEQAAgAvCEQAAgAvCEQAAgAvCEQAAgAvCEQAAgAvCEQAAgAvCEQAAgAvCEQAAgAvCEQAAgAvCEQAAgAvCEQAAgAvCEQAAgAvCEQAAgAvCEQAAgAvCEQAAgAvCEQAAgAvCEQAAgAvCEQAAgAvCEQAAgAvCEQAAgAvCEQAAgAvCEQAAgAvCEQAAgAvCEQAAgAvCEQAAgAvCEQAAgAvCEQAAgAvCEQAAgAvCEQAAgAvCEQAAgAvCEQAAgAvCEQAAgAvCEQAAgAvCEQAAgAvTwtGBAwc0efJkde3aVe3atVO3bt00a9YsVVZWNrrdsGHDZLFY6iwPP/xwK1UNAAC8nZ9Zb7xv3z7Z7Xa9/fbb6t69u3bv3q0pU6aooqJCL7/8cqPbTpkyRXPmzHE+Dg4ObulyAQBAG2FaOLr11lt16623Oh+npKQoNzdXb7755iXDUXBwsOLj41u6RAAA0Aa51ZijsrIyRUZGXrLde++9p+joaPXp00eZmZk6c+ZMo+1tNpusVmudBQAAoD6mnTm6UF5enl577bVLnjX6xS9+oeTkZCUmJmrnzp166qmnlJubq6VLlza4TVZWlmbPnt3cJQMAAC9kMQzDaM4XnDlzpl544YVG2+zdu1epqanOx4cPH9bQoUM1bNgw/fd//3eT3m/16tUaMWKE8vLy1K1bt3rb2Gw22Ww252Or1aqkpCSVlZUpLCysSe8HwH1VVEjt29f+XF4uhYSYWw+A5mW1WhUeHt7i39/NfuZoxowZmjRpUqNtUlJSnD8fOXJEw4cPV0ZGht55550mv19aWpokNRqOAgMDFRgY2OTXBgAAbU+zh6OYmBjFxMRcVtvDhw9r+PDhGjRokBYsWCAfn6YPgdqxY4ckKSEhocnbAgAAXMi0AdmHDx/WsGHD1LlzZ7388ss6duyYiouLVVxcXKdNamqqNm3aJEnKz8/X888/r61bt+rAgQP6+OOPNWHCBN18883q16+fWbsCAAC8iGkDslesWKG8vDzl5eWpU6dOdZ5zDIOqqqpSbm6u82q0gIAArVy5Uq+88ooqKiqUlJSkcePG6emnn271+gEAgHdq9gHZnqC1BnQBaF0MyAa8W2t9f7vVPEcAAABmIxwBAAC4IBwBAAC4IBwBAAC4IBwBAAC4IBwBAAC4IBwBAAC4IBwBAAC4IBwBAAC4IBwBAAC4IBwBAAC4IBwBAAC4IBwBAAC4IBwBAAC4IBwBAAC4IBwBAAC4IBwBAAC4IBwBAAC4IBwBAAC4IBwBAAC4IBwBAAC4IBwBAAC4IBwBAAC4IBwBAAC4IBwBAAC4IBwBAAC4IBwBAAC4IBwBAAC4IBwBAAC4IBwBAAC4IBwBAAC4IBwBAAC4IBwBAAC4IBwBAAC4IBwBAAC4MDUcdenSRRaLpc4yd+7cRrc5d+6cpk6dqqioKLVv317jxo1TSUlJK1UMAAC8nelnjubMmaOioiLn8uijjzba/oknntAnn3yiJUuWaO3atTpy5IjuuuuuVqoWAAB4Oz+zCwgNDVV8fPxltS0rK9P8+fP1/vvv68c//rEkacGCBerVq5c2bNigH/3oRy1ZKgAAaANMP3M0d+5cRUVFaeDAgXrppZdUXV3dYNutW7eqqqpKI0eOdK5LTU1V586dlZOT0+B2NptNVqu1zgIAAFAfU88c/eY3v9F1112nyMhIZWdnKzMzU0VFRfrzn/9cb/vi4mIFBAQoIiKizvq4uDgVFxc3+D5ZWVmaPXt2c5YOAAC8VLOfOZo5c+ZFg6wvXPbt2ydJmj59uoYNG6Z+/frp4Ycf1p/+9Ce99tprstlszVpTZmamysrKnMuhQ4ea9fUBAID3aPYzRzNmzNCkSZMabZOSklLv+rS0NFVXV+vAgQPq2bPnRc/Hx8ersrJSpaWldc4elZSUNDpuKTAwUIGBgZdVPwAAaNuaPRzFxMQoJibmirbdsWOHfHx8FBsbW+/zgwYNkr+/v1atWqVx48ZJknJzc1VQUKD09PQrrhkAAMDBtDFHOTk52rhxo4YPH67Q0FDl5OToiSee0C9/+Ut16NBBknT48GGNGDFCf//73zV48GCFh4dr8uTJmj59uiIjIxUWFqZHH31U6enpXKkGAACahWnhKDAwUP/4xz/03HPPyWazqWvXrnriiSc0ffp0Z5uqqirl5ubqzJkzznXz5s2Tj4+Pxo0bJ5vNplGjRumvf/2rGbsAAAC8kMUwDMPsIlqb1WpVeHi4ysrKFBYWZnY5AJpJRYXUvn3tz+XlUkiIufUAaF6t9f1t+jxHAAAA7oRwBAAA4IJwBAAA4IJwBAAA4IJwBAAA4IJwBAAA4IJwBAAA4IJwBAAA4IJwBAAA4IJwBAAA4IJwBAAA4IJwBAAA4IJwBAAA4IJwBAAA4IJwBAAA4IJwBAAA4IJwBAAA4IJwBAAA4IJwBAAA4IJwBAAA4IJwBAAA4IJwBAAA4IJwBAAA4IJwBAAA4IJwBAAA4IJwBAAA4IJwBAAA4IJwBAAA4IJwBAAA4IJwBAAA4IJwBAAA4IJwBAAA4IJwBAAA4IJwBAAA4IJwBAAA4MK0cLRmzRpZLJZ6l82bNze43bBhwy5q//DDD7di5QAAwJv5mfXGGRkZKioqqrPumWee0apVq3T99dc3uu2UKVM0Z84c5+Pg4OAWqREAALQ9poWjgIAAxcfHOx9XVVXpo48+0qOPPiqLxdLotsHBwXW2BQAAaC5uM+bo448/1okTJ3T//fdfsu17772n6Oho9enTR5mZmTpz5kyj7W02m6xWa50FAACgPqadObrQ/PnzNWrUKHXq1KnRdr/4xS+UnJysxMRE7dy5U0899ZRyc3O1dOnSBrfJysrS7Nmzm7tkAADghSyGYRjN+YIzZ87UCy+80GibvXv3KjU11fm4sLBQycnJWrx4scaNG9ek91u9erVGjBihvLw8devWrd42NptNNpvN+dhqtSopKUllZWUKCwtr0vsBcF8VFVL79rU/l5dLISHm1gOgeVmtVoWHh7f493eznzmaMWOGJk2a1GiblJSUOo8XLFigqKgo/exnP2vy+6WlpUlSo+EoMDBQgYGBTX5tAADQ9jR7OIqJiVFMTMxltzcMQwsWLNCECRPk7+/f5PfbsWOHJCkhIaHJ2wIAAFzI9AHZq1ev1v79+/Xggw9e9Nzhw4eVmpqqTZs2SZLy8/P1/PPPa+vWrTpw4IA+/vhjTZgwQTfffLP69evX2qUDAAAvZPqA7Pnz5ysjI6POGCSHqqoq5ebmOq9GCwgI0MqVK/XKK6+ooqJCSUlJGjdunJ5++unWLhsAAHipZh+Q7Qlaa0AXgNbFgGzAu7XW97fp3WoAAADuhHAEAADggnAEAADggnAEAADggnAEAADggnAEAADggnAEAADggnAEAADggnAEAADggnAEAADggnAEAADggnAEAADggnAEAADggnAEAADggnAEAADggnAEAADggnAEAADggnAEAADggnAEAADggnAEAADggnAEAADggnAEAADggnAEAADggnAEAADggnAEAADggnAEAADggnAEAADggnAEAADggnAEAADggnAEAADggnAEAADggnAEAADggnAEAADggnAEAADggnAEAADggnAEAADgosXC0R//+EdlZGQoODhYERER9bYpKCjQmDFjFBwcrNjYWD355JOqrq5u9HVPnjyp++67T2FhYYqIiNDkyZNVXl7eAnsAAADaohYLR5WVlbr77rv1yCOP1Pt8TU2NxowZo8rKSmVnZ+tvf/ubFi5cqGeffbbR173vvvu0Z88erVixQp9++qm++uorPfTQQy2xCwAAoA2yGIZhtOQbLFy4UI8//rhKS0vrrP/88891++2368iRI4qLi5MkvfXWW3rqqad07NgxBQQEXPRae/fuVe/evbV582Zdf/31kqTly5frtttuU2FhoRITE+utwWazyWazOR+XlZWpc+fOOnTokMLCwpppTwGYraJCcnwMHDkihYSYWw+A5mW1WpWUlKTS0lKFh4e33BsZLWzBggVGeHj4ReufeeYZo3///nXWff/994YkY9u2bfW+1vz5842IiIg666qqqgxfX19j6dKlDdYwa9YsQxILCwsLCwuLFyz5+flNziNN4SeTFBcXO88YOTgeFxcXN7hNbGxsnXV+fn6KjIxscBtJyszM1PTp052PS0tLlZycrIKCgpZNnm7Gkbjb2hkz9pv9bgvYb/a7LXD0/ERGRrbo+zQpHM2cOVMvvPBCo2327t2r1NTUqyqquQUGBiowMPCi9eHh4W3ql8ohLCyM/W5D2O+2hf1uW9rqfvv4tOzF9k0KRzNmzNCkSZMabZOSknJZrxUfH69NmzbVWVdSUuJ8rqFtjh49WmdddXW1Tp482eA2AAAATdGkcBQTE6OYmJhmeeP09HT98Y9/1NGjR51dZStWrFBYWJh69+7d4DalpaXaunWrBg0aJElavXq17Ha70tLSmqUuAADQtrXYeamCggLt2LFDBQUFqqmp0Y4dO7Rjxw7nnES33HKLevfurV/96lf6+uuv9cUXX+jpp5/W1KlTnV1gmzZtUmpqqg4fPixJ6tWrl2699VZNmTJFmzZt0vr16zVt2jTde++9DV6pVp/AwEDNmjWr3q42b8Z+s99tAfvNfrcF7HfL7neLXco/adIk/e1vf7to/Zdffqlhw4ZJkg4ePKhHHnlEa9asUUhIiCZOnKi5c+fKz6/2hNaaNWs0fPhw7d+/X126dJFUOwnktGnT9Mknn8jHx0fjxo3Tq6++qvbt27fEbgAAgDamxec5AgAA8CTcWw0AAMAF4QgAAMAF4QgAAMAF4QgAAMCFV4ajP/7xj8rIyFBwcLAiIiLqbVNQUKAxY8YoODhYsbGxevLJJ1VdXd3o6548eVL33XefwsLCFBERocmTJzunJnBHa9askcViqXfZvHlzg9sNGzbsovYPP/xwK1Z+9bp06XLRPsydO7fRbc6dO6epU6cqKipK7du317hx45wTk3qCAwcOaPLkyeratavatWunbt26adasWaqsrGx0O0883m+88Ya6dOmioKAgpaWlXTSh7IWWLFmi1NRUBQUFqW/fvvrss89aqdLmkZWVpRtuuEGhoaGKjY3V2LFjlZub2+g2CxcuvOi4BgUFtVLFzeO55567aB8udQcGTz/WUv2fXxaLRVOnTq23vace66+++ko//elPlZiYKIvFomXLltV53jAMPfvss0pISFC7du00cuRIfffdd5d83aZ+PtTHK8NRZWWl7r77bj3yyCP1Pl9TU6MxY8aosrJS2dnZ+tvf/qaFCxfq2WefbfR177vvPu3Zs0crVqzQp59+qq+++koPPfRQS+xCs8jIyFBRUVGd5cEHH1TXrl11/fXXN7rtlClT6mz34osvtlLVzWfOnDl19uHRRx9ttP0TTzyhTz75REuWLNHatWt15MgR3XXXXa1U7dXbt2+f7Ha73n77be3Zs0fz5s3TW2+9pd///veX3NaTjvcHH3yg6dOna9asWdq2bZv69++vUaNGXTR7vkN2drbGjx+vyZMna/v27Ro7dqzGjh2r3bt3t3LlV27t2rWaOnWqNmzYoBUrVqiqqkq33HKLKioqGt0uLCysznE9ePBgK1XcfK699to6+7Bu3boG23rDsZakzZs319nnFStWSJLuvvvuBrfxxGNdUVGh/v3764033qj3+RdffFGvvvqq3nrrLW3cuFEhISEaNWqUzp071+BrNvXzoUEteltbky1YsMAIDw+/aP1nn31m+Pj4GMXFxc51b775phEWFmbYbLZ6X+ubb74xJBmbN292rvv8888Ni8ViHD58uNlrbwmVlZVGTEyMMWfOnEbbDR061Hjsscdap6gWkpycbMybN++y25eWlhr+/v7GkiVLnOv27t1rSDJycnJaoMLW8eKLLxpdu3ZttI2nHe/BgwcbU6dOdT6uqakxEhMTjaysrHrb//znPzfGjBlTZ11aWprx61//ukXrbElHjx41JBlr165tsE1Dn3+eZNasWUb//v0vu703HmvDMIzHHnvM6Natm2G32+t93huOtSTjn//8p/Ox3W434uPjjZdeesm5rrS01AgMDDT+53/+p8HXaernQ0O88szRpeTk5Khv376Ki4tzrhs1apSsVqv27NnT4DYRERF1zriMHDlSPj4+2rhxY4vX3Bw+/vhjnThxQvfff/8l27733nuKjo5Wnz59lJmZqTNnzrRChc1r7ty5ioqK0sCBA/XSSy812m26detWVVVVaeTIkc51qamp6ty5s3Jyclqj3BZRVlZ2WXev9pTjXVlZqa1bt9Y5Tj4+Pho5cmSDxyknJ6dOe6n2793Tj6ukSx7b8vJyJScnKykpSXfccUeDn2/u7LvvvlNiYqJSUlJ03333qaCgoMG23nisKysrtWjRIj3wwAOyWCwNtvOGY+1q//79Ki4urnM8w8PDlZaW1uDxvJLPh4Y06d5q3qK4uLhOMJLkfFxcXNzgNo57wDn4+fkpMjKywW3czfz58zVq1Ch16tSp0Xa/+MUvlJycrMTERO3cuVNPPfWUcnNztXTp0laq9Or95je/0XXXXafIyEhlZ2crMzNTRUVF+vOf/1xv++LiYgUEBFw0Ri0uLs5jju+F8vLy9Nprr+nll19utJ0nHe/jx4+rpqam3r/fffv21btNQ3/vnnpc7Xa7Hn/8cQ0ZMkR9+vRpsF3Pnj317rvvql+/fiorK9PLL7+sjIwM7dmz55KfAe4iLS1NCxcuVM+ePVVUVKTZs2frpptu0u7duxUaGnpRe2871pK0bNkylZaWNnrTd2841hdyHLOmHM8r+XxoiMeEo5kzZ+qFF15otM3evXsvOVjPG1zJv0VhYaG++OILLV68+JKv7zqOqm/fvkpISNCIESOUn5+vbt26XXnhV6kp+z19+nTnun79+ikgIEC//vWvlZWV5XH3IrqS43348GHdeuutuvvuuzVlypRGt3XX4436TZ06Vbt372507I1Ue6Pu9PR05+OMjAz16tVLb7/9tp5//vmWLrNZjB492vlzv379lJaWpuTkZC1evFiTJ082sbLWM3/+fI0ePbrR+4d6w7F2Nx4TjmbMmNFocpaklJSUy3qt+Pj4i0avO65Kio+Pb3CbCwd0VVdX6+TJkw1u01Ku5N9iwYIFioqK0s9+9rMmv19aWpqk2jMRZn5ZXs3vQFpamqqrq3XgwAH17Nnzoufj4+NVWVmp0tLSOmePSkpKWv34Xqip+33kyBENHz5cGRkZeuedd5r8fu5yvOsTHR0tX1/fi64ibOw4xcfHN6m9O5s2bZrzYpCmnhHw9/fXwIEDlZeX10LVtbyIiAhdc801De6DNx1rqfb+oytXrmzyWVxvONaOY1ZSUqKEhATn+pKSEg0YMKDeba7k86FBTRqh5GEuNSC7pKTEue7tt982wsLCjHPnztX7Wo4B2Vu2bHGu++KLLzxiQLbdbje6du1qzJgx44q2X7dunSHJ+Prrr5u5stazaNEiw8fHxzh58mS9zzsGZH/44YfOdfv27fO4AdmFhYVGjx49jHvvvdeorq6+otdw9+M9ePBgY9q0ac7HNTU1RseOHRsdkH377bfXWZeenu5Rg3TtdrsxdepUIzEx0fj222+v6DWqq6uNnj17Gk888UQzV9d6Tp8+bXTo0MH4y1/+Uu/z3nCsXc2aNcuIj483qqqqmrSdJx5rNTAg++WXX3auKysru6wB2U35fGiwnia19hAHDx40tm/fbsyePdto3769sX37dmP79u3G6dOnDcOo/cXp06ePccsttxg7duwwli9fbsTExBiZmZnO19i4caPRs2dPo7Cw0Lnu1ltvNQYOHGhs3LjRWLdundGjRw9j/Pjxrb5/TbVy5UpDkrF3796LnissLDR69uxpbNy40TAMw8jLyzPmzJljbNmyxdi/f7/x0UcfGSkpKcbNN9/c2mVfsezsbGPevHnGjh07jPz8fGPRokVGTEyMMWHCBGebC/fbMAzj4YcfNjp37mysXr3a2LJli5Genm6kp6ebsQtXpLCw0OjevbsxYsQIo7Cw0CgqKnIurm08/Xj/4x//MAIDA42FCxca33zzjfHQQw8ZERERzqtPf/WrXxkzZ850tl+/fr3h5+dnvPzyy8bevXuNWbNmGf7+/sauXbvM2oUme+SRR4zw8HBjzZo1dY7rmTNnnG0u3O/Zs2cbX3zxhZGfn29s3brVuPfee42goCBjz549ZuzCFZkxY4axZs0aY//+/cb69euNkSNHGtHR0cbRo0cNw/DOY+1QU1NjdO7c2Xjqqacues5bjvXp06ed38+SjD//+c/G9u3bjYMHDxqGYRhz5841IiIijI8++sjYuXOncccddxhdu3Y1zp4963yNH//4x8Zrr73mfHypz4fL5ZXhaOLEiYaki5Yvv/zS2ebAgQPG6NGjjXbt2hnR0dHGjBkz6qTzL7/80pBk7N+/37nuxIkTxvjx44327dsbYWFhxv333+8MXO5s/PjxRkZGRr3P7d+/v86/TUFBgXHzzTcbkZGRRmBgoNG9e3fjySefNMrKylqx4quzdetWIy0tzQgPDzeCgoKMXr16Gf/1X/9V56zghfttGIZx9uxZ4z//8z+NDh06GMHBwcadd95ZJ1i4uwULFtT7e+96gthbjvdrr71mdO7c2QgICDAGDx5sbNiwwfnc0KFDjYkTJ9Zpv3jxYuOaa64xAgICjGuvvdb417/+1coVX52GjuuCBQucbS7c78cff9z5bxQXF2fcdtttxrZt21q/+Ktwzz33GAkJCUZAQIDRsWNH45577jHy8vKcz3vjsXb44osvDElGbm7uRc95y7F2fM9euDj2zW63G88884wRFxdnBAYGGiNGjLjo3yM5OdmYNWtWnXWNfT5cLothGEbTOuIAAAC8V5uc5wgAAKAhhCMAAAAXhCMAAAAXhCMAAAAXhCMAAAAXhCMAAAAXhCMAAAAXhCMAAAAXhCMAAAAXhCMAAAAXhCMAAAAX/z93MgMqhSffqgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Code test Passed\n", + "Go on to the next step\n" + ] + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "\n", + "xmin = -10\n", + "xmax = 10\n", + "ymin = -10\n", + "ymax = 10\n", + "points = 2*(xmax-xmin)\n", + "x = np.linspace(xmin,xmax,points)\n", + "\n", + "fig, ax = plt.subplots()\n", + "plt.axis([xmin,xmax,ymin,ymax]) # window size\n", + "plt.plot([xmin,xmax],[0,0],'b') # blue x axis\n", + "plt.plot([0,0],[ymin,ymax], 'b') # blue y axis\n", + "\n", + "y = x**2\n", + "\n", + "plt.plot(x,y)\n", + "plt.show()\n", + "\n", + "# Just run this code. The next step will transform the graph\n", + "import math_code_test_b as test\n", + "test.step01()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "I0mklEluF-jI" + }, + "source": [ + "# Step 17 - Quadratic Function ABC's" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "AJuHf8ySF-jJ" + }, + "source": [ + "Using the parabola formula y = ax2 + bx + c, you will change the values of `a`, `b`, and `c` to see how they affect the graph. Run the code and use the sliders to change the values of `a` and `b`. Then change the code in the three places indicated to add a slider for `c`. You may remember this type of interactive graph from an earlier step. Move each slider to see how it affects the graph." + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": { + "id": "9IVFnXxVF-jJ" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Code test passed\n", + "Go on to the next step\n", + " \n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "4cb4d8bcffc346459faa561fb2b649e7", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "interactive(children=(IntSlider(value=0, description='a', max=9, min=-9), IntSlider(value=0, description='b', …" + ] + }, + "execution_count": 32, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "%matplotlib inline\n", + "from ipywidgets import interactive\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "\n", + "# Change the next line to include c:\n", + "def f(a,b, c):\n", + " plt.axis([-10,10,-10,10]) # window size\n", + " plt.plot([-10,10],[0,0],'k') # blue x axis\n", + " plt.plot([0,0],[-10,10], 'k') # blue y axis\n", + " x = np.linspace(-10, 10, 1000)\n", + "\n", + " # Change the next line to add c to the end of the function:\n", + " plt.plot(x, a*x**2 + b*x + c)\n", + " plt.show()\n", + "\n", + "# Change the next line to add a slider to change the c value\n", + "interactive_plot = interactive(f, a=(-9, 9), b=(-9,9), c=(-9, 9))\n", + "interactive_plot\n", + "\n", + "\n", + "# Run the code once, then change the code and run it again\n", + "\n", + "# Only change code above this line\n", + "import math_code_test_b as test\n", + "test.step17(In[-1].split('# Only change code above this line')[0])\n", + "interactive_plot" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "eFehWNexGASC" + }, + "source": [ + "# Step 18 - Quadratic Functions - Vertex" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "p8hAZw_CGASD" + }, + "source": [ + "The vertex is the point where the parabola turns around. The x value of the vertex is $\\frac{-b}{2a}$ (and then you would calculate the y value to get the point). Write the code to find the vertex, given `a`, `b`, and `c` as inputs. Remember the parabola forumula is y = ax2 + bx + c" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": { + "id": "cjMI5uZZGASD" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "y = ax² + bx + c\n" + ] + }, + { + "name": "stdin", + "output_type": "stream", + "text": [ + "a = 2\n", + "b = 1.89\n", + "c = 4.28\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " ( -0.4725 , 3.8334875000000004 )\n", + " \n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAGdCAYAAAASUnlxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA5CElEQVR4nO3de3gU5f338c8mIRtIshtCQg4QzhBQIChKDK0ChYpIrailFG1BRVr7Q6tC/Wl6taLY/kKVqq1aD89PoX3QqvhYbC1FARVKCSAnFYRIaEgIOXDMbg7kuPP8kexiJAkkZHezO+/Xdc1ldvae3e9kyO7He+57xmIYhiEAAAATCPF3AQAAAL5C8AEAAKZB8AEAAKZB8AEAAKZB8AEAAKZB8AEAAKZB8AEAAKZB8AEAAKYR5u8COpvL5VJRUZGio6NlsVj8XQ4AALgAhmGovLxcycnJCgnxXr9M0AWfoqIipaSk+LsMAADQAUeOHFHfvn299vpBF3yio6MlNf7ibDabn6sBOs8/PivSQ//vc43t11N/mjfO3+X4XGWllJzc+HNRkRQZ6d96WjP31e3amX9aS28epe+kJfu7HCBgOJ1OpaSkeL7HvSXogo/79JbNZiP4IKiMHGAoxHpIRyoNU/7bDg09+7PN1nWDz5EKKcTaQ5cOSDTlcQIulreHqTC4GQgQg+Ibv+lPVNTqdGWtn6tBS8qqanWiokaSNLh3lJ+rAdASgg8QICKtYerbs7sk6eCxCj9Xg5a4j0ufmO6KsgZdhzoQFDocfDZt2qQbbrhBycnJslgsWr16tee5uro6PfTQQxo1apQiIyOVnJysOXPmqKioqM3XfPTRR2WxWJotw4cP72iJQNAZ2tSL8GVpuZ8rQUvcx2UIvT1Al9Xh4FNZWam0tDQ9//zz5zxXVVWlXbt26Ve/+pV27dqld955Rzk5Ofrud7973te99NJLVVxc7Fk2b97c0RKBoDMsoXHQXy49Pl3SwdLG4zIsgeADdFUd7oudNm2apk2b1uJzdrtd69ata7buueee07hx41RQUKB+/fq1XlBYmBITEztaFhDUhtDj06UdPNZ4XIb29u6sFAAd57MxPg6HQxaLRTExMW22O3jwoJKTkzVo0CDddtttKigoaLN9TU2NnE5nswUIVu4eH8b4dE3uHp+h9PgAXZZPgk91dbUeeughzZ49u83pnenp6VqxYoXWrl2rF154QXl5ebr66qtVXt76/91mZWXJbrd7Fi5eiGDm7vE5Xl6jsipmdnUljqo6HStvnNE1NIEeH6Cr8nrwqaur0/e//30ZhqEXXnihzbbTpk3TzJkzNXr0aE2dOlVr1qxRWVmZ3nrrrVa3yczMlMPh8CxHjhzp7F0AuoxIa5j6xDCzqytyn+ZKtkcwowvowrz61+kOPfn5+frwww/bfTGvmJgYDRs2TLm5ua22sVqtslqtF1sqEDCGJkTpaNkZfVlarisHxPq7HDT50nOai94eoCvzWo+PO/QcPHhQ69evV69evdr9GhUVFTp06JCSkpK8UCEQmDzjfErp8elKzg5sZnwP0JV1OPhUVFRoz5492rNnjyQpLy9Pe/bsUUFBgerq6vS9731PO3bs0GuvvaaGhgaVlJSopKREtbVnxyVMnjxZzz33nOfxz3/+c23cuFGHDx/Wli1bdNNNNyk0NFSzZ8/u+B4CQcY9zsf9RYuu4exUdnp8gK6sw6e6duzYoUmTJnkeL1y4UJI0d+5cPfroo/rb3/4mSRozZkyz7T766CNNnDhRknTo0CGdOHHC81xhYaFmz56tkydPKj4+Xt/85je1detWxcfHd7RMIOjQ49M1uYPoEGZ0AV1ah4PPxIkTZRhGq8+39Zzb4cOHmz1+4403OloOYBruHp9j5TVyVNXJ3qObnyuC40ydSp1NM7o41QV0adyrCwgwUc1mdnG6qyvIbToOSfYIRUcQRIGujOADBKCzV3DmdFdXwIwuIHAQfIAA5L4XFD0+XYPnis2c5gK6PIIPEIDc94JigHPX4A6g3JwU6PoIPkAAGkqPT5fiDqBDuDkp0OURfIAA5B7jU+qskeNMnZ+rMTfHmTqVOKslcXNSIBAQfIAAFB3RTcn2CElnZxTBP3Kb7pmWaIuQjRldQJdH8AEC1JCmGUTM7PKvg6VNt6qgtwcICAQfIEANc9+6guDjVwePcasKIJAQfIAAxQDnruHLUm5OCgQSgg8QoIZ6TnURfPzpIBcvBAIKwQcIUMzs8j9n9dkZXUPo8QECAsEHCFC2iG5KYmaXX7l7exJtEbJ3Z0YXEAgIPkAAG8IAZ79yB05mdAGBg+ADBLBhTGn3K8/NSbliMxAwCD5AAHPPJGJml3+4p7LT4wMEDoIPEMDcM4k41eUf7osXcnNSIHAQfIAA5v7CLXFWq6yq1s/VmEtZVa2KHe57dHGqCwgUBB8ggEVHdFNKbHdJ0hfFTj9XYy77ixt7e/r27M49uoAAQvABAtyIRJuks1/E8I39TUFzRJLNz5UAaA+CDxDgLklu/OL9oogeH19y97BdQvABAgrBBwhw7h6H/Zzq8il6fIDARPABApy7xyH3WIXqGlx+rsYc6hpcnpl09PgAgYXgAwS4vj27K9oaptoGlw4dZ1q7L/zneKVqG1yKsoapb8/u/i4HQDsQfIAAZ7FYPKdbGOfjG18UOyRJI5KiFRJi8XM1ANqD4AMEgRFJjdeRYZyPb7hn0DG+Bwg8BB8gCJwd4MyUdl9gYDMQuAg+QBD46swuwzD8XE1wMwzDc0qR4AMEHoIPEARSE6MVYpFOVtbqWHmNv8sJasfLa3SyslYhFimVW1UAAYfgAwSBiG6hGhTfeN8ubl3hXe7f78C4SHUPD/VzNQDai+ADBAkuZOgbDGwGAhvBBwgSZ2d2McDZmxjYDAQ2gg8QJM5ey8fh50qCG/foAgIbwQcIEu4v4rwTlaqua/BzNcGpuq5B/2m6OjY9PkBgIvgAQaJ3tFW9IsPlMqScEk53ecOXpeVyGVJsZLgSbFZ/lwOgAzocfDZt2qQbbrhBycnJslgsWr16dbPnDcPQI488oqSkJHXv3l1TpkzRwYMHz/u6zz//vAYMGKCIiAilp6dr+/btHS0RMJWv3rqCAc7ecXZ8T7QsFm5VAQSiDgefyspKpaWl6fnnn2/x+SeeeEJ/+MMf9OKLL2rbtm2KjIzU1KlTVV1d3eprvvnmm1q4cKEWL16sXbt2KS0tTVOnTtWxY8c6WiZgKu4Bzkxp9w7PhQsTOc0FBKoOB59p06bp17/+tW666aZznjMMQ88884x++ctf6sYbb9To0aP15z//WUVFRef0DH3VU089pfnz5+uOO+7QJZdcohdffFE9evTQq6++2tEyAVOhx8e7mMoOBD6vjPHJy8tTSUmJpkyZ4llnt9uVnp6u7OzsFrepra3Vzp07m20TEhKiKVOmtLqNJNXU1MjpdDZbALO6JLnxC/lAcTm3ruhkhmFof0nTjK5kgg8QqLwSfEpKSiRJCQkJzdYnJCR4nvu6EydOqKGhoV3bSFJWVpbsdrtnSUlJucjqgcA1OD5K4aEhKq+pV+HpM/4uJ6gUnj6j8up6dQu1aHDTVbIBBJ6An9WVmZkph8PhWY4cOeLvkgC/6RYaoiG9G7+U9xXR+9mZ3OOmhvSOVnhYwH90Aqbllb/exMRESVJpaWmz9aWlpZ7nvi4uLk6hoaHt2kaSrFarbDZbswUwM8b5eMdXZ3QBCFxeCT4DBw5UYmKiNmzY4FnndDq1bds2ZWRktLhNeHi4xo4d22wbl8ulDRs2tLoNgHOdvXUFwacz7eeKzUBQCOvohhUVFcrNzfU8zsvL0549exQbG6t+/frp/vvv169//WsNHTpUAwcO1K9+9SslJydrxowZnm0mT56sm266Sffcc48kaeHChZo7d66uuOIKjRs3Ts8884wqKyt1xx13dHwPAZNxD7xlSnvncs/oIvgAga3DwWfHjh2aNGmS5/HChQslSXPnztWKFSv03//936qsrNSPf/xjlZWV6Zvf/KbWrl2riIgIzzaHDh3SiRMnPI9nzZql48eP65FHHlFJSYnGjBmjtWvXnjPgGUDrLk2yS2ocjFtWVauYHuF+rijwOarqVHCqShJT2YFAZzGCbM6r0+mU3W6Xw+FgvA9Ma8KTHyn/ZJX+fOc4XTMs3t/ldIrKSimqaTJVRYUUGem79/7XweP60Svb1S+2hzb996TzbwCg3Xz1/c3UBCAIje4bI0n69EiZX+sIFu7f4+i+dv8WAuCiEXyAIJTW9AX9aaHDz5UEB/fvcUxKjH8LAXDRCD5AEEpr+oL+rLDMr3UEC/fv0d2TBiBwEXyAIHRpsk0hFulYeY1KHK3fGBjnV+qsVqmzRiEWaWQfxg0CgY7gAwShHuFhGpbQeD2fT+n1uSju8T1De0erR3iHJ8IC6CIIPkCQcg/E5XTXxfmsaXwPA5uB4EDwAYKUezzKZwxwvijuHrPRDGwGggLBBwhSaV+Z0h5kl+vyGcMwPMExjR4fICgQfIAglZrYeBdxZ3W9Dp+s8nc5ASn/ZJUcZ+oUHhqi4YkMbAaCAcEHCFLhYSGe+0oxzqdj3Ke5RiTbFB7GxyUQDPhLBoKY50KGRxjn0xGc5gKCD8EHCGJnBziX+bWOQMWFC4HgQ/ABglhaSmNPxd4ih+obXH6uJrDUN7i096hTEj0+QDAh+ABBbFBclKKsYaquc+ngsQp/lxNQco9X6ExdgyLDQzUoPsrf5QDoJAQfIIiFhFg8t1ngdFf7fNY0LmpkH7tCQyx+rgZAZyH4AEHOfcPSPQxwbpc9TUGRO7IDwYXgAwS5NAY4dwgDm4HgRPABgpz7HlM5JeWqrmvwczWBobquQQeKyyVxjy4g2BB8gCDXJ6a7ekWGq95l6Itip7/LCQj7i52qdxmKjQxX357d/V0OgE5E8AGCnMViOXun9iNl/i0mQHz1juwWCwObgWBC8AFMgDu1t8+njO8BghbBBzAB94UMP2WA8wXhVhVA8CL4ACbgntl16Hilyqpq/VtMF+eoqtOh440Xe0xjKjsQdAg+gAn0irJqUHykJGnH4dN+rqZr25F/SoYhDYqLVFyU1d/lAOhkBB/AJK7sHytJ+uTwKT9X0rVtb/r9XDGgp58rAeANBB/AJK4c2Bh8thN82uTuEbtyQKyfKwHgDQQfwCTGNX2R7z3q0JlaLmTYkuq6Bs8Vm8cNJPgAwYjgA5hESmx3JdisqmswtIfr+bRoz5Ey1TUY6h1tVb/YHv4uB4AXEHwAk7BYLLpiAON82rKj6fdy5YBYLlwIBCmCD2Ai4wg+bdruGd/DwGYgWBF8ABNxD9jdlX9a9Q0uP1fTtTS4DO3Kbwo+jO8BghbBBzCR1MRoRUeEqbK2Qfub7j6ORvuLnaqoqVe0NUzDE23+LgeAlxB8ABMJDbFobP/G0zhMa2/Offrv8v49FRrC+B4gWBF8AJNxn+76JI/g81Xu4MM0diC4EXwAk3F/sTfemsHwczVdg2EY2p7HhQsBM/Bq8BkwYIAsFss5y4IFC1psv2LFinPaRkREeLNEwHRG97UrPCxEJypqlXei0t/ldAn5J6t0oqJG4aEhGs0d2YGgFubNF//kk0/U0HD2CrF79+7Vt7/9bc2cObPVbWw2m3JycjyPuZYG0LmsYaFK62vXJ4dP65PDpzQoPsrfJfmde7zT6L52RXQL9XM1ALzJq8EnPj6+2eOlS5dq8ODBmjBhQqvbWCwWJSYmerMswPSuHBCrTw6f1va805p1ZT9/l+N37vFOTGMHgp/PxvjU1tZq5cqVuvPOO9vsxamoqFD//v2VkpKiG2+8Ufv27WvzdWtqauR0OpstANp25VfG+UDa0XT9nnGM7wGCns+Cz+rVq1VWVqbbb7+91Tapqal69dVX9e6772rlypVyuVwaP368CgsLW90mKytLdrvds6SkpHiheiC4jO3fUxZL49iWY85qf5fjV8fKq5V3olIWS+NUdgDBzWfB55VXXtG0adOUnJzcapuMjAzNmTNHY8aM0YQJE/TOO+8oPj5eL730UqvbZGZmyuFweJYjR454o3wgqNgiunku0mf26/nsaLpNRWpCtOzdu/m5GgDe5pPgk5+fr/Xr1+uuu+5q13bdunXTZZddptzc3FbbWK1W2Wy2ZguA8xvXdD8qs1/PZ3se1+8BzMQnwWf58uXq3bu3pk+f3q7tGhoa9PnnnyspKclLlQHm5R7n80lTj4dZucc5cf0ewBy8HnxcLpeWL1+uuXPnKiys+SSyOXPmKDMz0/N4yZIl+uCDD/Sf//xHu3bt0g9/+EPl5+e3u6cIwPm5B/LuL3HqdGWtn6vxD0dVnb4oapwQQY8PYA5eDz7r169XQUGB7rzzznOeKygoUHFxsefx6dOnNX/+fI0YMULXX3+9nE6ntmzZoksuucTbZQKm09sWoWEJUTIMaXPuCX+X4xebc0/IZUhDe0cpwcbFUgEz8Op1fCTp2muvbfWy+B9//HGzx08//bSefvppb5cEoMk1Q+P1ZWmFNn15XDektT7xIFht+vK4JOmaYfHnaQkgWHCvLsDE3F/4mw4eN919uwzD0KaDBB/AbAg+gImNGxgra1iISp01+rK0wt/l+FTusQoVO6plDQtROuN7ANMg+AAmFtEtVOmDekmS/tXU+2EWG5tOc40bGMv9uQATIfgAJnfN0DhJZ4OAWWw62DigewKnuQBTIfgAJuf+4t+ed0rVdQ1+rsY3qusatO0/JyVJVw8l+ABmQvABTG5I7ygl2SNUU+/SNpNcxfmTw6dUU+9SYtOUfgDmQfABTM5isejqptNdm0xyusu9n1cPjZPFYvFzNQB8ieAD4Oy0dtMEn8bxPUxjB8yH4ANA3xwSpxCLdPBYhYodZ/xdjleVOKqVU1oui6VxvwGYC8EHgGJ6hGt03xhJ0r++DO7bV7gvWji6j109I8P9XA0AXyP4AJB09rTPxiC/ng+3qQDMjeADQJI0YVjjaZ/NB0+owRWct69ocBmeG7ISfABzIvgAkCSl9Y1RdESYHGfq9Flhmb/L8YrPjzpUVlWnaGuYxqTE+LscAH5A8AEgSQoLDfEM9t0UpON83Ke5xg/ppW6hfPwBZsRfPgAP91WMNwXpOB/G9wAg+ADwuKZpnM/ugtM6WVHj52o616nKWu0+UiZJuobbVACmRfAB4NG3Zw+N7GOTy5De31fq73I61fv7StTgMnRJkk0psT38XQ4APyH4AGjm+lFJkqQ1nxf7uZLO5d6f6aOT/FwJAH8i+ABoZnpT8Mn+z0mdqqz1czWd41RlrbYcarwbuzvYATAngg+AZvr3itSlyTY1uAy9v6/E3+V0ig+aTnONSLJpYFykv8sB4EcEHwDnCLbTXf9wn+YalejnSgD4G8EHwDncp7u2HAr8012nOc0F4CsIPgDOMSAuUpckNZ7u+iDAT3d98EXjaa7hidEaFB/l73IA+BnBB0CL3LOf/hHgp7v+8XljcJtObw8AEXwAtOL6r5zuOh2gp7vKqmq1pemmpNczjR2ACD4AWjEwLlIj3Ke7vgjM010f7CtVfdNprsGc5gIggg+ANrhnQblPFwUa92k6BjUDcCP4AGiV53RX7gmVVQXW6a6yqlr9232ai+ADoAnBB0CrBsVHaXhitOpdhj4IsHt3ffBF42mu1IRoDenNaS4AjQg+ANrkng0VaLO71nCaC0ALCD4A2jStKTj8O/eEjpVX+7maC3OsvFqbDzae5po+mqs1AziL4AOgTUN6R2ls/56qdxl6Y/sRf5dzQd7cfkT1LkOX94vRkN7R/i4HQBdC8AFwXj+6qr8k6fVtBapvcPm5mrbVN7j0+vYCSdKPMvr7uRoAXQ3BB8B5TRuVqF6R4SpxVmv9/mP+LqdNGw4cU7GjWrGR4Zo2kvE9AJoj+AA4L2tYqGZdmSJJ+r9bD/u3mPNYuTVfkjTryhRFdAv1czUAuhqvBp9HH31UFoul2TJ8+PA2t1m1apWGDx+uiIgIjRo1SmvWrPFmiQAu0K3p/WSxSP/OPancYxX+LqdF/zleoX8dPCGLRbp1XD9/lwOgC/J6j8+ll16q4uJiz7J58+ZW227ZskWzZ8/WvHnztHv3bs2YMUMzZszQ3r17vV0mgPPo27OHJg/vLUl6bVu+n6tp2cqtjWN7vpXaWymxPfxcDYCuyOvBJywsTImJiZ4lLi6u1ba///3vdd111+nBBx/UiBEj9Pjjj+vyyy/Xc8895+0yAVyAH2UMkCS9vbNQVbX1/i3ma6pq67VqZ+OsMwY1A2iN14PPwYMHlZycrEGDBum2225TQUFBq22zs7M1ZcqUZuumTp2q7Oxsb5cJ4AJcPSROA3r1UHl1vd7dU+Tvcpr5+6dFKq+uV/9ePXTN0Hh/lwOgi/Jq8ElPT9eKFSu0du1avfDCC8rLy9PVV1+t8vLyFtuXlJQoISGh2bqEhASVlLR+g8Samho5nc5mCwDvCAmx6IdNU9v/b3a+DMPwc0WNDMPQn7MbT7/9ML2/QkIsfq4IQFfl1eAzbdo0zZw5U6NHj9bUqVO1Zs0alZWV6a233uq098jKypLdbvcsKSkpnfbaAM71vbF9ZQ0L0RfFTu0qOO3vciRJu4+UaV+RU9awEH1vbF9/lwOgC/PpdPaYmBgNGzZMubm5LT6fmJio0tLmN0IsLS1VYmLrl5zPzMyUw+HwLEeOBMaVZYFAFdMjXN9NS5bU2OvTFaxsquOGtGT1jAz3czUAujKfBp+KigodOnRISUktX1QsIyNDGzZsaLZu3bp1ysjIaPU1rVarbDZbswWAd81pGuT8j8+LlX+y0q+1HDlVpfc+a7whqfsK0wDQGq8Gn5///OfauHGjDh8+rC1btuimm25SaGioZs+eLUmaM2eOMjMzPe3vu+8+rV27Vr/73e904MABPfroo9qxY4fuueceb5YJoJ1G9bXr6qFxqmsw9MT7OX6t5Yn3c1Tb4NI3h8QpLSXGr7UA6Pq8GnwKCws1e/Zspaam6vvf/7569eqlrVu3Kj6+ccZFQUGBiouLPe3Hjx+v119/XS+//LLS0tL09ttva/Xq1Ro5cqQ3ywTQAb+4foQsFukfnxX7bazPniNl+vunRbJYGusBgPOxGF1lWkYncTqdstvtcjgcnPYCvOzBVZ9q1c5CXdG/p1bdnSGLxXuzqSorpaioxp8rKqQePQzNemmrth8+pe+N7atlM9O89t4AvM9X39/cqwtAhy26NlUR3UK0I/+03t/X+mUnvOGDL0q1/fApRXQL0aJrh/n0vQEELoIPgA5LtEdo/tWDJElL/3lAtfUun7xvXYNLS/95QJJ01zcHKcne3SfvCyDwEXwAXJSfTBisuKhwHT5Zpdd9dA+vt3YVKO9EpeKiwnX3xME+eU8AwYHgA+CiRFnD9MC3G081/X7DQTnO1Hn1/Szhdfrjxi8lSfdPGaYoa5hX3w9AcCH4ALhos65I0ZDeUTpdVac/ftzyBUo7i/2qQyo7U6fB8ZH6wZVcqR1A+xB8AFy0sNAQZU4bLkl6dXOetued8sr7WPuckm3cfyRJmdNGKCyUjzAA7cOnBoBO8a3hvTV9dJLqGgzdvXKnjpyq6tTXP1pWpfibdsoSaujaEYmaPKJ3p74+AHMg+ADoFBaLRcu+l6aRfWw6VVmru/60QxU19Z3y2hU19brnzR0KjaxVTYlNv/lumlevGQQgeBF8AHSa7uGh+j9zrlB8tFU5peW6/43danBd3DVSXS5D97+xR18eK1dDhVXH37lCPcIZ0AygYwg+ADpVkr27Xv7RWIWHhWj9/mN68iLv5fXkBzlav79U4aEhOvbOWDWUc80eAB1H8AHQ6S7r11NPfm+0JOnFjYf09s7Clhs2NEgffyz95S+N/21oaPb0O7sK9cLHhyRJj98wWrXFPb1YNQAzIPgA8Iobx/TRgkmNFxf8+apPteitT3W8vOZsg3fekQYMkCZNkm69tfG/AwZI77yjExU1WvTWp1r41qeSpP+aOFjfGdXH9zsBIOhwohyA1yz6dqoqaxr0p+zD+n+7CvXBFyX6+bWpuq14l8Jmfk/62j2SG4qK9dpvXtWTO8NV3tA4eHlORn/9/NpUnTnjjz0AEGy4OzsAr9tdcFqPvLtPnx91SJIuOVWgO7PfVnjD2VlftaFhWj72u9qXOESSNDLZpiUzRuryfo2nt75+d/bISN/uAwDv8tX3N8EHgE80uAz9ZXuBnvzHXjnauKuFrbpCD278k2596kGFTprkWU/wAYKbr76/OdUFwCdCQyz64VX9Ne1gtp7900f6Mq7/OW2GncjXvVveUK8zTqnkR36oEkCwI/gA8KleKYl6dMPL52+YlOT9YgCYDrO6APjW1VdLfftKrV152WKRUlIa2wFAJyP4APCt0FDp979v/Pnr4cf9+JlnGtsBQCcj+ADwvZtvlt5+W+rztWvz9O3buP7mm/1TF4CgxxgfAP5x883SjTdK//qXVFzcOKbn6qvp6QHgVQQfAP4TGipNnOjvKgCYCKe6AACAaRB8AACAaRB8AACAaRB8AACAaRB8AACAaRB8AACAaRB8AACAaRB8AACAaRB8AACAaRB8AACAaRB8AACAaRB8AACAaRB8AACAaRB8AACAaXg1+GRlZenKK69UdHS0evfurRkzZignJ6fNbVasWCGLxdJsiYiI8GaZAADAJLwafDZu3KgFCxZo69atWrdunerq6nTttdeqsrKyze1sNpuKi4s9S35+vjfLBAAAJhHmzRdfu3Zts8crVqxQ7969tXPnTl1zzTWtbmexWJSYmOjN0gAAgAn5dIyPw+GQJMXGxrbZrqKiQv3791dKSopuvPFG7du3r9W2NTU1cjqdzRYAAICW+Cz4uFwu3X///frGN76hkSNHttouNTVVr776qt59912tXLlSLpdL48ePV2FhYYvts7KyZLfbPUtKSoq3dgEAAAQ4i2EYhi/e6Kc//an++c9/avPmzerbt+8Fb1dXV6cRI0Zo9uzZevzxx895vqamRjU1NZ7HTqdTKSkpcjgcstlsnVI7AP+rrJSiohp/rqiQIiP9Ww+AzuV0OmW3273+/e3VMT5u99xzj9577z1t2rSpXaFHkrp166bLLrtMubm5LT5vtVpltVo7o0wAABDkvHqqyzAM3XPPPfrrX/+qDz/8UAMHDmz3azQ0NOjzzz9XUlKSFyoEAABm4tUenwULFuj111/Xu+++q+joaJWUlEiS7Ha7unfvLkmaM2eO+vTpo6ysLEnSkiVLdNVVV2nIkCEqKyvTk08+qfz8fN11113eLBUAAJiAV4PPCy+8IEmaOHFis/XLly/X7bffLkkqKChQSMjZjqfTp09r/vz5KikpUc+ePTV27Fht2bJFl1xyiTdLBQAAJuCzwc2+4qvBUQB8i8HNQHDz1fc39+oCAACmQfABAACmQfABAACmQfABAACmQfABAACmQfABAACmQfABAACmQfABAACmQfABAACmQfABAACmQfABAACmQfABAACmQfABAACmQfABAACmQfABAACmQfABAACmQfABAACmQfABAACmQfABAACmQfABAACmQfABAACmQfABAACmQfABAACmQfABAACmQfABAACmQfABAACmQfABAACmQfABAACmQfABAACmQfABAACmQfABAACmQfABAACmQfABAACmQfABAACmQfABAACm4ZPg8/zzz2vAgAGKiIhQenq6tm/f3mb7VatWafjw4YqIiNCoUaO0Zs0aX5QJAACCnNeDz5tvvqmFCxdq8eLF2rVrl9LS0jR16lQdO3asxfZbtmzR7NmzNW/ePO3evVszZszQjBkztHfvXm+XCgAAgpzFMAzDm2+Qnp6uK6+8Us8995wkyeVyKSUlRffee68efvjhc9rPmjVLlZWVeu+99zzrrrrqKo0ZM0Yvvvjied/P6XTKbrerqMghm83WeTsCwK8qK6WEhMafS0ulyEj/1gOgczmdTiUn2+VwePf7O8xrryyptrZWO3fuVGZmpmddSEiIpkyZouzs7Ba3yc7O1sKFC5utmzp1qlavXt1i+5qaGtXU1HgeO51OSVJy8kUWD6DLcgcgAGgvr57qOnHihBoaGpTwtU+phIQElZSUtLhNSUlJu9pnZWXJbrd7lpSUlM4pHgAABB2v9vj4QmZmZrMeIqfTqZSUFBUVSZzpAoIHp7qA4OZ0+uZsjVeDT1xcnEJDQ1VaWtpsfWlpqRITE1vcJjExsV3trVarrFbrOesjI/lgBIIVf99A8Glo8M37ePVUV3h4uMaOHasNGzZ41rlcLm3YsEEZGRktbpORkdGsvSStW7eu1fYAAAAXyuunuhYuXKi5c+fqiiuu0Lhx4/TMM8+osrJSd9xxhyRpzpw56tOnj7KysiRJ9913nyZMmKDf/e53mj59ut544w3t2LFDL7/8srdLBQAAQc7rwWfWrFk6fvy4HnnkEZWUlGjMmDFau3atZwBzQUGBQkLOdjyNHz9er7/+un75y1/qF7/4hYYOHarVq1dr5MiR3i4VAAAEOa9fx8fX3Nfx8fZ1AAD4VmWlFBXV+HNFBWN8gGDjq+9v7tUFAABMg+ADAABMg+ADAABMg+ADAABMg+ADAABMg+ADAABMg+ADAABMg+ADAABMg+ADAABMg+ADAABMg+ADAABMg+ADAABMg+ADAABMg+ADAABMg+ADAABMg+ADAABMg+ADAABMg+ADAABMg+ADAABMg+ADAABMg+ADAABMg+ADAABMg+ADAABMg+ADAABMg+ADAABMg+ADAABMg+ADAABMg+ADAABMg+ADAABMg+ADAABMg+ADAABMg+ADAABMg+ADAABMg+ADAABMg+ADAABMwyvB5/Dhw5o3b54GDhyo7t27a/DgwVq8eLFqa2vb3G7ixImyWCzNlrvvvtsbJQIAABMK88aLHjhwQC6XSy+99JKGDBmivXv3av78+aqsrNSyZcva3Hb+/PlasmSJ53GPHj28USIAADAhrwSf6667Ttddd53n8aBBg5STk6MXXnjhvMGnR48eSkxM9EZZAADA5Hw2xsfhcCg2Nva87V577TXFxcVp5MiRyszMVFVVVZvta2pq5HQ6my0AAAAt8UqPz9fl5ubq2WefPW9vz6233qr+/fsrOTlZn332mR566CHl5OTonXfeaXWbrKwsPfbYY51dMgAACEIWwzCMC2388MMP67e//W2bbfbv36/hw4d7Hh89elQTJkzQxIkT9b//+7/tKu7DDz/U5MmTlZubq8GDB7fYpqamRjU1NZ7HTqdTKSkpcjgcstls7Xo/AF1XZaUUFdX4c0WFFBnp33oAdC6n0ym73e717+929fgsWrRIt99+e5ttBg0a5Pm5qKhIkyZN0vjx4/Xyyy+3u7j09HRJajP4WK1WWa3Wdr82AAAwn3YFn/j4eMXHx19Q26NHj2rSpEkaO3asli9frpCQ9g8n2rNnjyQpKSmp3dsCAAB8nVcGNx89elQTJ05Uv379tGzZMh0/flwlJSUqKSlp1mb48OHavn27JOnQoUN6/PHHtXPnTh0+fFh/+9vfNGfOHF1zzTUaPXq0N8oEAAAm45XBzevWrVNubq5yc3PVt2/fZs+5hxTV1dUpJyfHM2srPDxc69ev1zPPPKPKykqlpKTolltu0S9/+UtvlAgAAEyoXYObA4GvBkcB8C0GNwPBzVff39yrCwAAmAbBBwAAmAbBBwAAmAbBBwAAmAbBBwAAmAbBBwAAmAbBBwAAmAbBBwAAmAbBBwAAmAbBBwAAmAbBBwAAmAbBBwAAmAbBBwAAmAbBBwAAmAbBBwAAmAbBBwAAmAbBBwAAmAbBBwAAmAbBBwAAmAbBBwAAmAbBBwAAmAbBBwAAmAbBBwAAmAbBBwAAmAbBBwAAmAbBBwAAmAbBBwAAmAbBBwAAmAbBBwAAmAbBBwAAmAbBBwAAmAbBBwAAmAbBBwAAmAbBBwAAmAbBBwAAmIbXgs+AAQNksViaLUuXLm1zm+rqai1YsEC9evVSVFSUbrnlFpWWlnqrRAAAYDJe7fFZsmSJiouLPcu9997bZvsHHnhAf//737Vq1Spt3LhRRUVFuvnmm71ZIgAAMJEwb754dHS0EhMTL6itw+HQK6+8otdff13f+ta3JEnLly/XiBEjtHXrVl111VXeLBUAAJiAV3t8li5dql69eumyyy7Tk08+qfr6+lbb7ty5U3V1dZoyZYpn3fDhw9WvXz9lZ2e3ul1NTY2cTmezBQAAoCVe6/H52c9+pssvv1yxsbHasmWLMjMzVVxcrKeeeqrF9iUlJQoPD1dMTEyz9QkJCSopKWn1fbKysvTYY491ZukAACBItavH5+GHHz5nwPLXlwMHDkiSFi5cqIkTJ2r06NG6++679bvf/U7PPvusampqOnUHMjMz5XA4PMuRI0c69fUBAEDwaFePz6JFi3T77be32WbQoEEtrk9PT1d9fb0OHz6s1NTUc55PTExUbW2tysrKmvX6lJaWtjlOyGq1ymq1XlD9AADA3NoVfOLj4xUfH9+hN9qzZ49CQkLUu3fvFp8fO3asunXrpg0bNuiWW26RJOXk5KigoEAZGRkdek8AAICv8soYn+zsbG3btk2TJk1SdHS0srOz9cADD+iHP/yhevbsKUk6evSoJk+erD//+c8aN26c7Ha75s2bp4ULFyo2NlY2m0333nuvMjIymNEFAAA6hVeCj9Vq1RtvvKFHH31UNTU1GjhwoB544AEtXLjQ06aurk45OTmqqqryrHv66acVEhKiW265RTU1NZo6dar++Mc/eqNEAABgQhbDMAx/F9GZnE6n7Ha7HA6HbDabv8sB0EkqK6WoqMafKyqkyEj/1gOgc/nq+5t7dQEAANMg+AAAANMg+AAAANMg+AAAANMg+AAAANMg+AAAANMg+AAAANMg+AAAANMg+AAAANMg+AAAANMg+AAAANMg+AAAANMg+AAAANMg+AAAANMg+AAAANMg+AAAANMg+AAAANMg+AAAANMg+AAAANMg+AAAANMg+AAAANMg+AAAANMg+AAAANMg+AAAANMg+AAAANMg+AAAANMg+AAAANMg+AAAANMg+AAAANMI83cBnc0wDEmS0+n0cyUAOlNl5dmfnU6pocF/tQDofO7vbff3uLcEXfA5efKkJCklJcXPlQDwluRkf1cAwFtOnjwpu93utdcPuuATGxsrSSooKPDqL66rcTqdSklJ0ZEjR2Sz2fxdjs+w3+y3GbDf7LcZOBwO9evXz/M97i1BF3xCQhqHLdntdlP9g3Gz2Wzst4mw3+bCfpuLWffb/T3utdf36qsDAAB0IQQfAABgGkEXfKxWqxYvXiyr1ervUnyK/Wa/zYD9Zr/NgP327n5bDG/PGwMAAOgigq7HBwAAoDUEHwAAYBoEHwAAYBoEHwAAYBoBGXx+85vfaPz48erRo4diYmJabFNQUKDp06erR48e6t27tx588EHV19e3+bqnTp3SbbfdJpvNppiYGM2bN08VFRVe2IOL9/HHH8tisbS4fPLJJ61uN3HixHPa33333T6s/OINGDDgnH1YunRpm9tUV1drwYIF6tWrl6KionTLLbeotLTURxVfvMOHD2vevHkaOHCgunfvrsGDB2vx4sWqra1tc7tAPN7PP/+8BgwYoIiICKWnp2v79u1ttl+1apWGDx+uiIgIjRo1SmvWrPFRpZ0jKytLV155paKjo9W7d2/NmDFDOTk5bW6zYsWKc45rRESEjyruHI8++ug5+zB8+PA2twn0Yy21/PllsVi0YMGCFtsH6rHetGmTbrjhBiUnJ8tisWj16tXNnjcMQ4888oiSkpLUvXt3TZkyRQcPHjzv67b386ElARl8amtrNXPmTP30pz9t8fmGhgZNnz5dtbW12rJli/70pz9pxYoVeuSRR9p83dtuu0379u3TunXr9N5772nTpk368Y9/7I1duGjjx49XcXFxs+Wuu+7SwIEDdcUVV7S57fz585tt98QTT/io6s6zZMmSZvtw7733ttn+gQce0N///netWrVKGzduVFFRkW6++WYfVXvxDhw4IJfLpZdeekn79u3T008/rRdffFG/+MUvzrttIB3vN998UwsXLtTixYu1a9cupaWlaerUqTp27FiL7bds2aLZs2dr3rx52r17t2bMmKEZM2Zo7969Pq684zZu3KgFCxZo69atWrdunerq6nTttdeq8qt3ZW2BzWZrdlzz8/N9VHHnufTSS5vtw+bNm1ttGwzHWpI++eSTZvu8bt06SdLMmTNb3SYQj3VlZaXS0tL0/PPPt/j8E088oT/84Q968cUXtW3bNkVGRmrq1Kmqrq5u9TXb+/nQKiOALV++3LDb7eesX7NmjRESEmKUlJR41r3wwguGzWYzampqWnytL774wpBkfPLJJ551//znPw2LxWIcPXq002vvbLW1tUZ8fLyxZMmSNttNmDDBuO+++3xTlJf079/fePrppy+4fVlZmdGtWzdj1apVnnX79+83JBnZ2dleqNA3nnjiCWPgwIFttgm04z1u3DhjwYIFnscNDQ1GcnKykZWV1WL773//+8b06dObrUtPTzd+8pOfeLVObzp27Jghydi4cWOrbVr77AskixcvNtLS0i64fTAea8MwjPvuu88YPHiw4XK5Wnw+GI61JOOvf/2r57HL5TISExONJ5980rOurKzMsFqtxl/+8pdWX6e9nw+tCcgen/PJzs7WqFGjlJCQ4Fk3depUOZ1O7du3r9VtYmJimvWWTJkyRSEhIdq2bZvXa75Yf/vb33Ty5Endcccd52372muvKS4uTiNHjlRmZqaqqqp8UGHnWrp0qXr16qXLLrtMTz75ZJunMXfu3Km6ujpNmTLFs2748OHq16+fsrOzfVGuVzgcjgu6mV+gHO/a2lrt3Lmz2XEKCQnRlClTWj1O2dnZzdpLjX/rgX5cJZ332FZUVKh///5KSUnRjTfe2OpnW1d28OBBJScna9CgQbrttttUUFDQattgPNa1tbVauXKl7rzzTlksllbbBcOx/qq8vDyVlJQ0O552u13p6emtHs+OfD60JuhuUipJJSUlzUKPJM/jkpKSVrfp3bt3s3VhYWGKjY1tdZuu5JVXXtHUqVPVt2/fNtvdeuut6t+/v5KTk/XZZ5/poYceUk5Ojt555x0fVXrxfvazn+nyyy9XbGystmzZoszMTBUXF+upp55qsX1JSYnCw8PPGQ+WkJAQEMe2Jbm5uXr22We1bNmyNtsF0vE+ceKEGhoaWvzbPXDgQIvbtPa3HqjH1eVy6f7779c3vvENjRw5stV2qampevXVVzV69Gg5HA4tW7ZM48eP1759+877GdBVpKena8WKFUpNTVVxcbEee+wxXX311dq7d6+io6PPaR9sx1qSVq9erbKyMt1+++2ttgmGY/117mPWnuPZkc+H1nSZ4PPwww/rt7/9bZtt9u/ff97Bb4GuI7+HwsJCvf/++3rrrbfO+/pfHbM0atQoJSUlafLkyTp06JAGDx7c8cIvUnv2e+HChZ51o0ePVnh4uH7yk58oKysr4C7x3pHjffToUV133XWaOXOm5s+f3+a2XfV4o2ULFizQ3r172xzrIkkZGRnKyMjwPB4/frxGjBihl156SY8//ri3y+wU06ZN8/w8evRopaenq3///nrrrbc0b948P1bmO6+88oqmTZum5OTkVtsEw7HuarpM8Fm0aFGbqVeSBg0adEGvlZiYeM5Ib/cMnsTExFa3+foAqfr6ep06darVbbyhI7+H5cuXq1evXvrud7/b7vdLT0+X1NiD4M8vwos5/unp6aqvr9fhw4eVmpp6zvOJiYmqra1VWVlZs16f0tJSnx7blrR3v4uKijRp0iSNHz9eL7/8crvfr6sc75bExcUpNDT0nNl2bR2nxMTEdrXvyu655x7PpIr2/p98t27ddNlllyk3N9dL1XlfTEyMhg0b1uo+BNOxlqT8/HytX7++3b2vwXCs3cestLRUSUlJnvWlpaUaM2ZMi9t05POhVe0aEdTFnG9wc2lpqWfdSy+9ZNhsNqO6urrF13IPbt6xY4dn3fvvv9/lBze7XC5j4MCBxqJFizq0/ebNmw1JxqefftrJlfnOypUrjZCQEOPUqVMtPu8e3Pz222971h04cCDgBjcXFhYaQ4cONX7wgx8Y9fX1HXqNrn68x40bZ9xzzz2exw0NDUafPn3aHNz8ne98p9m6jIyMgBrw6nK5jAULFhjJycnGl19+2aHXqK+vN1JTU40HHnigk6vznfLycqNnz57G73//+xafD4Zj/VWLFy82EhMTjbq6unZtF4jHWq0Mbl62bJlnncPhuKDBze35fGi1nna17iLy8/ON3bt3G4899pgRFRVl7N6929i9e7dRXl5uGEbjP4yRI0ca1157rbFnzx5j7dq1Rnx8vJGZmel5jW3bthmpqalGYWGhZ911111nXHbZZca2bduMzZs3G0OHDjVmz57t8/1rj/Xr1xuSjP3795/zXGFhoZGammps27bNMAzDyM3NNZYsWWLs2LHDyMvLM959911j0KBBxjXXXOPrsjtsy5YtxtNPP23s2bPHOHTokLFy5UojPj7emDNnjqfN1/fbMAzj7rvvNvr162d8+OGHxo4dO4yMjAwjIyPDH7vQIYWFhcaQIUOMyZMnG4WFhUZxcbFn+WqbQD/eb7zxhmG1Wo0VK1YYX3zxhfHjH//YiImJ8czQ/NGPfmQ8/PDDnvb//ve/jbCwMGPZsmXG/v37jcWLFxvdunUzPv/8c3/tQrv99Kc/Nex2u/Hxxx83O65VVVWeNl/f78cee8x4//33jUOHDhk7d+40fvCDHxgRERHGvn37/LELHbJo0SLj448/NvLy8ox///vfxpQpU4y4uDjj2LFjhmEE57F2a2hoMPr162c89NBD5zwXLMe6vLzc890syXjqqaeM3bt3G/n5+YZhGMbSpUuNmJgY49133zU+++wz48YbbzQGDhxonDlzxvMa3/rWt4xnn33W8/h8nw8XKiCDz9y5cw1J5ywfffSRp83hw4eNadOmGd27dzfi4uKMRYsWNUvWH330kSHJyMvL86w7efKkMXv2bCMqKsqw2WzGHXfc4QlTXdXs2bON8ePHt/hcXl5es99LQUGBcc011xixsbGG1Wo1hgwZYjz44IOGw+HwYcUXZ+fOnUZ6erpht9uNiIgIY8SIEcb//M//NOvJ+/p+G4ZhnDlzxviv//ovo2fPnkaPHj2Mm266qVlo6OqWL1/e4r/5r3baBsvxfvbZZ41+/foZ4eHhxrhx44ytW7d6npswYYIxd+7cZu3feustY9iwYUZ4eLhx6aWXGv/4xz98XPHFae24Ll++3NPm6/t9//33e35HCQkJxvXXX2/s2rXL98VfhFmzZhlJSUlGeHi40adPH2PWrFlGbm6u5/lgPNZu77//viHJyMnJOee5YDnW7u/Yry/ufXO5XMavfvUrIyEhwbBarcbkyZPP+X3079/fWLx4cbN1bX0+XCiLYRhG+06OAQAABKagvI4PAABASwg+AADANAg+AADANAg+AADANAg+AADANAg+AADANAg+AADANAg+AADANAg+AADANAg+AADANAg+AADANAg+AADANP4/d/avmDQJ0X4AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " \n", + "Code test passed\n", + "Go on to the next step\n" + ] + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "\n", + "# \\u00b2 prints 2 as an exponent\n", + "print(\"y = ax\\u00b2 + bx + c\")\n", + "\n", + "a = float(input(\"a = \"))\n", + "b = float(input(\"b = \"))\n", + "c = float(input(\"c = \"))\n", + "\n", + "# Write your code here, changing vx and vy\n", + "vx = -b/(2*a)\n", + "vy = a*vx**2 + b*vx + c\n", + "\n", + "\n", + "# Only change the code above this line\n", + "\n", + "print(\" (\", vx, \" , \", vy, \")\")\n", + "print(\" \")\n", + "\n", + "xmin = int(vx)-10\n", + "xmax = int(vx)+10\n", + "ymin = int(vy)-10\n", + "ymax = int(vy)+10\n", + "points = 2*(xmax-xmin)\n", + "x = np.linspace(xmin,xmax,points)\n", + "\n", + "fig, ax = plt.subplots()\n", + "plt.axis([xmin,xmax,ymin,ymax]) # window size\n", + "plt.plot([xmin,xmax],[0,0],'b') # blue x axis\n", + "plt.plot([0,0],[ymin,ymax], 'b') # blue y axis\n", + "\n", + "plt.plot([vx],[vy],'ro') # vertex\n", + "\n", + "x = np.linspace(vx-10,vx+10,100)\n", + "y = a*x**2 + b*x + c\n", + "plt.plot(x,y)\n", + "\n", + "plt.show()\n", + "\n", + "\n", + "# Only change code above this line\n", + "import math_code_test_b as test\n", + "test.step18(In[-1].split('# Only change code above this line')[0])" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "WbqugasGGCKJ" + }, + "source": [ + "# Step 19 - Projectile Motion" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "TtM_pFHaGCKK" + }, + "source": [ + "The path of every projectile is a parabola. For something thrown or launched upward, the `a` value is -4.9 (meters per second squared); the `b` value is the initial velocity (in meters per second); the `c` value is the initial height (in meters); the `x` value is time (in seconds); and the `y` value is the height at that time. In this code, change `vx` and `vy` to represent the vertex. Plotting that (x,y) vertex point is already in the code." + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": { + "id": "FTNV_bjuGCKL" + }, + "outputs": [ + { + "name": "stdin", + "output_type": "stream", + "text": [ + "Initial velocity = 10\n", + "Initial height = 3\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " ( 1.0204081632653061 , 8.102040816326529 )\n", + " \n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkcAAAGiCAYAAADtImJbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABA3UlEQVR4nO3deXxU9b3/8fdMlskCSchCQiTsFFBA3IiJe+UarW2l9XKV0gIWsVqwKtQr6UNF8PbGqi22ylX7eFhoH9Zr9f5wqdeLBS1YZVOEWlCoQSAESYBAEpKQSTJzfn8kZ5KQhSwzc87MvJ6PxzwezJlzZr4nByZvPt/lOAzDMAQAAABJktPqBgAAANgJ4QgAAKANwhEAAEAbhCMAAIA2CEcAAABtEI4AAADaIBwBAAC0QTgCAABog3AEAADQBuEIAACgjYCGo/fff1/f+ta3lJ2dLYfDoddff73d64Zh6OGHH9aQIUMUHx+vadOm6Ysvvjjr+65cuVIjRoxQXFyccnNztW3btgCdAQAAiDQBDUe1tbU6//zztXLlyk5ff/zxx/Wb3/xGzz33nLZu3arExEQVFBSovr6+y/f805/+pEWLFmnp0qX65JNPdP7556ugoEBHjx4N1GkAAIAI4gjWjWcdDodee+01TZ8+XVJz1Sg7O1uLFy/WT3/6U0lSVVWVMjMztXr1at16662dvk9ubq4uueQSPfPMM5Ikr9ernJwc3X333VqyZEkwTgUAAISxaKs+eP/+/SorK9O0adN825KTk5Wbm6vNmzd3Go4aGhq0fft2FRYW+rY5nU5NmzZNmzdv7vKz3G633G6377nX69WJEyeUlpYmh8PhpzMCAACBZBiGTp06pezsbDmdgev8siwclZWVSZIyMzPbbc/MzPS9dqbjx4/L4/F0esyePXu6/KyioiItW7asny0GAAB2cOjQIQ0dOjRg729ZOAqmwsJCLVq0yPe8qqpKw4YN06FDh5SUlGRhywD4U22tlJ3d/OevvpISE61tDwD/qq6uVk5OjgYOHBjQz7EsHGVlZUmSysvLNWTIEN/28vJyTZkypdNj0tPTFRUVpfLy8nbby8vLfe/XGZfLJZfL1WF7UlIS4QgII1FRrX9OSiIcAeEq0ENiLFvnaOTIkcrKytK7777r21ZdXa2tW7cqLy+v02NiY2N10UUXtTvG6/Xq3Xff7fIYAACA3gho5aimpkbFxcW+5/v379fOnTuVmpqqYcOG6d5779V//Md/aOzYsRo5cqQeeughZWdn+2a0SdK1116r73znO1q4cKEkadGiRZozZ44uvvhiTZ06VU899ZRqa2t12223BfJUAABAhAhoOPr44491zTXX+J6b437mzJmj1atX69///d9VW1urO+64Q5WVlbr88su1du1axcXF+Y7Zt2+fjh8/7nt+yy236NixY3r44YdVVlamKVOmaO3atR0GaQMAAPRF0NY5spPq6molJyerqqqKMUdAGKmtlQYMaP5zTQ1jjoBwE6zf39xbDQAAoA3CEQAAQBuEIwAAgDYIRwAAAG0QjgAAANogHAEAALRBOAIAAGiDcAQAANAG4QgAAKANwhEAAEAbhCMAAIA2CEcAAABtEI4AAADaIBwBAAC0QTgCAABog3AEAADQBuEIAACgDcIRAABAG4QjAACANghHAAAAbRCOAAAA2iAcAQAAtEE4AgAAaCPa6gYAQEjxeKS//U06ckQaMkS64gopKsrqVgHwI8IRAPTUmjXSPfdIpaWt24YOlX79a+m737WuXQD8im41AOiJNWukf/3X9sFIkg4fbt6+Zo017QLgd4QjADgbj6e5YmQYHV8zt917b/N+AEIe4QgAzuZvf+tYMWrLMKRDh5r3AxDyCEcAcDZHjvh3PwC2RjgCgLMZMsS/+wGwNcIRAJzNFVc0z0pzODp/3eGQcnKa9wMQ8ghHAHA2UVHN0/WljgHJfP7UU6x3BIQJ1jkCgC5s+bJCf9ldLleMU/HJkzR++TO67OlHlXi0zLePOytbpUv/U+5LpynuWI3iY6OUOTBOTmcXVSYAtkc4AoBOeL2GFr60Q8dr3G22DpdzzvOaWrpbg2tO6uiAQdo29Dx590dJv2mdqZY3Kk3/fcelwW80AL8gHAFAJz4vq9bxGrfiY6I0c+ownW70yN3o0elGj05PyNLRRo9ON3o1tqF5W33La6fqm7T5ywodrjytc1LirT4NAH1geTgaMWKEDh482GH7j3/8Y61cubLD9tWrV+u2225rt83lcqm+vj5gbQQQeT744rgk6dJRqXr4W+f2+Ljv/NeH2lFSqQ+Lj+vfLs4JVPMABJDl4eijjz6Sp82qsrt27dK//Mu/aMaMGV0ek5SUpL179/qeO7qaQQIAffRBcXM4unxsRq+Ou2x0unaUVGoT4QgIWZaHo4yM9l88jz32mEaPHq2rrrqqy2McDoeysrIC3TQAEaq+0aNt+09Ikq4cm96rYy8bk65n/lqsD4orZBgG/3kDQpCtpvI3NDToxRdf1A9/+MNuv1Bqamo0fPhw5eTk6KabbtLu3bu7fV+3263q6up2DwDoyscHTsrd5FVmkktjBg/o1bEXDk9RXIxTx2vc+md5TYBaCCCQbBWOXn/9dVVWVmru3Lld7jNu3Dj97ne/0xtvvKEXX3xRXq9X+fn5Ku3mvkdFRUVKTk72PXJyKHUD6Nrfio9Jki4fk9Hryo8rOkqXjEiVJH3Y0jUHILTYKhy98MILuuGGG5Sdnd3lPnl5eZo9e7amTJmiq666SmvWrFFGRoaef/75Lo8pLCxUVVWV73Ho0KFANB9AmDAHY1/Ryy410+Vjmo8jHAGhyfIxR6aDBw9q/fr1WrNmTa+Oi4mJ0QUXXKDi4uIu93G5XHK5XP1tIoAIcLzGrd1fNXe9Xzamb+HIPG7LlxVq9HgVE2Wr/4cCOAvb/ItdtWqVBg8erBtvvLFXx3k8Hv3jH//QEG74CMAPzGrP+KyByhjYt/9UnTskSYMSYlTb4NGnpZV+bB2AYLBFOPJ6vVq1apXmzJmj6Oj2xazZs2ersLDQ93z58uX6y1/+oi+//FKffPKJvv/97+vgwYO6/fbbg91sAGGov11qkuR0OpQ/Or3l/Sr80i4AwWOLcLR+/XqVlJTohz/8YYfXSkpKdOTIEd/zkydPav78+ZowYYK+8Y1vqLq6Wps2bdK55/Z8kTYA6IxhGH1e3+hMlzHuCAhZthhzdN1118kwjE5f27BhQ7vnK1as0IoVK4LQKgCRZt+xWh2pqldslFNTW2ac9dVlY9IkSTsOnVStu0mJLlt83QLoAVtUjgDADj74onkK/8UjBik+Nqpf7zUsNUFDB8Wr0WNo24ET/mgegCAhHAFAi9Yutb6PNzI5HI7WKf1f0LUGhBLCEQBIavR4teXL5grPFWP6N97IlG+Go30MygZCCeEIACTtPFSpGneTBiXE6LzsJL+8Z/7o5nFHnx+p1vEat1/eE0DgEY4AQNLfWrq+8seky+n0z81i0we4NGFIc9DaRPUICBmEIwBQ62DsK/q4KnZXLmupHm1iSj8QMghHACJedX2j/l5aJck/g7Hbuqzl/f72xfEulywBYC+EIwARb/O+Cnm8hkalJ2rooAS/vvfUEamKiXLocOVplZyo8+t7AwgMwhGAiGfeMsTfVSNJSnRF64KcQZKkD4sZdwSEAsIRgIj3t5bxRpf7ebyRiVuJAKGFcAQgoh06UacDFXWKcjp0acvgaX+7fGzLoOx9x+X1Mu4IsDvCEYCIZq6KPSUnRUlxMQH5jMlDUzTAFa2TdY367Eh1QD4DgP8QjgBENN94owB1qUlSTJRTuSObb2RL1xpgf4QjABHL4zX04b7msHJFAAZjt2WOO/qAcATYHuEIQMTa/VWVKusaNcAVrfNzUgL6WeZMuI8OnJC7yRPQzwLQP4QjABHLvGXIpaPSFBMV2K/DsYMHKGOgS/WNXn1ysDKgnwWgfwhHACKWOd4o0F1qkuRwOHy3EmHcEWBvhCMAEel0g0fbD56UFJjFHzvjW+9oH+EIsDPCEYCItHV/hRo8XmUnx2lUemJQPtMMR38/VKnq+sagfCaA3iMcAYhIbW8Z4nA4gvKZ2SnxGpWeKK8hbdnHrUQAuyIcAYhI5pT6K8ZmBPVzzerRJsIRYFuEIwAR5+ipeu0pOyWHozWsBMtlY5oHZbPeEWBfhCMAEcecLXZedpJSE2OD+tl5o9LlcEjFR2tUVlUf1M8G0DOEIwAR52//NG8ZEtwuNUlKTojR5HOSJTXfiBaA/RCOAEQUwzDajDcKbpeaKZ9biQC2RjgCEFH+WV6jo6fcckU7ddHwQZa0wbzJ7YfFx2UYhiVtANA1whGAiPK3L45JkqaOTFVcTJQlbbho+CC5op0qr3Zr37EaS9oAoGuEIwARxeouNUmKi4nSxSOaq1YfFjOlH7AbwhGAiOFu8mjrlyckWTMYu63LGHcE2BbhCEDE+ORgpU43epQ+IFbjswZa2hZz3NGWfRVq8ngtbQuA9ghHACLGB8XN440uG5MupzM4twzpynnZyUqKi9Ypd5P+cbjK0rYAaI9wBCBi+O6nFuRVsTsT5XQof3TrrDUA9kE4AhARKusa9GlLhSbY91PrymVjGXcE2BHhCEBE2LSvQoYhjRk8QFnJcVY3R5J02ejm+6x9crBSpxs8FrcGgIlwBCAibP2yecq8HbrUTCPTE5WdHKcGj1cfHThhdXMAtLA8HD3yyCNyOBztHuPHj+/2mFdffVXjx49XXFycJk2apLfffjtIrQUQqvZX1EmSJgyxdpZaWw6Hwzeln3FHgH1YHo4k6bzzztORI0d8jw8++KDLfTdt2qSZM2dq3rx52rFjh6ZPn67p06dr165dQWwxgFBz6ERzOMpJTbC4Je2ZtzD5vOyUxS0BYLJFOIqOjlZWVpbvkZ7eddn717/+ta6//nrdf//9mjBhgh599FFdeOGFeuaZZ4LYYgChxOM1VHqyORwNT0u0uDXtDUtrDmtmeANgPVuEoy+++ELZ2dkaNWqUZs2apZKSki733bx5s6ZNm9ZuW0FBgTZv3tzlMW63W9XV1e0eACLHkarTavQYiolyKCvJHoOxTcNaKlmlJ+vk8XITWsAOLA9Hubm5Wr16tdauXatnn31W+/fv1xVXXKFTpzovMZeVlSkzM7PdtszMTJWVlXX5GUVFRUpOTvY9cnJy/HoOAOytpKUqM3RQgqIsXvzxTEOS4xXtdKjRY6isut7q5gCQDcLRDTfcoBkzZmjy5MkqKCjQ22+/rcrKSr3yyit++4zCwkJVVVX5HocOHfLbewOwv5KWwdjDbDbeSGpeDHLooHhJre0EYC3Lw9GZUlJS9LWvfU3FxcWdvp6VlaXy8vJ228rLy5WVldXle7pcLiUlJbV7AIgcZuXIjuFIkoa1jINi3BFgD7YLRzU1Ndq3b5+GDBnS6et5eXl69913221bt26d8vLygtE8ACHooN3DUWpL5YhwBNiC5eHopz/9qTZu3KgDBw5o06ZN+s53vqOoqCjNnDlTkjR79mwVFhb69r/nnnu0du1a/fKXv9SePXv0yCOP6OOPP9bChQutOgUANmdWZMyZYXZjhjbCEWAP0VY3oLS0VDNnzlRFRYUyMjJ0+eWXa8uWLcrIaL73UUlJiZzO1gyXn5+vl156SQ8++KB+9rOfaezYsXr99dc1ceJEq04BgM3ZvluNcATYiuXh6OWXX+729Q0bNnTYNmPGDM2YMSNALQIQTqpON6qyrlGSfcORuTAlY44Ae7C8Ww0AAskMHOkDYpXosvz/g50yw1FFbYNq3E0WtwYA4QhAWCux6W1D2kqKi9GghBhJVI8AOyAcAQhrB1vWDhpu43AkMe4IsBPCEYCwZvfB2CbGHQH2QTgCENYOhUC3mkTlCLATwhGAsHbwRK0kaXjLKtR2RTgC7INwBCBsNXq8+qqy+Waudu9WIxwB9kE4AhC2jlTWy+M1FBvt1OCBLqub0y2z26/0xGl5vYbFrQEiG+EIQNgyu9SGpSbI6XRY3JruDUmOU7TToQaPV+Wn6q1uDhDRCEcAwlaozFSTpOgop84Z1HID2gq61gArEY4AhK1QCkcS444AuyAcAQhbZgUmVMIRax0B9kA4AhC2qBwB6AvCEYCwZBiGr3I0PI1wBKDnCEcAwlLV6UadarnD/dBBoRaOTlvcEiCyEY4AhKVDlc3Vl8EDXYqPjbK4NT1jjjk6XuNWXUOTxa0BIhfhCEBYMgc1h0qXmiQlx8coOT5GknSI6hFgGcIRgLBUWhkaN5w9E+OOAOsRjgCEpdKToTVTzUQ4AqxHOAIQlkpONt86JJS61STWOgLsgHAEICyVVjaP2aFyBKC3CEcAwo/Tq7Kq5nDEmCMAvUU4AhB2opPrZEiKj4lSxgCX1c3plWFtutW8XsPi1gCRiXAEIOxEp7QOxnY4HBa3pneGpMQpyumQu8mrYzVuq5sDRCTCEYCwY4ajUOtSk6SYKKeyU+Ik0bUGWIVwBCDsxKSE3gKQbfnGHVUQjgArEI4AhJ223WqhiEHZgLUIRwDCji8chWjliLWOAGsRjgCEGYPKEYB+IRwBCCvOhAY5Yz1ySBo6KN7q5vQJ4QiwFuEIQFgxq0aZSXFyRUdZ3Jq+McPR0VNunW7wWNwaIPIQjgCEFXOmWs6g0OxSk6Tk+BgNjIuW1HoDXQDBQzgCEFbMytHQlNANRw6Hg641wEKEIwBhJToMKkcS444AKxGOAIQVX+WIcASgjwhHAMJKuFSOWOsIsI7l4aioqEiXXHKJBg4cqMGDB2v69Onau3dvt8esXr1aDoej3SMuLi5ILQZgV+4mj6IH1kuScgYlWtya/qFyBFjH8nC0ceNGLViwQFu2bNG6devU2Nio6667TrW1td0el5SUpCNHjvgeBw8eDFKLAdiVObPL645WSnyMxa3pn7bhyDAMi1sDRJZoqxuwdu3ads9Xr16twYMHa/v27bryyiu7PM7hcCgrK6tHn+F2u+V2u33Pq6ur+9ZYALZWWtkcjpoqE+RwOCxuTf9kp8TL6ZDqG706VuPW4IFUx4FgsbxydKaqqipJUmpqarf71dTUaPjw4crJydFNN92k3bt3d7lvUVGRkpOTfY+cnBy/thmAPRxqqRw1Vob2eCNJio12akhy8wrfjDsCgstW4cjr9eree+/VZZddpokTJ3a537hx4/S73/1Ob7zxhl588UV5vV7l5+ertLS00/0LCwtVVVXlexw6dChQpwDAQmY4agqDcCQx7giwiuXdam0tWLBAu3bt0gcffNDtfnl5ecrLy/M9z8/P14QJE/T888/r0Ucf7bC/y+WSy+Xye3sB2EtpGIajzV9WqKTitNVNASKKbcLRwoUL9dZbb+n999/X0KFDe3VsTEyMLrjgAhUXFweodQBCQdhVjtKoHAFWsLxbzTAMLVy4UK+99pree+89jRw5stfv4fF49I9//ENDhgwJQAsBhALDMNoNyA4HrHUEWMPyytGCBQv00ksv6Y033tDAgQNVVlYmSUpOTlZ8fPNgxNmzZ+ucc85RUVGRJGn58uW69NJLNWbMGFVWVuqJJ57QwYMHdfvtt1t2HgCsdeyUW+4mrwyv1FQdb3Vz/IIxR4A1LA9Hzz77rCTp6quvbrd91apVmjt3riSppKRETmdrkevkyZOaP3++ysrKNGjQIF100UXatGmTzj333GA1G4DNHGwJEJ7qeMlreVHcL8xwVFZdr/pGj+JioixuERAZLA9HPVncbMOGDe2er1ixQitWrAhQiwCEopKK8JnGbxqUEKMBrmjVuJtUevK0xgweYHWTgIgQHv+9AhDxzK6ncBlvJDUvdsu4IyD4CEcAwkI4hiNJGpbaPH6KcUdA8BCOAIQFXziqCrdwxKBsINgIRwDCgi8cnUy0uCX+RTgCgo9wBCDk1TU06dip5ptLh1u3GmOOgOAjHAEIeYdONN9eIykuWl53jMWt8a+2laOezO4F0H+EIwAhz+xyyhkUXl1qknTOoHg5HFJdg0cVtQ1WNweICIQjACHvYEWtJGloSnh1qUmSKzpKQ5LiJDHuCAgWwhGAkHfIVzkKv3AkMe4ICDbCEYCQZ1ZUhoZpOPKNO6ogHAHBQDgCEPIOhnnliOn8QHARjgCENK/XUGnLbLWwDUdphCMgmAhHAEJa+al6NXi8inY6lNkycDncMOYICC7CEYCQdrBlHM45g+IV7QzPrzSzW+1Idb3cTR6LWwOEv/D8JgEQMcyuJjNAhKO0xFglxEbJMKTDJ09b3Rwg7BGOAIQ0cwZXOIcjh8PBoGwgiAhHAEJaJFSOJMYdAcFEOAIQ0sxwNDwtvMMRlSMgeAhHAEKa775qYV45IhwBwUM4AhCyTtU36kTLzVjDvVutNRwxIBsINMIRgJB1qCUopCbGamBcjMWtCay2Y44Mw7C4NUB4IxwBCFklJ2olhX+XmiQNHRQvSapxN+lkXaPFrQHCG+EIQMjyDcaOgHAUFxOlrJYVwBl3BAQW4QhAyIqUafwmBmUDwUE4AhCyDkbAApBtsdYREByEIwAhywwJw8J8jSOTr3JUQTgCAolwBCAkebyGSlvuMxYplaNhac2DsulWAwKLcAQgJH1VeVpNXkOxUU5ltgxUDneMOQKCg3AEICSZXWpDU+MV5XRY3JrgMMccHak6rYYmr8WtAcIX4QhASIq0mWqSlDHApbgYp7xGc+UMQGAQjgCEpIMRGI4cDgdda0AQEI4AhKRIrBxJjDsCgoFwBCAkHYrQcMRaR0DgEY4AhCRzAcjhaYkWtyS4qBwBgUc4AhByquoaVXW6+earOanxFrcmuAhHQODZIhytXLlSI0aMUFxcnHJzc7Vt27Zu93/11Vc1fvx4xcXFadKkSXr77beD1FIAdmAGg/QBLiXERlvcmuBqu0q2YRgWtwYIT5Z/q/zpT3/SokWL9Nxzzyk3N1dPPfWUCgoKtHfvXg0ePLjD/ps2bdLMmTNVVFSkb37zm3rppZc0ffp0ffLJJ5o4cWKvPru2VoqK8teZAAiWfWXN4eic5HjV1rZu7+rP4WSQqzkcnXI36auKRqXEx1rcIiB4gvXv2mFY/F+P3NxcXXLJJXrmmWckSV6vVzk5Obr77ru1ZMmSDvvfcsstqq2t1VtvveXbdumll2rKlCl67rnnOv0Mt9stt9vte15dXa2cnBxJVZKS/Ho+AAJvwJSDSivYpbp/ZurYaxdb3ZygO+fH6xU90K0jv79MDWUpVjcHCKJqScmqqqpSUlLgfn9b2q3W0NCg7du3a9q0ab5tTqdT06ZN0+bNmzs9ZvPmze32l6SCgoIu95ekoqIiJScn+x7NwQhAqIpKbP7PjqfWZXFLrNFU1Vw9ik5h3BEQCJZ2qx0/flwej0eZmZnttmdmZmrPnj2dHlNWVtbp/mVlZV1+TmFhoRYtWuR7blaOvvpKCmDwBBAgy99260/bpX//iUsL17Rur62VzK+H8nIpMUwnsi3+f3Fa+5n0y5Vu/SDX6tYAwVNdLWVnB/5zLB9zFAwul0suV8f/YSYmhu+XJxDOKuubK0fZqbFd/hsO53/fWSnN32fVDe6wPUegMx5PcD7H0m619PR0RUVFqby8vN328vJyZWVldXpMVlZWr/YHEH6O1zRIap6tFonSBzQPwj5e4z7LngD6wtJwFBsbq4suukjvvvuub5vX69W7776rvLy8To/Jy8trt78krVu3rsv9AYQfMxSkRWg4Ms+7oiUkAvAvy7vVFi1apDlz5ujiiy/W1KlT9dRTT6m2tla33XabJGn27Nk655xzVFRUJEm65557dNVVV+mXv/ylbrzxRr388sv6+OOP9dvf/tbK0wAQRBW+ylFkTmM3K2ZUjoDAsDwc3XLLLTp27JgefvhhlZWVacqUKVq7dq1v0HVJSYmcztYCV35+vl566SU9+OCD+tnPfqaxY8fq9ddf7/UaRwBCU32jRzXuJklS+sDIrBy1dqtROQICwfJwJEkLFy7UwoULO31tw4YNHbbNmDFDM2bMCHCrANjRsVPN1ZLYaKcGumzxFRZ0bStHhmHI4XBY3CIgvNji9iEA0FNmV1LGAFfEhgIzHLmbvL4qGgD/IRwBCCnHI3y8kSTFx0YpMbb53kd0rQH+RzgCEFLMylGkTuM3meOtGJQN+B/hCEBIOX7KnMYfuZUjSUpLbD7/CsIR4HeEIwAhhcpRM/P8j9GtBvgd4QhASDleG9mrY5t83WqnqBwB/kY4AhBSzDAQqWscmdLNbrVawhHgb4QjACGltVstsscctVaO6FYD/I1wBCCkmFPXMyK9W41biAABQzgCEDIamryqOt0oiTFHhCMgcAhHAEKGOb4m2ulQcnyMxa2xlrmUQQWz1QC/IxwBCBnm+JrUxFg5nZF56xCTWTk65W5SfaPH4tYA4YVwBCBkHK9ljSNTUly0YqOav8LpWgP8i3AEIGQwjb+Vw+Ggaw0IEMIRgJDBTWfbY1A2EBiEIwAhwwwBkT6N32SGRMIR4F+EIwAhg/uqtddaOaJbDfAnwhGAkOELRwPpVpOkNLrVgIAgHAEIGeZU/rREKkdS2241KkeAPxGOAIQMutXay/DdX43KEeBPhCMAIcHjNXSirmW2Gt1qkloraObK4QD8g3AEICScqG2QYUgOh5SaQDiSWkMi3WqAfxGOAIQEs0stNSFW0VF8dUmt3Ysn6xrU5PFa3BogfPANAyAkMN6oo0EJsXI6JMNorqwB8A/CEYCQwDT+jqKcDqUm0rUG+BvhCEBIYBp/57iFCOB/hCMAIYFutc4RjgD/IxwBCAm+m87SrdZOWstCkBV0qwF+QzgCEBKoHHWOyhHgf4QjACHB/OWfQThqxwxHxwhHgN8QjgCEBCpHneP+aoD/EY4A2J7Xa/jG1DDmqD0zLFZQOQL8hnAEwPaqTjeqyWtIYir/mRhzBPgf4QiA7Zm/+JPiohUbzddWW2YlraKmQd6WAAmgf/iWAWB7x3yrY1M1OpO5QnaT11B1faPFrQHCg2Xh6MCBA5o3b55Gjhyp+Ph4jR49WkuXLlVDQ/eDCq+++mo5HI52jzvvvDNIrQZgBd94IwZjd+CKjlJSXLQkutYAf4m26oP37Nkjr9er559/XmPGjNGuXbs0f/581dbW6sknn+z22Pnz52v58uW+5wkJCYFuLgALMY2/e+kDXaqub9KxUw0aM9jq1gChz7JwdP311+v666/3PR81apT27t2rZ5999qzhKCEhQVlZWYFuIgCbaJ3Gz0y1zqQnuvTlsVoqR4Cf2GrMUVVVlVJTU8+63x//+Eelp6dr4sSJKiwsVF1dXbf7u91uVVdXt3sACB3mTWfpVutc66BswhHgD5ZVjs5UXFysp59++qxVo+9973saPny4srOz9emnn+qBBx7Q3r17tWbNmi6PKSoq0rJly/zdZABBcpwB2d1qnc7PQpCAP/i9crRkyZIOA6bPfOzZs6fdMYcPH9b111+vGTNmaP78+d2+/x133KGCggJNmjRJs2bN0h/+8Ae99tpr2rdvX5fHFBYWqqqqyvc4dOiQX84VQHCY4SgtkW61zrDWEeBffq8cLV68WHPnzu12n1GjRvn+/NVXX+maa65Rfn6+fvvb3/b683JzcyU1V55Gjx7d6T4ul0suF//jBELVcd/q2Pw77kwatxAB/Mrv4SgjI0MZGRk92vfw4cO65pprdNFFF2nVqlVyOntfyNq5c6ckaciQIb0+FoD9GYbBbLWzoHIE+JdlA7IPHz6sq6++WsOGDdOTTz6pY8eOqaysTGVlZe32GT9+vLZt2yZJ2rdvnx599FFt375dBw4c0JtvvqnZs2fryiuv1OTJk606FQABVONukrvJK4kB2V0hHAH+ZdmA7HXr1qm4uFjFxcUaOnRou9cMo3kJ/MbGRu3du9c3Gy02Nlbr16/XU089pdraWuXk5Ojmm2/Wgw8+GPT2AwgOs6soMTZK8bFRFrfGntJ93WpuGYYhh8NhcYuA0GZZOJo7d+5ZxyaNGDHCF5QkKScnRxs3bgxwywDYCTPVzs6sHNU3elXX4FGiyzYTkYGQZKt1jgDgTMdPmQtAEo66kuiKVnxMc1WNrjWg/whHAGyNafw9Yy4ESTgC+o9wBMDWjjGNv0fSElkIEvAXwhEAW2u9rxrhqDvMWAP8h3AEwNYqfGsc0a3WnQyzW+0UlSOgvwhHAGzNtzo2laNutXarUTkC+otwBMDWmMrfM+ZaRxW1hCOgvwhHAGyNqfw9Y4ZHutWA/iMcAbCt0w0e1TZ4JLVWRtA5BmQD/kM4AmBb5i/62GinBrDqc7fa3kIEQP8QjgDY1jHfTDUX9ws7C7NyVF3fJHeTx+LWAKGNcATAtip8M9XoUjub5PgYRTubA2QFC0EC/UI4AmBbLADZcw6HQ2l0rQF+QTgCYFvMVOsd8+dE5QjoH8IRANtqXeOIbrWeMMPRMSpHQL8QjgDYFqtj9w7T+QH/IBwBsC2zApJGOOoR3yrZdKsB/UI4AmBbrQOy6VbrCSpHgH8QjgDYljkgO4PKUY+YY7MIR0D/EI4A2FJDk1fV9U2SGHPUU2mJ3F8N8AfCEQBbMu8uH+10KDk+xuLWhAbfVP5aKkdAfxCOANiSWf1IGxArp5Nbh/SE2a12orZBHq9hcWuA0EU4AmBLrI7de6kJsXI4JK/RHJAA9A3hCIAtHSMc9Vp0lFODElqm89O1BvQZ4QiALR33rXHENP7eMJc9YFA20HeEIwC2ZP5yZxp/77DWEdB/hCMAtsSYo75JIxwB/UY4AmBL5pgZbjrbO75uNW4hAvQZ4QiALZndalSOeoduNaD/CEcAbIlutb5prRwRjoC+IhwBsJ0mj1cn6qgc9YVvlWy61YA+IxwBsJ0TdQ0yDMnhkAYlcOuQ3qBbDeg/whEA2zHHG6UmxCo6iq+p3kgf2Fo5MgxuIQL0Bd86AGyH8UZ9l5bYPOaoweNVdX2Txa0BQhPhCIDtMI2/7+JiojTQFS2JrjWgrywNRyNGjJDD4Wj3eOyxx7o9pr6+XgsWLFBaWpoGDBigm2++WeXl5UFqMYBgYBp//5hda8dPEY6AvrC8crR8+XIdOXLE97j77ru73f++++7Tn//8Z7366qvauHGjvvrqK333u98NUmsBBAPdav1jdq2xECTQN9FWN2DgwIHKysrq0b5VVVV64YUX9NJLL+nrX/+6JGnVqlWaMGGCtmzZoksvvTSQTQUQJMcIR/3im85fS+UI6AvLK0ePPfaY0tLSdMEFF+iJJ55QU1PXAwi3b9+uxsZGTZs2zbdt/PjxGjZsmDZv3tzlcW63W9XV1e0eAOzLrHikDWDMUV+YY7XoVgP6xtLK0U9+8hNdeOGFSk1N1aZNm1RYWKgjR47oV7/6Vaf7l5WVKTY2VikpKe22Z2ZmqqysrMvPKSoq0rJly/zZdAABZP5Sz6By1Cdm5egY3WpAn/i9crRkyZIOg6zPfOzZs0eStGjRIl199dWaPHmy7rzzTv3yl7/U008/Lbfbv//bKSwsVFVVle9x6NAhv74/AP9izFH/pPlWyaZyBPSF3ytHixcv1ty5c7vdZ9SoUZ1uz83NVVNTkw4cOKBx48Z1eD0rK0sNDQ2qrKxsVz0qLy/vdtySy+WSy8WXLBAKvF5DFbUts9WYyt8nGdxfDegXv4ejjIwMZWRk9OnYnTt3yul0avDgwZ2+ftFFFykmJkbvvvuubr75ZknS3r17VVJSory8vD63GYB9VJ1ulMfbvLJzWiL/qemL1luI0K0G9IVlY442b96srVu36pprrtHAgQO1efNm3Xffffr+97+vQYMGSZIOHz6sa6+9Vn/4wx80depUJScna968eVq0aJFSU1OVlJSku+++W3l5ecxUA8KEWe1Ijo9RbLTlc0ZCUhr3VwP6xbJw5HK59PLLL+uRRx6R2+3WyJEjdd9992nRokW+fRobG7V3717V1dX5tq1YsUJOp1M333yz3G63CgoK9F//9V9WnAKAAGidxk+XWl+ZP7u6Bo/qGpqUEGv5qi1ASLHsX8yFF16oLVu2dLvPiBEjOtw4MS4uTitXrtTKlSsD2TwAFjG7ghiM3XcDXNFyRTvlbvKqoqZBCamEI6A3qFkDsBVzGj/hqO8cDkeb6fx0rQG9RTgCYCvH6VbzC/PnV8GgbKDXCEcAbIU1jvwjnUHZQJ8RjgDYilnpMO8sj77xhSNuIQL0GuEIgK1QOfKPNBaCBPqMcATAVlpnqzHmqD98laNaxhwBvUU4AmAbhmG0WeeIylF/mN2SdKsBvUc4AmAbp9xNamjySiIc9Vd6It1qQF8RjgDYhlnlSIyNUnxslMWtCW1m5aiCbjWg1whHAGzjODPV/MasvFXWNarR47W4NUBoIRwBsA1mqvlPSnyMopwOSSwECfQW4QiAbVSwOrbfOJ0OpTLuCOgTwhEA2zjGTWf9ilWygb4hHAGwDbrV/CvdtxAk3WpAbxCOANiGOVuNbjX/oHIE9A3hCIBtUDnyLzNkVhCOgF4hHAGwDaby+1dr5YhuNaA3CEcAbIPKkX/RrQb0DeEIgC3UNTSprsEjiTFH/pLW8nM8xv3VgF4hHAGwBXOhQle0UwNc0Ra3JjyYlSNuIQL0DuEIgC0ca9Ol5nA4LG5NeMhoGbt1orZBXq9hcWuA0EE4AmALvmn8DMb2G3OFbI/X0Mk6qkdATxGOANiCb6ZaIuON/CUmyqmUhBhJdK0BvUE4AmALzFQLDN+MNQZlAz1GOAJgC75wNJDKkT+ZM/+OMZ0f6DHCEQBboHIUGGksBAn0GuEIgC34xhwRjvwqw5zOT+UI6DHCEQBboHIUGGa3GqtkAz1HOAJgC+aA4QzGHPkV3WpA7xGOAFjO3eRRdX2TJCktkcqRP6XTrQb0GuEIgOXMW4dEOx1Kjo+xuDXhpbVbjcoR0FOEIwCWM8fDpA2IldPJrUP8yawcHatxyzC4hQjQE4QjAJZjMHbgmD/ThiavTrmbLG4NEBoIRwAsxzT+wImPjVJibJSk1u5LAN0jHAGwHJWjwDJv5st0fqBnLAtHGzZskMPh6PTx0UcfdXnc1Vdf3WH/O++8M4gtB+Bvx0+1VI6Yxh8QaS038+X+akDPRFv1wfn5+Tpy5Ei7bQ899JDeffddXXzxxd0eO3/+fC1fvtz3PCEhISBtBBAcvsoR0/gDwnfz2Vq61YCesCwcxcbGKisry/e8sbFRb7zxhu6++245HN3PVklISGh3LIDQxk1nA8vXrUblCOgR24w5evPNN1VRUaHbbrvtrPv+8Y9/VHp6uiZOnKjCwkLV1dV1u7/b7VZ1dXW7BwD7YMxRYKUncgsRoDcsqxyd6YUXXlBBQYGGDh3a7X7f+973NHz4cGVnZ+vTTz/VAw88oL1792rNmjVdHlNUVKRly5b5u8kA/ITZaoHFgGygd/xeOVqyZEmXA63Nx549e9odU1paqnfeeUfz5s076/vfcccdKigo0KRJkzRr1iz94Q9/0GuvvaZ9+/Z1eUxhYaGqqqp8j0OHDvX7PAH4R5PHq5N1hKNAar2FCGOOgJ7we+Vo8eLFmjt3brf7jBo1qt3zVatWKS0tTd/+9rd7/Xm5ubmSpOLiYo0ePbrTfVwul1wuvnQBO6qub5K5cHNKArcOCQTfgGwqR0CP+D0cZWRkKCMjo8f7G4ahVatWafbs2YqJ6f0X486dOyVJQ4YM6fWxAKxXdbpRkpQYG6WYKNsMgwwradxfDegVy7+J3nvvPe3fv1+33357h9cOHz6s8ePHa9u2bZKkffv26dFHH9X27dt14MABvfnmm5o9e7auvPJKTZ48OdhNB+AHZjjihrOBY1aOatxNqm/0WNwawP4sH5D9wgsvKD8/X+PHj+/wWmNjo/bu3eubjRYbG6v169frqaeeUm1trXJycnTzzTfrwQcfDHazAfiJGY6SCEcBkxQXrZgohxo9hk7UNig7Jd7qJgG2Znk4eumll7p8bcSIEe3uIp2Tk6ONGzcGo1kAgsQMR4w3ChyHw6GkuBhV1Dao6nQj4Qg4C8u71QBENrrVgsP8+Zo/bwBdIxwBsFRVyzR+wlFgJRGOgB4jHAGwFJWj4KByBPQc4QiApQhHwWH+fKsJR8BZEY4AWIpwFBxUjoCeIxwBsBRT+YODcAT0HOEIgKWqTjdJonIUaIQjoOcIRwAsVe1b5yjW4paEN8IR0HOEIwCWYsxRcCQnEI6AniIcAbBMo8erGjfdasFA5QjoOcIRAMu0nVaeFGf53YzCGlP5gZ4jHAGwjFnFGOCKVnQUX0eB1LZy1PaelQA64tsIgGUYbxQ85s+40WPodKPH4tYA9kY4AmAZ1jgKnoTYKEU7HZIYdwScDeEIgGVaK0eMNwo0h8Phqx5V1hGOgO4QjgBYxrfGUTxrHAUDM9aAniEcAbCMWcFgzFFwJBGOgB4hHAGwjK9bLYFwFAxUjoCeIRwBsAyz1YKLtY6AniEcAbAMs9WCi8oR0DOEIwCWoXIUXIQjoGcIRwAsQzgKLsIR0DOEIwCWqSYcBRXhCOgZwhEAy1T51jkiHAUDU/mBniEcAbBEo8er2obme3xROQoOKkdAzxCOAFii7S9oZqsFB1P5gZ4hHAGwhBmOBrqiFdVyQ1QElrnYZtXpRhmGYXFrAPsiHAGwBGscBZ9ZOWr0GDrd6LG4NYB9EY4AWIJp/MGXGBvlq9Ix7gjoGuEIgCWYxh98DoeDQdlADxCOAFiCypE1fOGojnAEdIVwBMAS5i/nlATCUTCx1hFwdoQjAJaopHJkCbrVgLMjHAGwBLPVrEE4As6OcATAEow5skZyfLQkFoIEukM4AmAJwpE1qBwBZxewcPTzn/9c+fn5SkhIUEpKSqf7lJSU6MYbb1RCQoIGDx6s+++/X01NTd2+74kTJzRr1iwlJSUpJSVF8+bNU01NTQDOAEAgMZXfGoQj4OwCFo4aGho0Y8YM3XXXXZ2+7vF4dOONN6qhoUGbNm3S73//e61evVoPP/xwt+87a9Ys7d69W+vWrdNbb72l999/X3fccUcgTgFAAFE5sgbhCDi76EC98bJlyyRJq1ev7vT1v/zlL/rss8+0fv16ZWZmasqUKXr00Uf1wAMP6JFHHlFsbGyHYz7//HOtXbtWH330kS6++GJJ0tNPP61vfOMbevLJJ5Wdnd3pZ7ndbrndbt/zqqoqSVJ1dXV/ThFAP5yorJS3wStn02lVV/vn/2m1ta1/rq6WPNwho4Noj1ted52On6jkOxAhx/w7G/B7AxoBtmrVKiM5ObnD9oceesg4//zz22378ssvDUnGJ5980ul7vfDCC0ZKSkq7bY2NjUZUVJSxZs2aLtuwdOlSQxIPHjx48ODBIwwe+/bt63Ue6Y2AVY7OpqysTJmZme22mc/Lysq6PGbw4MHttkVHRys1NbXLYySpsLBQixYt8j2vrKzU8OHDVVJSouTk5L6eQsiprq5WTk6ODh06pKSkJKubEzScN+cdCThvzjsSVFVVadiwYUpNTQ3o5/QqHC1ZskS/+MUvut3n888/1/jx4/vVKH9zuVxyuVwdticnJ0fUXypTUlIS5x1BOO/IwnlHlkg9b6czsJPtexWOFi9erLlz53a7z6hRo3r0XllZWdq2bVu7beXl5b7Xujrm6NGj7bY1NTXpxIkTXR4DAADQG70KRxkZGcrIyPDLB+fl5ennP/+5jh496usqW7dunZKSknTuued2eUxlZaW2b9+uiy66SJL03nvvyev1Kjc31y/tAgAAkS1gdamSkhLt3LlTJSUl8ng82rlzp3bu3Olbk+i6667Tueeeqx/84Af6+9//rnfeeUcPPvigFixY4OsC27Ztm8aPH6/Dhw9LkiZMmKDrr79e8+fP17Zt2/Thhx9q4cKFuvXWW7ucqdYZl8ulpUuXdtrVFs44b847EnDenHck4LwDe94OwwjMfLi5c+fq97//fYftf/3rX3X11VdLkg4ePKi77rpLGzZsUGJioubMmaPHHntM0dHNBa0NGzbommuu0f79+zVixAhJzYtALly4UH/+85/ldDp188036ze/+Y0GDBgQiNMAAAARJmDhCAAAIBRxbzUAAIA2CEcAAABtEI4AAADaIBwBAAC0EZbh6Oc//7ny8/OVkJCglJSUTvcpKSnRjTfeqISEBA0ePFj333+/mpqaun3fEydOaNasWUpKSlJKSormzZvnW5rAjjZs2CCHw9Hp46OPPuryuKuvvrrD/nfeeWcQW95/I0aM6HAOjz32WLfH1NfXa8GCBUpLS9OAAQN08803+xYmDQUHDhzQvHnzNHLkSMXHx2v06NFaunSpGhoauj0uFK/3ypUrNWLECMXFxSk3N7fDgrJnevXVVzV+/HjFxcVp0qRJevvtt4PUUv8oKirSJZdcooEDB2rw4MGaPn269u7d2+0xq1ev7nBd4+LigtRi/3jkkUc6nMPZ7sAQ6tda6vz7y+FwaMGCBZ3uH6rX+v3339e3vvUtZWdny+Fw6PXXX2/3umEYevjhhzVkyBDFx8dr2rRp+uKLL876vr39fuhMWIajhoYGzZgxQ3fddVenr3s8Ht14441qaGjQpk2b9Pvf/16rV6/Www8/3O37zpo1S7t379a6dev01ltv6f3339cdd9wRiFPwi/z8fB05cqTd4/bbb9fIkSN18cUXd3vs/Pnz2x33+OOPB6nV/rN8+fJ253D33Xd3u/99992nP//5z3r11Ve1ceNGffXVV/rud78bpNb23549e+T1evX8889r9+7dWrFihZ577jn97Gc/O+uxoXS9//SnP2nRokVaunSpPvnkE51//vkqKCjosHq+adOmTZo5c6bmzZunHTt2aPr06Zo+fbp27doV5Jb33caNG7VgwQJt2bJF69atU2Njo6677jrV1tZ2e1xSUlK763rw4MEgtdh/zjvvvHbn8MEHH3S5bzhca0n66KOP2p3zunXrJEkzZszo8phQvNa1tbU6//zztXLlyk5ff/zxx/Wb3/xGzz33nLZu3arExEQVFBSovr6+y/fs7fdDlwJ6W1uLrVq1ykhOTu6w/e233zacTqdRVlbm2/bss88aSUlJhtvt7vS9PvvsM0OS8dFHH/m2/d///Z/hcDiMw4cP+73tgdDQ0GBkZGQYy5cv73a/q666yrjnnnuC06gAGT58uLFixYoe719ZWWnExMQYr776qm/b559/bkgyNm/eHIAWBsfjjz9ujBw5stt9Qu16T5061ViwYIHvucfjMbKzs42ioqJO9/+3f/s348Ybb2y3LTc31/jRj34U0HYG0tGjRw1JxsaNG7vcp6vvv1CydOlS4/zzz+/x/uF4rQ3DMO655x5j9OjRhtfr7fT1cLjWkozXXnvN99zr9RpZWVnGE0884dtWWVlpuFwu47//+7+7fJ/efj90JSwrR2ezefNmTZo0SZmZmb5tBQUFqq6u1u7du7s8JiUlpV3FZdq0aXI6ndq6dWvA2+wPb775pioqKnTbbbeddd8//vGPSk9P18SJE1VYWKi6urogtNC/HnvsMaWlpemCCy7QE0880W236fbt29XY2Khp06b5to0fP17Dhg3T5s2bg9HcgKiqqurR3atD5Xo3NDRo+/bt7a6T0+nUtGnTurxOmzdvbre/1PzvPdSvq6SzXtuamhoNHz5cOTk5uummm7r8frOzL774QtnZ2Ro1apRmzZqlkpKSLvcNx2vd0NCgF198UT/84Q/lcDi63C8crnVb+/fvV1lZWbvrmZycrNzc3C6vZ1++H7rSq3urhYuysrJ2wUiS73lZWVmXx5j3gDNFR0crNTW1y2Ps5oUXXlBBQYGGDh3a7X7f+973NHz4cGVnZ+vTTz/VAw88oL1792rNmjVBamn//eQnP9GFF16o1NRUbdq0SYWFhTpy5Ih+9atfdbp/WVmZYmNjO4xRy8zMDJnre6bi4mI9/fTTevLJJ7vdL5Su9/Hjx+XxeDr997tnz55Oj+nq33uoXlev16t7771Xl112mSZOnNjlfuPGjdPvfvc7TZ48WVVVVXryySeVn5+v3bt3n/U7wC5yc3O1evVqjRs3TkeOHNGyZct0xRVXaNeuXRo4cGCH/cPtWkvS66+/rsrKym5v+h4O1/pM5jXrzfXsy/dDV0ImHC1ZskS/+MUvut3n888/P+tgvXDQl59FaWmp3nnnHb3yyitnff+246gmTZqkIUOG6Nprr9W+ffs0evTovje8n3pz3osWLfJtmzx5smJjY/WjH/1IRUVFIXcvor5c78OHD+v666/XjBkzNH/+/G6Ptev1RucWLFigXbt2dTv2Rmq+UXdeXp7veX5+viZMmKDnn39ejz76aKCb6Rc33HCD78+TJ09Wbm6uhg8frldeeUXz5s2zsGXB88ILL+iGG27o9v6h4XCt7SZkwtHixYu7Tc6SNGrUqB69V1ZWVofR6+aspKysrC6POXNAV1NTk06cONHlMYHSl5/FqlWrlJaWpm9/+9u9/rzc3FxJzZUIK39Z9ufvQG5urpqamnTgwAGNGzeuw+tZWVlqaGhQZWVlu+pReXl50K/vmXp73l999ZWuueYa5efn67e//W2vP88u17sz6enpioqK6jCLsLvrlJWV1av97WzhwoW+ySC9rQjExMToggsuUHFxcYBaF3gpKSn62te+1uU5hNO1lprvP7p+/fpeV3HD4Vqb16y8vFxDhgzxbS8vL9eUKVM6PaYv3w9d6tUIpRBztgHZ5eXlvm3PP/+8kZSUZNTX13f6XuaA7I8//ti37Z133gmJAdler9cYOXKksXjx4j4d/8EHHxiSjL///e9+blnwvPjii4bT6TROnDjR6evmgOz/+Z//8W3bs2dPyA3ILi0tNcaOHWvceuutRlNTU5/ew+7Xe+rUqcbChQt9zz0ej3HOOed0OyD7m9/8ZrtteXl5ITVI1+v1GgsWLDCys7ONf/7zn316j6amJmPcuHHGfffd5+fWBc+pU6eMQYMGGb/+9a87fT0crnVbS5cuNbKysozGxsZeHReK11pdDMh+8sknfduqqqp6NCC7N98PXbanV3uHiIMHDxo7duwwli1bZgwYMMDYsWOHsWPHDuPUqVOGYTT/xZk4caJx3XXXGTt37jTWrl1rZGRkGIWFhb732Lp1qzFu3DijtLTUt+366683LrjgAmPr1q3GBx98YIwdO9aYOXNm0M+vt9avX29IMj7//PMOr5WWlhrjxo0ztm7dahiGYRQXFxvLly83Pv74Y2P//v3GG2+8YYwaNcq48sorg93sPtu0aZOxYsUKY+fOnca+ffuMF1980cjIyDBmz57t2+fM8zYMw7jzzjuNYcOGGe+9957x8ccfG3l5eUZeXp4Vp9AnpaWlxpgxY4xrr73WKC0tNY4cOeJ7tN0n1K/3yy+/bLhcLmP16tXGZ599Ztxxxx1GSkqKb/bpD37wA2PJkiW+/T/88EMjOjraePLJJ43PP//cWLp0qRETE2P84x//sOoUeu2uu+4ykpOTjQ0bNrS7rnV1db59zjzvZcuWGe+8846xb98+Y/v27catt95qxMXFGbt377biFPpk8eLFxoYNG4z9+/cbH374oTFt2jQjPT3dOHr0qGEY4XmtTR6Pxxg2bJjxwAMPdHgtXK71qVOnfL+fJRm/+tWvjB07dhgHDx40DMMwHnvsMSMlJcV44403jE8//dS46aabjJEjRxqnT5/2vcfXv/514+mnn/Y9P9v3Q0+FZTiaM2eOIanD469//atvnwMHDhg33HCDER8fb6SnpxuLFy9ul87/+te/GpKM/fv3+7ZVVFQYM2fONAYMGGAkJSUZt912my9w2dnMmTON/Pz8Tl/bv39/u59NSUmJceWVVxqpqamGy+UyxowZY9x///1GVVVVEFvcP9u3bzdyc3ON5ORkIy4uzpgwYYLxn//5n+2qgmeet2EYxunTp40f//jHxqBBg4yEhATjO9/5TrtgYXerVq3q9O992wJxuFzvp59+2hg2bJgRGxtrTJ061diyZYvvtauuusqYM2dOu/1feeUV42tf+5oRGxtrnHfeecb//u//BrnF/dPVdV21apVvnzPP+9577/X9jDIzM41vfOMbxieffBL8xvfDLbfcYgwZMsSIjY01zjnnHOOWW24xiouLfa+H47U2vfPOO4YkY+/evR1eC5drbf6ePfNhnpvX6zUeeughIzMz03C5XMa1117b4ecxfPhwY+nSpe22dff90FMOwzCM3nXEAQAAhK+IXOcIAACgK4QjAACANghHAAAAbRCOAAAA2iAcAQAAtEE4AgAAaINwBAAA0AbhCAAAoA3CEQAAQBuEIwAAgDYIRwAAAG38f05BHC+ILT4uAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " \n", + "Code test passed\n", + "Go on to the next step\n" + ] + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "\n", + "a = -4.9\n", + "b = float(input(\"Initial velocity = \"))\n", + "c = float(input(\"Initial height = \"))\n", + "\n", + "# Change vx and vy to represent the vertex\n", + "vx = -b/(2*a)\n", + "vy = a*vx**2 + b*vx + c\n", + "\n", + "\n", + "# Also change the following dimensions to display the vertex\n", + "xmin = -10\n", + "xmax = 10\n", + "ymin = -10\n", + "ymax = 10\n", + "\n", + "# You do not need to change anything below this line\n", + "points = 2*(xmax-xmin)\n", + "x = np.linspace(xmin,xmax,points)\n", + "y = a*x**2 + b*x + c\n", + "\n", + "fig, ax = plt.subplots()\n", + "plt.axis([xmin,xmax,ymin,ymax]) # window size\n", + "plt.plot([xmin,xmax],[0,0],'b') # blue x axis\n", + "plt.plot([0,0],[ymin,ymax], 'b') # blue y axis\n", + "\n", + "plt.plot(x,y) # plot the line for the equation\n", + "plt.plot([vx],[vy],'ro') # plot the vertex point\n", + "\n", + "print(\" (\", vx, \",\", vy, \")\")\n", + "print(\" \")\n", + "plt.show()\n", + "\n", + "\n", + "# Only change code above this line\n", + "import math_code_test_b as test\n", + "test.step19(In[-1].split('# Only change code above this line')[0])" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "hN_fvENUGBAm" + }, + "source": [ + "# Step 20 - Quadratic Functions - C" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "GrJNli5pGBAn" + }, + "source": [ + "Like many other functions, the `c` value (also called the \"constant\" because it is not a variable) affects the vertical shift of the graph. Run the following code to see how changing the `c` value changes the graph." + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": { + "id": "hiSN0VexGBAn" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Code test Passed\n", + "Go on to the next step\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAGzCAYAAAABsTylAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3hUVfrHP9PSe++NFtIg9KIgioIKCiqo2Bv27rq6+9t13aJrWUXFhl0RBFSqDVQE6TWkEUJI73WSTDL93t8fE0aCSSYDgQCez/Pk4WHm3Dtnkpl7vvc97/t+FbIsywgEAoFAIBCcgSj7ewICgUAgEAgE3SGEikAgEAgEgjMWIVQEAoFAIBCcsQihIhAIBAKB4IxFCBWBQCAQCARnLEKoCAQCgUAgOGMRQkUgEAgEAsEZixAqAoFAIBAIzliEUBEIBAKBQHDGIoSKQCD4HS+++CKJiYlIktTfUzkjyM3NRa1Wk52d3d9TEQj+cAihIhAIOtHS0sILL7zAn//8Z5TK3y4RCoWCjz/+uP8m1g1xcXH84x//OOHjv/jiC0aMGIGbmxvBwcHccccd1NfXdxqTlJTE5Zdfzt///veTnK1AIHAWIVQEAkEnPvzwQywWC9dff31/T+WU8/bbb3P99dcTEBDAK6+8wl133cUXX3zBRRddhMFg6DT2nnvuYeXKlRw5cqSfZisQ/DERQkUgEHTio48+4oorrsDNza2/p3JKMZlM/OUvf2HSpEls2LCB++67j+eee45ly5aRmZnJe++912n81KlT8ff355NPPumnGQsEf0yEUBEIBHaKiorIzMxk6tSpvRpfUVHBHXfcQUREBK6ursTHx3PvvfdiMplO8UxPnuzsbLRaLddeey0KhcL++IwZM/Dy8uKLL77oNF6j0XDBBRewevXq0z1VgeAPjbq/JyAQCM4ctm3bBsCIESMcjq2srGTMmDFotVrmz59PYmIiFRUVfPnll7S3t+Pi4tLtsU1NTVitVoev4eHhgYeHR+/fgBMYjUYA3N3df/ecu7s7+/fvR5KkTnk6I0eOZPXq1bS0tODj43NK5iUQCDojhIpAILCTl5cHQHx8/O+ek2W50/+ffvppqqur2blzJ6NGjbI//s9//vN3Y48nPT2dkpISh/N55plnHCbKFhcXOzxPVwwaNAiFQsHWrVu57bbb7I8fOnSIuro6wCaoAgMD7c8lJCQgSRJ5eXmMGTPmhF5XIBA4hxAqAoHATkNDA2q1Gi8vrx7HSZLEqlWrmDlzZieRcpRjt1K64vPPP0ev1zucT0JCgsMxJ0pQUBBz587lk08+YejQocyePZuKigoefPBBNBoNZrP5d3P09/cH+F1VkEAgOHUIoSIQCJymrq6OlpYWUlJSTuj4iRMn9vGMTox3330XvV7PE088wRNPPAHAjTfeyIABA/j6669/J9iORoocCTGBQNB3CKEiEAjsBAYGYrFYaG1txdvb+5S9Tl1dXa9yVLy8vBxGd04GX19fVq9eTWlpKcXFxcTGxhIbG8uECRMIDg7Gz8+v0/impibAFo0RCASnByFUBAKBncTERMBW/ZOWltbtuODgYHx8fE64U+vo0aP7LEelL4iJiSEmJgYArVbL3r17ufrqq383rqioCKVSyeDBg0/5nAQCgQ0hVAQCgZ3x48cDsGfPnh6FilKpZNasWSxevJg9e/b8Lk9FluUet0fOhByV7nj66aexWCw8+uijv3tu7969JCcn4+vre9rnJRD8UVHIjtLzBQLBH4rU1FRSU1NZsmRJj+MqKioYNWoULS0tzJ8/n6FDh1JVVcWKFSvYsmXL77ZNTidxcXGA44qg//73v2RnZzN27FjUajWrVq1i/fr1/Pvf/+avf/1rp7Fms5mwsDDuu+8+/vWvf52imQsEguMRERWBQNCJ22+/nb///e/o9foue4wcJTIykp07d/K3v/2Nzz//nJaWFiIjI7n00ktPWe+T3tLW1sbAgQMdjktNTWXlypWsWbMGq9VKWloay5cvZ86cOb8b+9NPP9HY2Mgtt9xyKqYsEAi6QURUBAJBJ5qbm0lISODFF1/kjjvu6O/pOE1ubi7JycmsW7eOyy+/vM/OO2vWLBQKBStXruyzcwoEAseIFvoCgaATvr6+PPnkk7z00ktIktTf03GajRs3Mn78+D4VKQcPHmTdunViy0cg6AdEREUgEAgEAsEZi4ioCAQCgUAgOGMRQkUgEAgEAsEZixAqAoFAIBAIzlhOqVDZvHkzM2fOJCIiAoVCwapVqzo9L8syf//73wkPD8fd3Z2pU6dy+PDhUzklgUAgEAgEZxGntI9KW1sbw4YN4/bbb+eqq6763fMvvvgir7/+Op988gnx8fH87W9/Y9q0aeTm5uLm5tar15AkicrKSry9vYVRmEAgEAgEZwmyLNPa2kpERARKZQ9xE/k0AcgrV660/1+SJDksLEx+6aWX7I9ptVrZ1dVVXrp0aa/PW1ZWJgPiR/yIH/EjfsSP+DkLf8rKynpc5/utM21RURHV1dVMnTrV/pivry9jx45l+/btXHfddV0eZzQaMRqN9v/LHdXVZWVl+Pj4nNpJCwQCgUAg6BNaWlqIjo526NTeb0KluroagNDQ0E6Ph4aG2p/riueff55nn332d4/7+PgIoSIQCAQCwVmGo7SNs67q5+mnn6a5udn+U1ZW1t9TEggEAoFAcIroN6ESFhYGQE1NTafHa2pq7M91haurqz16IqIoAoFAIBCc2/SbUImPjycsLIyffvrJ/lhLSws7d+5k/Pjx/TUtgUAgEAgEZxCnNEdFp9NRUFBg/39RUREZGRkEBAQQExPDI488wr///W8GDRpkL0+OiIhg1qxZp3JaAoFAIBAIzhJOqVDZs2cPU6ZMsf//scceA+CWW27h448/5sknn6StrY358+ej1Wo577zz+P7773vdQ0UgEAgEAsG5zVnvntzS0oKvry/Nzc0iX0UgEAgEgrOE3q7fZ13Vj0AgEAgEgj8OQqgIBAKBQCA4YxFCRSAQCAQCwRmLECoCgUAgEAjOWIRQEQgEAoFAcMYihIpAIBAIBIIzln4zJRQIBOc2Jklif0s727U6GsyWfplDiIuGCX5eDPP2QK3s2fhMIBCcmQihIhAI+gSLJJOpa2drk46tTTp2Nrehl6T+nhYAniol43y9mOhv+0nxckflwLFVIBCcGQihIhAITghJlsnR6dnSpGOrVscOrQ6dtbMwCdComOjnTby7i0Mr975GlmUK2o1s0+rQWqz81NjCT40tAPiqVYz382Sinzfn+XsxxNMNpRAuAsEZiRAqAoGgV8iyTF6bga1aW8Rke4cAOBZftYoJfh2RC78zQwAcFVRbjxFUzRYr39e38H29TbgEaGzzPs/fm4l+Xgz0cD3twkogEHSNaKEvEAi6RJZljuiN9gV+a9Pvc028VErG+dlEyUR/L5LPgi2VY7eotml17ND+fosq1EX9m3Dx9yLW7fRHhASCc53ert9CqAgEAjslxwmTapO50/PuSgVjfL04ryNiknYOJKmaJImMlna2anVsadKxp6UNo9T5shjpqumIEtmES5SbSz/NViA4dxBCRSAQOKTCYLKLkq3aVsoNnYWJq1LBSB9PJvrZxEm6jwcuynO7q4HBKrG3pc3+e9nX0o75uMtknLtLRxTJtlUU6qrpp9kKBGcvQqgIBILfUWs0s60jcrBV20qR3tTpebUCRnQIk4n+Xoz08cRddW4LE0e0Wa3saW5na1MrW7Q6DrS2Yz3uqjnIw7UjN8ebCX5eBLmI9D+BwBFCqAgEAsCWTPptXTOvl9SQqdN3ek4JDPP2YKK/LWIy2tcTT5WqfyZ6ltBqsbKzuY0tTa1sa9KRpdNz/EV0pI8Hj8SGMjXQR+S2CATdIISKQPAHR5Zl1je08FJRNdkdAkUBpHi5M6Ejx2Scnxc+aiFMTgat2cJ27W95PQfbDPbnRvh48Of4cCb5ewnBIhAchxAqAsEfFFmW2djYyotF1WS0tgO26py7ooK5MyqYQLEtcUqpNZp5t7yOD8vr0Hck5Y7z9eRP8WFM9Pfu59kJBGcOQqgIBH8wZFlmS5OOF4uq2d3SBoC7UsmdUUHcGxNCgEYIlNNJncnMGyW1fFJZb68iOs/Piyfjwxjj59XPsxMI+h8hVASCPxDbtTpeKKxiR7NNoLgpFdwaGcT9MSEEu4iKlP6kymji9ZJaFlc22KuHpgR486f4MEb4ePbz7ASC/kMIFYHgD8Ce5jZeLKpic5MOABeFgpsjA3kwJvSMKZm1Wo1Yra398tpqtTdKpWu/vPbxlBtMvFZSw9KqBiwdV92LA334U3wYad4e/Ts5gaAfEEJFIDiHyWhp58WiKn5utAkAjULB9eEBPBIbSkQ/NyOTJCPNzRk0Ne2gqWk7zS0HkGWT4wNPAUqlC74+I/D3H4e//3h8fNJQKvv391OiN/JqcQ0rahrtZc6XBfnyRHwYSV7u/To3geB0IoSKQHAOkt3azkvF1fzQ4VGjUsC1YTaBEuPeP5EDSTLT0prZIUx20Ny8F0ky9stcHKFUuuPnNwp///H4+4/D2ysZpbJ/cncK2438r7iar2ua7OXNV4T48URcGIM93fplTgLB6UQIFYHgHCKvTc9LRdV8U9cM2PqfXB3mz+NxYcSdZoEiy1ZaW3NoatpOU9MOtM17sFrbO41xcQnC32+cPZLh7h7bL+7J7e2F9shOk3YnZnNjpzEqlRf+fmM65jkOL6+hKBSnt8HdoTYD/yuuZk2tFrD9ba8K9eexuDASPM6MbSuB4FQghIpAcA5Q0G7gf0XVrKrVImPrgzIrxI/H4sIYdJruumVZQqc71LHY70Cr3YXF0jnnRKPxx89vLP7+4wjwH4+Hx4Azrm+ILEu0tR2msWmbTWBpd2GxtHQao1b74e8/pkNkjcfTc9Bpex+5Oj0vF1Xzbb1NjKoUMCc0gEfjQontp2iZQHAqEUJFIDiLKdbbtgW+qm7iqK/v5cG+PBEXxtBTnMcgyzJt7QX2SIRWuwuzuanTGLXa2y5M/P3G4eU15LRHIk4WW2Qolybtjg7hshurta3TGI0mEH//sfj7jyfAfzzu7nGnXLhktrbzUlE1GxpsIkqtgOvDA3k4NlSYIQrOKYRQEQjOQsoMJl4trmZZ9W+JltOCfPhTXBgpp6gyRJZl9Ppimpp20Ni0Ha12JyZTfacxKpUHfr7H5HZ4J6NQnFsdbSXJTGtr9m8CrXkvkmToNMbVJdS+TWTb0oo+ZfPZ19zGi0XV/NJki165KBTcEBHIQ7EhhLsKwSI4+xFCRSA4i6g0mFhQUsPSqkZ7r40LA7z5U3w46T59L1D0+nLbgqy15ZkYjdWdnlcqXfH1HWnfyvH2TkWpPDPKnU8XkmSkuSXTnovT3Lz/d9VLbm6R9m0if/9xuLmF9/k8dmptTfy2am0l6K5KBbdEBPFgrOiRIzi7EUJFIDgLqDGaeb2khs8qGzB1fBUn+Xvxp/hwRvv2XTMwWbZSV7eB+oZfaGragcFQ1ul5hcIFX9/h9gRYX9/hZ0z/kTMFq9VAc/M+e65OS0smsmzpNMbdPRZ///EEBV1IUOCUPt0O29Jks0XY1fxb1+Hbo4K4LzpE2CIIzkqEUBEIzmDqTRYWltbwSUV9Jz+YJ+PDmeDfd+3VZVmitvY7Cotep729wP64QqHCxzvNvoXh6zsClUr08HAGi6WN5uY99rLsltZssGcUgZdXEgnxDxMUdFGf5bXIssymDsGyr8VWaeXZ4eN0d3Qw/sImQXAWIYSKQHAGYrBKLCipYVF5He1W26I2qsNh97w+dNiVZZm6+vUUFb6Gru0QAGq1LxHh1+AfMAE/31Go1cJvpi8xm1vQNu+msXELVVVfY7Xatmq8vVNJSHiEwIDJffr3/bHDGTuzwxnbW6XkvpgQHogJRaM8syquBIKuEEJFIDjDKNEbuSunmMxW28IyzNudP8eHMyXAu08XsIaGjRQWLqBVlwPYeoXExNxBTPRtqNXCvfd0YDY3UVL6PmVlnyBJtr+3r086CQmP4u8/oU//3t/XN/NiUTUH22yJv2N8PXk3OVYk3ArOeIRQEQjOINbXN/PgwVKaLVb81SpeGhLN5cG+fbpgNTZuobBoAS0tGQCoVJ5ER91CTMwdaDR+ffI6AucwmeopKVlEecVie7deP78xJMQ/ir//mD57HUmW+bqmiafzy2m1SgRq1LyTFMv5AUKYCs5chFARCM4ALJLMf4uqWFhaC8AIHw8WJcf1aT+MxqbtFBYuoLl5DwBKpRvRUTcTE3MXLi4BffY6ghPHaKyluORtKiq+sFcO+ftPYEDCo/j6juiz1ylsN3JndhG5bQYUwJPxYTwcG4ryDGu+JxCAECoCQb9TYzRzT24x27W2Ko07o4L4+4AIXJR9Uwmi1e6hsPBVmrQ7AJsBX2TkDcTG3oOrS1CfvMbJYDKZKC0tpbi4mPb2dscHnAK8vLyIi4sjOjoajab/S3kNhiqKS96isnIFsmwGIDBgEgkJj+Ljk9Ynr6G3SvzlcDlLq2x2ARcGeLMwKZYAkWgrOMMQQkUg6Ee2NrVyT24JdSYLniolryRGc2WIf5+cu7k5g8KiBTQ2/grYSosjI64lLu5eXF1D++Q1TgSz2Ux5eTlFRUUUFRVRUVGBJEmODzwNqFQqoqKiiI+PJy4ujqioKNTq/lu49fpyiovfpKr6K2TZCkBQ0FQS4h/G2zupT15jaVUDT+eXY5BkIl01vJccx4g+LHkXCE4WIVQEgn5AkmXeLK3l+cIqJGCIpxsfpMQx0OPkfXlaWrMpLFxAQ8NGABQKNeHh1xAfdz9ubhEnfX5nsVgsVFRUUFRURHFxMWVlZVit1k5jfH19iY+PJyCgf7ag6uvrKSoqorW1szeRWq0mJiaGuLg44uPjiYiIQKU6/Z1229tLKCp+g+rq1RwtbQ4Onk5C/EN4eQ056fPn6PTcmV1Ekd6ERqHgHwMjuD0y6IzzYRL8MRFCRSA4zWjNFh48WGr3aLkm1J8XhkTheZILYKsuj6LCBdTVbwBsPVDCwmYTH3c/7u4xJz3v3mK1WqmqqrJHTMrKyjCbzZ3GeHl5ER8fb49c+Pv79/uiaKuEaqC4uNguqtraOnv6uLi4EBMTY597WFgYyj7aousNbW2FFBW/Tk3NOuiwnwwNuZz4+Ifw9BxwUudusVh5NK/U7rx9ZYgf/xsSjZf63LJAEJx9CKEiEJxGMlrauSunmDKDCVelgv8MiuKG8ICTWqR1bYcpKnqd2tpvOx5REBZ6JfHxD+DhEd83E+8BSZKorq62L/AlJSWYTJ1byHt4eNhFSXx8PIGBgf0uTBwhyzJ1dXV20VJcXIxer+80xs3NjdjYWPt7CwkJOS3CRac7RFHRG9TWfdfxiJKwsCuIj3sQD4+4Ez6vLMu8V17HP49UYpFhoIcr7yXHnXKDS4GgJ4RQEQhOA7Is82llA387XIFJlol1c+H9lDhST8JAsL29iKKiN6iuWYPt7hpCQi4jIf5hPD0H9tHMf48sy9TW1nZawA2GzqZ8bm5udlFydAE/04WJIyRJoqamppMgMxqNncZ4eHgQFxdnf+9BQad2+6S1NZfCoteor/8ROBpFu4r4uAdwd4864fPubm5jfk4xVUYz7koFLw6JZk6YqAwT9A9CqAgEp5g2i5Un88v5qqYJgOlBPryWGIPvCVZX6PWlFBUtpKp6Jb/lK1xCQvwjfZKvcDxHt0SObuV0VZ3j4uJijyzEx8cTGhp6WrdE+gOr1Up1dbX991JaWtrlFtexgi0g4OSiZ93R0pJJYdECGho2Aba8pIjwOcTF3XfCeUn1Jgv355awqcOV+aaIQP41MBI31bn9dxWceQihIhCcQvLbDNyZXUx+uwGVAv6aEMG90cEntFgZDJUUFS+kquoru8ldUOCFxCc8jI93Sp/NWZZlmpqa7JGDoqIidDpdpzEajaZTkml4eHi/JJmeSVit1t8lDVssnc0IfXx8Om2B+fn59ekcmpv3UVi4gMamrUBHpVfkdcTF3oura4jT57PKMq8UV/NKcQ0ykOrlzvspccS6CyNKwelDCBWB4BSxsqaJxw+V0W6VCHVR825yHOP8nPfNMRirKS5+m8rKZfaeGgEB55MQ/wi+vsP7bL6SJJGVlcWvv/5KfX19p+dUKhXR0dH2RTYyMrJfy3bPBsxms124FBUVUV5e/rsy7JCQECZNmkRSUlKfRqCamnZRWLQArXYnAEqlK1GRNxIbOx+XE+id80tjC/flltBotuKjVvLG0FimBfn22XwFgp4QQkUg6GOMksQzBZV8XGFb7Cf6efFOcizBLs41EjMa6ygpeYeKyiVI0tEupeNJiH8EP79RfTZfSZLIycnhl19+oaGhAQClUklUVJT9zj8qKuqMaIR2NmMymSgrK7NHXCoqKjh6WQ0NDeWCCy4gMTGxT+0Smpq2UVj4Ks0t+wFQKt2JjrqZ2Ni70Gic69dTYTAxP6eYvR1uzPfHhPB0fDhqYWwoOMUIoSIQ9CGleiPzc0rIaLVdzB+JDeVP8WGonFx8qqvXkHfo/7BabeWxvr6jGJDwKP7+4/psrpIkkZeXx8aNG6mrqwPA3d2diRMnMnr0aFxdRXj/VKLX69m5cyfbt2+3J+WGh4czZcoUBg0a1Mf+TpspLFxAS2smAGq1D0lDXyI4eKpT5zJJEv8+UsWictvnZZyvJ+8mxxHqKkSs4NQhhIpA0Eds6DAU1HYYCr6RFMvUQOc+a5JkJP/wc1RULAbAxzuNhAGPE+A/sU8XrkOHDrFx40ZqamoAW5XO+PHjGTt2LG5uJ990TtB79Ho927ZtY+fOnfay7sjISKZMmcKAAQP69O9e3/AzhYWvoNPlARAbM5+EhMdRKp3bxltbq+XRvFJ0VolgFzVvJ8Vynr8wNhScGoRQEQhOEosk81JxNa+V2Bb94d4evJcSR7SThoJ6fTnZ2Q/a73rj4u4nIf5hFIq+SVKVZZmCggI2btxIZWUlYKvWGT9+POPGjcPdXfTK6E/a2trYtm0bu3btslcPxcTEMGXKFOLj+64fjiSZKDjyImVlHwE2l+aU5NecTrY90m5LFD/YZkAJPJUQzgMxIcLYUNDnCKEiEJwEdSYz9+SUsFVrq4q5PTKIZwZG4OpkYmR9/UZych/HYmlGrfYjOellgoKm9MkcZVmmsLCQjRs3Ul5eDtiqdsaOHcuECRPw8DjxXi59iWSwILVbHA88BSg91Shdz4zkYJ1Ox5YtW9i9e7fdaiAuLo4pU6YQGxvbZ69TU/sdBw8+hdWqw8UliOTkBQT4j3fqHO1Wiafzy1lWbTM2nBrowxtDY/AXxoaCPkQIFYHgBNmu1XFPTjE1JgseKiWvDIlmVqhzCYqSZKGoaAHFJW8Dtq2elJSFuLtH9skci4uL2bhxIyUlJYDNu2b06NFMnDgRLy/nK5D6EslowVjUgrFQi/FIM+ZK3dG+dacfJWgivXFL8MV1gB8ucT4oXfq33LqlpYVff/2Vffv22QXLgAEDmDJlClFRJ97M7Vja24vIyrofXdshQMmAhMeIjb0bhcI5ob2kqoG/dBgbRrlpeC85nnSfM0MAC85+hFARCJxElmXeKqvjucJKrDIM9nDj/ZQ4Bns6l9thNNWTk/0wTdodAERF3cSggU+jVJ58EmtpaSkbN26kqKgIsJUXjxo1ivPOOw9v7/7JJZBMVkwlLRiPNGMs1GIqbz3ar86OQqOE071zIINsPm4iKgUuUd64DrAJF9cYH9vc+gGtVsuvv/7K/v377eXNgwYNYsqUKUREnLzJpNWq59ChZ6iq/gqAwMApJCe9jEbj59R5slvbuTOnmGK9CReFgmcHRXJrxJlvlSA48xFCRSBwgmazhYfzSvm+3mYoeHWoPy+egKFgU9MusnMexmSqRaXyIDHxOcJCZ570/CoqKti4cSMFBQWArcx4xIgRnH/++fj6nt6+F7JZwljagrGwGeMRLaayVrB2voyoAtxwTfDFbaAfrgm+qHz6p9LIojViPKK1/RQ2Y9V2bo2PWoFrjI9NtAzwxSXKG4X69AqXpqYmNm3axIEDB+xlzYmJiVxwwQWEhYWd9PkrK1dwKP8ZJMmIm1skqSkL8fFJc+ocLRYrjxws5dt6m7Hh7BA/Xh4SjacwNhScBEKoCAS9JLO1nTuziyk12O4Y/z0okpucvGOUZZnS0vc4UvgysmzF03MQqSkLT9qbp6qqio0bN5Kfnw+AQqEgPT2d888/H39/57ajThTZKmEq12Es0Nq2c0pawdI5UqHydbEt9gm2BV/tf+ZVGMmyjLXRgPFIM4aObSmptbPJokKjxCWuQ7gk+OIS6Y1CdXoiBw0NDWzatInMzEz7Y0lJSVxwwQWEhDjfffZYWltzycq+H72+FIXChcGD/kpk5A1Of8bfLavjXx0Rx0EerryfEs8QJyOOAsFRhFARCBwgyzKLqxr4v8MVGCWZGDcX3kuJY5iThoJmcwu5B/9kN5ALC72SxMR/o1Kd+F5+TU0Nv/zyCwcPHgRsAiUtLY3JkycTEHBqTeRkq4y5UoexUIvhSDOm4mZkU2dhovTS2KMQbgl+qALdzrqtAFmWsdTp7bk0xkItUlvnpF+FqwrXeF9cO3JcNOGeKE5xI7S6ujp++eUXcnJy7I+lpqYyefJkgoKc7z57FIulldyDT1JXtx6A0NCZJA75D2q1p1Pn2anVcXdOCdUmM+5KJf9LjOYqJ3O4BAIQQkUg6BGjJPHEoTJWVNsMBS8J9OH1oTH4OVnV0NKaTVbWAxgMZbY71cF/IzLi+hNetLtapFJSUrjgggtOapHqCVmSMVe32RbrI1qMRc3IRmunMUoPtX2xdh3ghzrY/awTJo6QJRlLbTuGI0eFSzOy4Tjh4q7GNd4Xt44cF3Woxyn7PdTU1LBx40by8my9UfpCrMqyTFnZhxQceQFZtuLhMZDU1IV4eQ5y6jx1JjP35Zbwa5OtKu6WiED+MyhKdLMVOIUQKgJBN5gkiTuyi9nQ0IJKAU/Hh3Ofk30iZFmmsvIL8g//E0ky4eYW1bH3n3pCczoa9s/KyrLnKSQlJTF58mRCQ0NP6JzdIcu2BflYYXJ8+bDCrSOS0CFMNKEepzyScKYhSzLmqrbfclyKWpBNxwk4T80xAs4XdVDfC7jKykp++eUX+/afUqlk+PDhTJo06YTND7XaPWRnP4TRVINS6c7QxOcIC7vCqXNYZZmXi6pZUGIzNpwd4sfCpFinuzUL/rgIoSIQdIFZkrk7p5hv65txUyr4ODWeCwKc+9xYre3kHfob1dWrAAgKuoikoS+h0Tif1NrU1MTmzZvJyMiwC5QhQ4ZwwQUXEB4e7vT5ukO2SLQfqMNwqBFjYTOSztzpeYWLCtd4H3uOiSbC6w8nTBwhW2VMFa2/VTcVt/yuqkjp44Jbgi9uQwNwTwnu0/yW8vJyNm7cyJEjR2yv1ZFQPWnSpBO69plM9WTnPEpT0zYAIiNvYPCgvzpdnfZdnZa7coqxyHBNqD+vDY0RYkXQK4RQEQiOwyLJ3Jtbwto6La5KBZ+cgEhpayskK/s+2toOA0oGDniCmJi7nO5P0dzczObNmzuVpg4cOJApU6YQGdk3vVbAtri276+h5adSrE3HVLyolbjG+djKdBP8cInyQqHqnzLdsxXZImEqa8V4pCOXp7SlU/WTOtgdn4ticE8L7lPR15cl6rJspbDodYqLFwLg7Z1KaspC3N2d6+fyTZ2W+TnFWGW4LiyAVxKjRSdbgUOEUBEIjsEqyzyQW8LKWi0uCgUfpsY77ddTU/MNB/Oexmptw8UlmJTk1/D3H+vUOUwmEz/99BN79uyxN/tKSEhgypQpREdHO3WunpAlmfYDdbT+WIKlwQDYEmA9x4ThNtAfl5jTX4Z7riObrRhLWjEWNNG2q9q+naYO9cBnagzuyUF9KliKiorYuHEjpaWlttdRqxk7diwXXHCB047Y9Q2/kJPzOBaLFrXat6OD8oVOnWN1bRP35pQgATdFBPLC4CghVgQ9ctYIlX/84x88++yznR4bMmSIPYHMEUKoCBxhlWUePljKlzVNqBXwQUo804J6v00jSSYOFzxPefmnAPj5je3wUAl2ah51dXUsX77c7mgcGxvLlClTiIuLc+o8PSFLMvrselp+LMFSqwdsbeS9J0fjOS6837uy/lGQDBZ0Wytp/bXCnpCrCffEZ2osbkkBfWpIWFhYyM8//0xFRQVgc2qeO3eu0+XrBkMlWdkP0NJyAIDY2HtJiH/EKWPDr2uauD+3BBm4NTKI5wdFnnNJ14K+46wSKl9++SU//vij/TG1Wt3rCgchVAQ9Ickyj+WV8UV1IyoFvJsUx4wQv14fb7t4P0hLSwZwYhdvgOzsbNasWYPJZMLLy4srr7ySgQMH9umCZchpoOXHEszV7YCtQsV7UhReE8LPGL+bPxqS3kLrlgp0WyrslVSaKC98Lo7FbbB/n/798/LyWLNmDXq9Hjc3N2bPns2QIUOcm28fiPJlVY08kleKDNwVFcQ/BwqxIuias0qorFq1ioyMjF6NNxqNGI2/7bW3tLQQHR0thIrgd8iyzJP55XxW2YASeCsp1inPnoaGTWTnPNYRDvchOel/TofDLRYL69evZ9euXYDNhO7qq6/us3b3sixjyGukZUMJ5so2wNb7w/v8SLzOi0TpJgTKmYC1zYzu1wp02yrsPWlcYrzxuTgW14F+fbaQa7VaVqxYYY+unHfeeUyZMgWVkx2WT3abc0llA48dKgPg3uhg/j4gQogVwe84q4TKSy+9hK+vL25ubowfP57nn3+emJiYbscfv1UECKEi6IQsy/zlcAUfVdSjABYOjeHqsN71nvgtwfBNQMbbO6UjwdC5HJK+WjS6nqOM8bCW5g0lmMtaAVvljtfECLzPj0Tp4VyOwqlA39pCeW42ZQezaG9u7pc5ePn7E5WURtTQZNw8+9esEcCqM9G6qRzd9ip7d1+XeB98L47FNcGvT17jeHEcGxvLNddc47Q4Pj5xfMCAJ4h1InH8k4p6/pxvc/V+ODaUp+LDhFgRdOKsESrfffcdOp2OIUOGUFVVxbPPPktFRQXZ2dldfrFEREXgCFmWeaagkkXldSiABYkxXBveO5HSVyWbhw8f5uuvvz6pMHx3GAq0tGwowVRi8yVSaJR4TojAe1IUKs/+EyjG9jbKD+ZQlnOA0pws6kqK4AzJ1VcolITEDyA6OZWY5DQihybj4ubeb/Oxtpho/aUM3a4qsNh+R64D/WwRlti+uY4dv914zTXXOJ0PdbKl+B+U1/HXwzah/nhcKH+K77uSe8HZz1kjVI5Hq9USGxvLK6+8wh133OFwvMhRERyLLMv860gVb5XVAvDKkGjmRQT26ti+aIIlSRK//PILmzdvBk48sbErjMXNtKwvwVjYEZ1QK/EaF4735ChU3i4nfX5nMRsMVOTlUJqTSVlOJjWFR5Dlzn1FAiKjiUlJwy80gtN9My3L0FhZRllOFk1VFZ2eU6pUhA4YRExyGtHJaUQMGYrG5fQbJ1qajbRuLKNtd7W9tNl1sD++F8fiEn3y24P19fUsW7aMuro6FAoFF110ERMmTECp7H3Fl6254TLyDz97Qs0N3y2r5ZmCSgCeig/jkbiTN1oUnBuctUIFYPTo0UydOpXnn3/e4VghVARHkWWZ/xZV81pJDQAvDI7ilkjHSdmyLFNa9gFHjrzY0VZ8AKmpbzrdVlyn0/HVV1/Z+1uMGjWK6dOno1afXJ6IsbSFlg0lGA9rbQ+oFHiOCcNnSvRpdSU2m4xU5edRlpNJaXYm1UfykaydO7X6hYUTkzyM6ORUopPT8PQ7MzxgWhvrKcvJoqxDVDXX1nR6XqVWEz4okejkNGKS0wgbNAS1kyW+J4Ol0WATLHuroUPruQ0NwOfiWFwiTm7LymQysW7dOrvZ4eDBg5k9ezbu7s5FlE7GLmJhSQ3/LqwC4P8Swnkgtm+7LQvOTs5aoaLT6YiJieEf//gHDz30kMPxQqgIjvJSURX/K7YtQP8ZFMkdUY4rFfrKqK2kpIQvv/yS1tZWNBoNM2fOJC0tzfk3cQym8lZaNpRgOGTzI0KpwHN0KN5TolH7nXrHWqvFTNXhQ/YFvvJwHlZz5462PsEh9sU9OjkN78BT40fU1zTX1thFS2lOJrrGhk7Pq11ciRicSEyKTXSFJgxCdZKCszdYGvS0/FRK+/5a6LgyuycH4nNxLJow5z6TxyLLMvv27ePbb7/FarXi5+fHnDlznG4uaDY3k3vwyWMMOGeRmPivXhlwLiiu5r9F1QA8OzCCu6NPzhFacPZz1giVJ554gpkzZxIbG0tlZSXPPPMMGRkZ5ObmEhzseKERQkUAJ3YRbG3NJSv7fvT6Utsd4qD/IzJynlMJf7Iss337djZs2IAsywQFBTF37lxCQk78ImyqarMJlNyOxVMJHiNC8bkwBnXAqRMoktVKTWEBpdkHKMvNouJQLpZj8sEAvPwDiE5OIzrFJk58Q87+ML4sy2irKynLybK/9/ZmbacxGjd3ohKTbO89OY2Q+ASUylPXk8Zc107Lj6XoM+tsgkUB7qlB+EyNRRNy4q7clZWVLF++HK1Wi0qlYvr06YwaNcrpz3xp6XscKXwZWbbi6TmI1JQ38fQc4PDYY28m/j0okjt7cTMhOHc5a4TKddddx+bNm2loaCA4OJjzzjuP//znPwwY4PhDD0KoCE4srNzQsJnMrHuQJCNubpEde+7ORUD0ej2rV6+2NydMSUlh5syZuLqe2HaMuabNtjhl1dseUIDH8BC8L4pBE9T3iZ+SZKWuuMieY1KRl4NJr+80xt3Ht1PExD/83C8zlWWZxooy2+8lO5Oy3CwMutZOY1w9PIlKSiE6KY3o5FSCY+JQOJH30Vu6+0z4XBSD+gQ/E3q9nlWrVnHo0CEAUlNTmTlzJi4uzuU5NTXtIjvnYUymWlQqT4YN+wB/v9E9HnOi27OCc5OzRqicLEKo/LE5kUS9xsatHMi8E0kyERgwieTkV9Fo/Jx63aqqKpYvX05TU9MJ35kexVzXTstPpegP1P0W7k87+bvn45ElifryUsqybVU55QezMLa1dRrj5ulFVFIqMSk2YRIYFXPOCxNHyJJEXWmxfZuoPDcbk7690xg3bx+ik1I6RN0wAiKj+vT3ZqrU0fJjaZ9F2WRZZtu2bfz444/IskxwcDBz587tVRT7WIymerKzH0Sr3YVK5cnw4R/h5zvS4WufaMK74NxCCBXBOc+xpY+PxYXyZC9KH5uadpBx4A4kyUBQ0EWkpixEqez9naQsy+zfv59vvvkGq9WKr68vc+fOPSEjwVOVj3A8VouZrJ83sGvVClob6jo95+LuQdTQZNsCmzLslEUGziUkyUptUeFvW2QHczAbDZ3G+IWGM3b2XJImXYiyD/rmHKX7vKUY1H7OR/JKSkpYsWIFOp0OjUbDFVdcQWpq76p5jmK1GjiQeSdNTdtRqbxIT/8UX59hPR4jyzJ/L6jgvfJ6p1sICM4dhFARnNN8WlHPkx3NpB6KCeHphHCHd7Ba7R4yDtyG1dpOYOAFpKW+5VR/FJPJxDfffMOBAzYvlEGDBjF79mw8PJyLeliaDLT+XEbb3hqQbF8/t6EB+EyNxSWy75qSWS0Wcjb9xI6vv6C13iZQ1K6uRCUmd+RapBIaP7BPF9I/IlaLheojh+3JuZWHDmIxmwBbFdT4a+aROHFSn+a09GUlmE6n48svv6S4uBiwVV1OmzbNqWo1q7WdjAN3oNXuQq32IT39M3y8U3o85vimjG8mxXKVE52jBWc/QqgIzllOpD13c/M+9mfcitXaRkDA+aSlvotK1fsLen19PcuXL6e2thaFQsGFF17IxIkTne5H0b6nhqbVR+xdSfuyZ8ZRJKuVg1t+YftXS2musSUYe/oHMHb2XFKnXILayVwEgXOYDQYObPiWXau/RN9qa8oXEBnNhDnzGDx2Yp9GrIxFzTbB0tFbR+GixP/qQXgMcy6ZW5IkNm7cyK+//gpAREQEc+fOxc/Pr9fnsFjayDhwG83Ne1GrfRmR/jne3kN7fl1Z5s/H2Fy8nRzLlSFCrPxREEJFcE5yIoZnzS0H2L//ZqxWHf7+4xmW9j4qVe/39XNycli9ejUmkwlPT0+uueYa4uPjnZq3ZLKiXVVA+z7bvrxLvA++0+Jwjeu9i7PD15CsHNq+he0rltgbnHn4+jHmyjmkXTy9Xxqa/ZExGfTs/24te9Z+jaFNB0BQTBwT5sxj4OjxfZrDYijQ0vJDMaYOOwXP8eH4XZ6AQu2cKMrPz+frr7/GYDDg5ubGVVddxeDBg3t9vMXSyv6M22hp2Y9GE8CI9MV4efXckVmSZR4/VMbSKptx6KLkOC4P9nNq3oKzEyFUBOccx1rI3xYZxHO9sJBvac1m//6bsFha8PMbw/BhH/Sq5wPYPFM2bNjAzp07gRP3TDHXtdP4+UGbq7ECfKbF4T0pCoWyj5xzJYnDu7axbcUSGspLAVty5+iZV5E+bQYat1Pfc0XQPcb2dvZ9u5q936zC2G5LXg6JG8CEuTeQMGJ03zkoSzItG0po3WiLNmqivAi8YShqf+f+/lqtluXLl1NZaUtSP//885kyZUqvo4cWSyv79t9Ea2sWGk0gI0cswdNzYI/HWGWZhw+W8mVNE2oFfJASz7SgvhPxgjMTIVQE5xSra5u4N6cECbgpIpAXBkehdHCBb209yL79N2CxNOPrO5Lhwz7qdSO35uZmVqxYQXm5LQ9m4sSJXHjhhU4bCrZn1tH01WFkoxWll4aA6xNxG+Dn1Dm6Q5ZljuzZybYVn9t8dQBXT09GzbiKEZfOxMW97yqGTob2FhP6VlO/vLaHjwvu/WAv0BUGnY6936xk77drMBtsZeBhAwczcc4NxA4b0WeCRZ/XSOOyQ8h6Cwp3NQHXDsE90blEVYvFwg8//MDu3bsBiI+P5+qrr8bLq3c5VGZzM/v330SrLgcXl2BGpC/B0zOhx2OssswDuSWsrNWiUSj4KDWeqYHimn4uI4SK4Jzhmzot83OKscpwfXgA/xsS7VCk6HSH2Lf/RszmRnx80kkf/hFqde8iIQUFBXz11Vd2Q8FZs2aRmJjo1Jxli0Tzd0XottruSl3ifQi8figqn5NfNGVZpihjD9uWf05NYYHt/O4ejLz8SkZcdmW/uwTrW01U5GupONRE+aEmtDXtjg86hQREeBI52J+oIf5EDPbDrR+NGwHaW5rZs24l+79fa2+oFzEkiYlzbyAmpedqmd5iaTLQ8PlBzOW2LSfvKdH4XBzrdBQvKyuLNWvWYDab8fLyYs6cOcTGxvbqWLO5iX37b0Sny8PVJZQRI5bg4RHX87wlmXtzS1hbp8VVqeCT1HguCBDX9XMVIVQE5wQ/1DdzR3YRFhmuCfXntaExqByIlLa2Avbum4fZ3IC3dyoj0j/rlUiRJIlNmzaxadMmwGYoOGfOHAICnLwb1RppXHIQU6ktX8B7chQ+l8ShUJ3cHbMsy5RkZbBt+WKqDtuadWlc3Rhx2RWMnDEbd6++S8h1BkObmcrDNmFSkd9EQ0Xn3iwowN2rf8SBvrVzy38UEBTlReQQf6IG+xM+yA9X91PfGr8r2rRN7F7zJQfWf2evEopOSmXC3BuIGtpzxUxvkC0S2m8Kadtua4boOsCXgOsSnTawrKurY/ny5XZjw6lTpzJhwoReRYBMpgb27b+BtrbDuLqGM3LEUtzdo3s8xizJ3J1TzLf1zbgpFXyWmsD5Af3z2RacWoRQEZz1/NjQwm1ZRZhlmdkhfixMiu2FSClk3/55mEx1eHslk57+Wa8s6dva2vjqq68oLCwEYOTIkUyfPh2Nk8Z0hvwmGr/IQ2q3oHBTEzB3MO5JJ9/Mqiw3i63LFlORlwPYvGiGT7uc0VdcjYfP6d3LN+ktVBYcFSZa6spa7X1gjhIYaYtiRA7xJ2JQ/0Ux9DoTlflayg81UXGoiabqztEdhQKCY32IGuJH5GB/wgf6oXE9veXausYGdq5aQdZP32O1WACITUtnwpwbiBjsXCSvK9oP1Nq2H00SSm8XAucl4hrv3GfGZDKxdu1asrKyABgyZAizZs3qlbGh0VTPvn3zaG8/gptbJCPSl+Lu3nPfIZMkcWd2MesbWnBXKvg8bQAT/Ps3Uijoe4RQEZzV/NLYwi1ZRRglmRnBvryTFIfaQdi6vb2YffvmYTTV4OWVyIj0xWg0jksdS0tLWbFihd1QcMaMGQwb5lwIXpZkWn4qpfXnUpBBE9mRyHiS3jwVhw6ybflnlGbbnG9VGg3Dpl7KmFlzTpszsdlkpbqg2bbY5zdRW9KKLHW+bPiFehA1xCZMIgf7nTF5IcfT1mykIr+JikM2odVc19kyQKlSEBrnY38fYQm+qF1Oj3Bpqa9j58plZG/cYHeljk8fxcS5NxKa0HMyqiPMte00LD6IpbYdlOA7LR6vSY6T0Y9FlmX27t3Ld999h9Vqxd/fnzlz5hAREeHwWKOxlr37rkevL8bdLYYRI5bg5tZzg0ajJHFrVhEbG1vxUCn5Ii2BMX5CrJxLCKEiOGvZ0tTKjZmFGCSZS4N8WZQch8aBSNHry9i773qMxio8PQcxIv1zXFx6jmTIssyOHTvYsGEDkiQRGBjItdde67ShoFVnovGLQxgLtAB4jg3Db8YAFJoT75dRVXCIbcs/p/jAPgCUKjWpF01j7Ow5eAecWm8Ui9lKTWEL5fm2KERNUQuStfNlwifI7Rhh4o/nCXRFPRNobTR0CBdbPo2usbMJo0qtJCyhQ7gM8Sc0zgeVkyW/ztJcW8OOr78gZ9NPyJKt386AUeOYMGceIXE9J6T2hGSyov36MO0ZtuZ/bkmBBMwZjNLJra/jjQ0vu+wyRoxwnAxsMFSxb9889IZS3N1jGTliKa6uPfty6a0St2QVsrlJh5dKybJhAxjp23ddmwX9ixAqgrOS7Vod8w4UopckLg704YOUOFwclEUaDJXs3XcdBkMFHh4JjEhfgqtrz54lJpOJlStXcvDgQQCSk5O54oornDYUNJa00Pj5QawtJhQaJX5XDcIz/cSdk2uKjrBt+WIK99mqLZQqFckXTGXc7GvxCT7x8/aE1SJRW9xCRb5tsa4ubMFqljqN8fJ3teV1dCzY3qfQxbm/kGWZlnqbcCnPs0WP2ps7VyupXZSED/C1C5eQGG+UqlMjXJqqK9nx5VIObtmELNv+HoPHTmT8nHkERfcuofV4ZFmmbVc12jVHwCqjCnAj8IahTndE1uv1rFy5kvz8fACGDRvGzJkzHXaz1esr2Lf/+t++qyOW4urSs/But0rclFnIVq0Ob5WSFcMHMtznzKhoE5wcQqgIzjp2aXVcl1lIu1ViSoA3H6fG4+pQpBx7lxbHyBFLHN6lmc1mli5dSmFhIUqlkunTpzN6tHP9LGRZRrelkubvikCSUQe7E3jjUDShJ3a3V1dazLbln1OwezsACoWSpEkXMu7q6/ALdWy06AySVaKuVGePJFQWaLGYOgsTDx8X+/ZHVKI/PkHufzhzQlmW0da0U5GvpTyvicrDTb9LztW4qYgY6GcXcYFRXij7qD/OURoqytj+5VIObf8VZBkUChInTGL8NdcTEBF1Quc0lbfS8PlBrE1GUCvwmzkAzzFhTv2NJUli27Zt/PTTT8iyTGJiInPmzHFYwn8i0c82q5UbDhSyo7kNX7WKL4cPINVbiJWzHSFUBGcVe5vbuPbAEXRWiUn+XnySmoC7gztVo7GGvfvmObXvbTabWbZsGQUFBWg0Gm688cZel1seRTJYaFqRjz7H5mTrPiwY/6sGonR1vnqkoaKM7SuWcGjHFvsiNHTiZMZdfT0BEc4bHXaHxWQlb3sVJdkNVB7WYjJYOz3v5qUhcrCfPQHWP8zjDydMHCFLMo1VbfbE3MrDWoztlk5jXD3URAzyIy4tiCFjwlCdxPbf8dSXFrPtyyUc3rkNOCpmpzDuquvwC3NsyHk8UruZxhX5GA42AuCRHoLf7IEonczJKSgoYOnSpVitVpKSkrj66qsdipUTySfTWaxcf6CQ3S1t+KtVfJU+kCQvx8m8gjMXIVQEZw0ZLe3MySig1Sox0c+Lz9IS8HAkUk6gksBisbBs2TIOHz6MWq3mxhtvJC4uzqm5mip1NH5+EEuDAVQK/GYk4DnOsSHi8TRVV7L9y6XkHRvWH3ceE+bMIzAqxqlz9YTVLJGzpZK93xd32sZwcVd3EiaBEZ591in3j4IkyTSU634TLgVazMcIQK8AV0ZfFs+Q8WGo+nB7qKboCNu/XMKRPbaOyQqlkpQLpjLuquuc3h6UJRndr+U0f18MMqhDPWyRwWDnohWHDx/miy++wGq1kpKSwuzZs3shVorYu+96pyr0Wi1W5mYcYX9rOwEaFV+nDyTRU4iVsxUhVARnBYfaDFyx7zDNFivjfD35fFgCng4ucCfSm8FqtbJixQry8vJQq9XMmzePhATnEhPb9lTTtMpmKKjyc7Xt7TtpJmhsb2PTZx+Q/cuP9kTJgaPHMWHODQTHOucf1BNWi8TBbVXs/a4YXZMtQdQrwJXUyVFEJfoTFO3d51sUf3Qkq0RtaSvlBxvJ2lRhF4Y+QW6MvjyewWNC+zSfpbogn60rPqc4Yy9gS7hOmzqdSfNuddo2wViopWFpHlKrGYWLCv9rBuGR1nOe1/EcOnSIZcuWIUkSaWlpzJo1y2Hb/eN7HqUP/xSNpufreLPZwpwDR8hs1RPsombdiEHEup+dydx/dIRQEZzxtFqsTN+TzxG9kVE+HnwxbABe6p5Fyol0u7RarXz11Vfk5uaiUqm4/vrrGTiw9+WestlK0+ojtO+pAcBtiD/+c4egcrI3SG1xIWtffR5tta0BV8KI0UyYc8NJl54ei2SVyNtRzZ5vi2ltMADg6efKqEtjGTox4pRXrAhsWExWsjdXsO+HEntei1+oB6Mvj2PgqNA+FYm2EvbFlGYfACAwKoYrHv+L0/kr1lYTjUvz7E7MXhMi8L0s3iljw9zcXFasWIEsywwfPpwrrrjCoVjp3EV6OOnDP3bYoLHJbOGajAJydAZSvNxZO2KQw61iwZmHECqCMxpZlrkj29Z9MsJVww+jBhPs0vPCf7x/yMgRS/Hw6DkKIUkSX3/9NdnZ2ahUKq699lqn3GDN9XoaFx/EXN1mMxS8OBbvC6Kdb0W+cT0/f/AOFrMJ76BgLnvg8T7pPnoUSZI5vKua3d8U23uDuPu4MHJ6LMnnR6DWnN4mZgIbZqOVrF/K2b++FEObTbD4h3syZkY8A9KD+3S7rThzP9+/+Qpt2iY0bu5ccveDJE6Y5NQ5ZGuHseEvNmNDl2hvAm5IRO3X+whNdnY2X331FbIsM3LkSC6//HKHYsXmy3UjFou2175cFQYTl+zJp8FsYW6YP68lxoi8qrMMIVQEZzRvlNTwn8IqXBQKVo0YyAifni9KZnML+zNudsqRVZIkVq1aRWZmJkqlkmuvvZYhQ3q2nD8WfXY9jSvyfzMUvC4Rt4F+vT4ewGw08NOH75Dzy4+ArYHXpfc/hrt333xWZUmmYF8tu9cV2buuunlpGHFJLCkXRKI5Tc3KBD1j0lvI3FhGxo9l9gTcwCgvxsyIJ35YUJ8tsG3aJr557UXKcm0dZNOnz2TyTbejUjsX/dMfbKBxeT6y3oLSw2Zs6Dak91YSmZmZrFy5ElmWGT16NJdddtkpcTrf0tTK3IwjSMB/B0dxa+Sp7TEk6FuEUBGcsWxubOW6A7aLy4uDo7jZwcXFYmllf8attLRkoNEEMCJ9MV5ePQsOSZJYs2YNGRkZKBQK5syZQ1JSUq/mJ1slmr8rRrelAgCXOB8C5yWi8nFuH7ypqoK1rzxPXWkxCoWSidfeyJgrr0Hh4O6yV3OUZQoz6ti1tojGSpu3jquHmvRLYki9IAoXt/7xrzkWc3U17Tt30rZ7N9aGxn6Zgzo4GI8xY/AcOwZ1sHM5F6cCY7uZjJ/KOPBTmT3xNjjGmzEz44lNCewTwSJZrWxdvphdq1YAED5wCDMe/TM+Qc4l2loaDTQs6TA2VHQYG07tvbFhRkYGq1atAmDs2LFMnz7dsVhpyWTf/puwWnX4+49nWNp7qFQ9J8suLKnh34VVaBQKVqUPFA3hziKEUBGckZQbTFyy5xCNZivXhQXwamJ0jxcvi6WNjAO30dy8F7XajxHpi/H2Htrja0iSxDfffMPevXtRKBRcffXVpKT0bpvF0mykcUkeppIWALwmReE7LRaFk/vf+Tu38sPbCzDp9Xj4+nH5Q3/qE2dcWZYpzmpg19pC6stszrgu7mqGT41m2IXRuPSTwR6Apb6etp07ad+5i/adOzGVlPTbXLrCZcAAPMeOwWPMWDzGjkHtf3osCLrC0GZm/4ZSMjeWYzHaBEtovA9jZyYQNdS/TwTLkb27+P7NVzC06XDz8uayB58gfvhIp84hWyS06wpp29FhbDjQj4DrhqDy6p1Fwr59+1izZg0AEyZM4OKLL3b43pqb97E/41as1jYC/M8jLW0RKlX3NwmyLHNnTjHf1DUT7qphfS+2kQVnBkKoCM44DFaJK/cf5kCrnjQvd1Y7SICzWtvJOHAHWu0u1Gof0tM/w8e7Z8EhyzLffvstu3fvRqFQMHv2bNLS0no3v8MdhoJtFhRuKgLmDMY92blQstVi4dclH7H3m9UARCYmMePhP+MVcHLGhLIsU5rbyK41hdSW2FyZNa4qhl0UzbCLovvF9M/S1ET77t2079hJ266dmAqOdB6gVOKWlITnuLFoYmJsDoCnE1nGVFhE266dGA/m2frUHIPrkCF4jB2D57hxeIwahaofrh/6VhP71peS/Us5lo5uwOEDfRl7RQKRg09eSDXX1rD21f9SU3gYFArGzZ7L+DnzUCqd2xJsz+gwNjRLKH06jA3jemdsuGfPHtatWwfAeeedx0UXXeRQrGi1e8g4cBtWazuBgZNJS30bpbJ7saKzWLl0bz6H241M8PNi+bABDr3BBP2PECqCM44n8spYXNWAv1rFD6MGE9NDSaHVqudA5l00NW1HpfJiRPpn+Pj0LDhkWeb7779n505bf4lZs2YxfPhwh/OSJZnWn0tp+anDUDDC02YoGOhcf4bWhnrWLXiBynxbW/5RM6/ivOtuRuWgrbgjyvMa2bmmiOqOagy1i5K0KVEMvzgG917e2fYF1tZW2nfvsW3n7NyJ8dCh3y/+iYl4jh2Lx9ixeIwa2S+Lf1dYtVradu+2R3uMhw93HqBU4jZ0KB5jx+I5bizuI0ai8jp9WwhtzUb2/VBCzuZKrBabYIkc4s/YKxIIH3By7tgWs5lfPn2fA+u/ASAmZRiXP/QnPHz9nDqPuaaNhs8PYqnV24wNp8fjdX7vjA137drFt99+C8DkyZOZMmWKw2OamnaSceB2JMlAUNBFpKYsRKns/vOe32bg0r35tFkl7o0O5pmBfdcwUXBqEEJFcEaxpLKBxw6VoQCWDkvggoDu/1ZWq5HMrLtpbPwVlcqT9OEf4+s7osfzy7LMhg0b2LbN1rXziiuuYMSIno8BsLaZaVx2CGN+EwCeY8Lwm+m8oWBx5n6+ff0l9K0tuHp4Mu2+Rxg0erxT5zieysNadq0tpCJfC4BKoyRlUiQjpsXi4XPqBYrU1kb7vn0dwmQXhpwckDq32ncZOADPsePwGDsGj9Gj+3U7xRksDQ2079pl26rasRNTcXHnASoV7ikpeIwbh+fYMbinp6N0P/WNxXRNBvZ+X0Lulkq7EWRMUgBjZiYQGn9y17eDW35h/aI3sBiNePkHcPkjfyYqMdmpc0hGK01fH0Z/oMPYMDmQgGt6Z2y4fft2fvjhBwCmTJnC5MmTHR7T2LiVA5l3IUlGgoMvISX5dZTK7qOHa2u13JVTDMCi5DiuCPFz/KYE/YYQKoIzhoyWdq7cfxijJPNUfBiPxHXvXSNJRjKz7qOh4ReUSnfSh3+Mn9+oHs8vyzI//fQTW7ZsAWDGjBmMGtXzMQDG0g5DweYOQ8FZA/Ec2bNP0O9eW5LY8fUytn25BGSZkLgBzHz0qRNqaX6U6sJmdq0tpOygTTwp1QqSz4tk5PTYU+pSLBkM6Pfvt+eZ6LOywNK5RbxLbKw96uAxZgzqoHOjysJcU2MTLjt20L5zF+by8k7PKzQa3IcNs0WKxo7BffhwlC6nTiy2NOjZ+10JeduqkCTbJTouNZAxMxMIjnGuyeCxNJSXsuaV52msKEOhVDJp3q2MnDHbaZ+rtp1VaNcW2owNAzuMDSMcGxtu3bqVDRs2ADB16lTOO+88x3Nu2MyBzLuRZRMhIZeRnPQqSmX3wuifBZW8VVaLh0rJdyMHM8Tz3DPQPFcQQkVwRtBgsnDJnkNUGM1MC/Lho5R4lN1cFCXJRFb2g9TX/4hS6cbwYR/g7z/O4Wts3LiRTZs2AXDppZcyduxYh8focxpoWHIQrDLqoA5DwTDnQv3tLc18t/B/FB/YB0DqRdO48Na7UZ/gAlZb0sKutUWUZNs8hJRKBUMnhjPy0rhT4lYsm0zoMzNp27GT9p070WdkIJuPM92LjOwkTDRhfWuQeKZiKq+gfedO2nfZokmW6upOzytcXXEfkW7f5nJPSUGh6fs8oeY6PXu+LeLQjmr7LlvC8GDGzIwn0EnH46OYDHo2LFpI3lbbd2bg6PFMu/dh3DydO5+pvJWGxQexao2gVhJ0SxJugxxH1DZv3szPP/8MwLRp0xg/3nHksb5+I5lZ9yLLZkJDryA56WUUiq7zbCySzLUHjrBVq2OAuyvfjxqMt4NGkoL+QQgVQb9jlWWuP3CEzU064t1d+H7kYHw1Xd8JSZKZ7JyHqav7AaXSlWFp7xEQMNHha5zIRU9/sIGGxTaR4p4ciP/cwU4bClbm57F2wX/RNdSjdnFl6p33kTz5IqfOcZT68lZ2rS2i6EA9AAqlgsRxYYy6LA6foL7bbpAtFgzZ2bTt3EX7zh2079uPbDB0GqMODbUlmHYswC5RJ+bOey4hyzLm0lK7oGvbtQtrfX2nMQoPDzxGjrRVFY0dh1vSUBQOrCCcQVvTzq51RRzeUwMyoICBI0MYMyMefycFNtje04EN3/HLJ4uwWiz4hYYz87GnCYlzzlZCajfT8IVt61ShURJ4azJuA/wcHnciNxd1dRvIyn4AWbYQHnYVQ4e+gELR9RZtncnMtD35VBrNXBbkywcpcaIZ3BmIECqCfue5I5W8XlqLu1LJtyMHMbQbp1NJspCT+yi1td+iULgwLO1dAgMdd9TcsmULP/5oa6TW2zCy4VAj9Z/m2kTKsGAC5g5BoXIu7L3/uzVsWvwhktWKf3gkMx97muCYuF6f4ygNlTp2ryviyD7bfr9CAYPHhDHq8jj8QvrOwl7S62laspSGDz7A2ti5n4kqMNBesus5biya2FhxQXeALMuYCgvt20Ttu3Zh1Wo7jVEHBxM4fz5+187t0y0i22emmCP7agHbZ2bQmFBGXx5/Qp+Z6oJ81i74Ly11tag0Gi66/V5SpjguIT4W2SLRsPgghrxGFBolQben4BrfcwKwLMv8/PPP/PrrrwBcfvnljB492uFr1dZ+T3bOQ8iylYjwuSQm/qdbsbKvuY1Z+wswyTJ/TQjnwVjntnUFpx4hVAT9ynd1Wm7LLgbg7aRYZod2HRKWZSs5uU9QU7MGhUJDWurbBAU5rgg4NjHvwgsvZNIkx8LGcLiJ+k9ywCLjnhJIwPVDnRIpxvZ21r/zGvk7twIwePz5XDL/QVw9nFsg+vruuDskoxHtsmXUL3rPHgFQ+friMWaMfTvHZcAAIUxOElmSMObn25OO23fvRmq1lZCrw8IIuuce/K6ajaIPBUtXUbgh48IYfQJROL2ule/ffIXCfbsBSJ48lYvuuAeNa++3G2WzRP1nubbIiouKoDtScI3t+Xp8fAL8zJkzGTnScZ+Xmpp1ZOc8CkhERs5jyOB/dvsZ/rSinifzy1ECy4YN4PyAE8/vEfQ9QqgI+o0j7Qam7clHZ5W4KyqIfw3qfvug4MhLlJS8g0KhJjVlIcHBFzs8/86dO/nuu++A3pc6Go5oafg4B9ks4ZYUSOANiU41casrLWbtK8/RVFWJUqVm8k13kD59htNJiJkby9n2VYG9oiMhPZgxM04836ArJJMJ7Zdf0vDOu1hqbXfemshIgu67D98rr0BxkuXSgp6RTSa0X31F/TvvYqmxGVnafv/34nvFFX2ay1Jb0sKudUWUZNnymlQaJZOuG0zSxAjn5ixJ7Fr9JVuXLUaWJYJi4pj56NMERPS+xFc2W6n/JBdjgRaFq4rgO1MduovLsswPP/zAjh07gN63FKiqXkVu7hOAzICEPxEXd0+3538kr4xl1Y0EaFSsHzWEKLfTV9Iv6BkhVAT9QpvFyqV7D5PfbmCcrycrhg9E003jpdq6H8jKug+A5KRXCAu70uH5d+/ezTff2PpBnH/++Vx44YUOxYKxqJn6D7NtIiUxgMAbhzrlCJuz6Sd+fP8tLCYj3oHBzHjkz0QMTuz18WDzevn5szx7yD4mOYBxVw44qQqO45HNZrQrV1L/zjtYKm2dRNXh4bY7+tmz+vSOXuAYW0RrOfWLFtkjWpqYGILvvw+fGTP6NIelurCZHauO2EvZE8eHMen6IU57PZVmZ/LN6y/S3qzFxd2dafc8zOBxjrdUjyKZrDR8nIOxsBmFW4dYiXIsVr777jt27doFwFVXXdWrJo3l5Z9zKP/vgJL04R93m9Omt0pcue8wmTo9w709WJU+EDfhtHxGIISK4LQjyzJ355awplZLqIuaDaOGEOLa9d1jW1shu/fMxmrVER19G4MH/Z/D8+/du5e1a9cCvW/HbSxpof6DbGSTFdfB/gTdlNTrHilmk5GNH71L1s/rAYgbNoJLH3gcDx/nGnA1VOj47t0smmv1KFUKJl4zkNQLovpsy0W2WGhes5b6t96yl9Wqg4MJvOdu/ObMOaVltALHSHo9TUu/oOG997A22UrOXeLjCXrgfnwuvbRPvJ/A1rhw3/oSdq4uRJYhMNKT6fNT8Qt1bmtS19TIN6+9SPnBbABGXHoFk268rdfGhpLRSv1H2ZiKW1C4qwm+K9Vh6bIsy6xbt84p2wtZljmY9xRVVV+i0QQwZvRq3Ny6jiSV6o1M25NPk8XKjeGBvJwY3av3Iji1CKEiOO28W1bLMwWVqBXw9fCBjPHr+uJksbSxZ+/VtLUdxs93NOnpn/XYxAk6G5yNGzeOadOmOVzoTWWt1L2fhWy04jrQj6BbklBoeneHqa2uYs2rz1NXXAgKBRPmzGPc7GudXlTytlexackhLGYJL39Xpt2VQljCyXUaPYpstdLy7bfUL3zT7qujCgwkaP5d+F17LUq3/u8fIcsy5bpymgxN/fL6Qe5BRHg5tw1yqpDa2mj8fAmNH3yAtdnWZdh10ECCHngQ74un9plgKT/UxPoPctC3mNC4qbjwpqEMHOmcIaFktbJl2WfsXv0lAOGDhjDjkafwCeqdsaNktFD/QTam0laUHmqC56c5LP+XJIm1a9eyf//+XhuJWq0G9u6bS2trDt7eqYwcsaxbX6CNDS3MyyxEBl4ZEs28iJOztRCcPEKoCE4r25p0zDlQgFWGfw+K5M6ori9osiyTnfMQtbXf4uISwpjRa3B17fnil5mZyddffw3AmDFjuPTSSx2LlPIOkWKw4hLvS9BtySh7GQY/vHs7P7y1AGN7G+7ePlz+0JPEpg3v1bFHsZis/Losn9ytti2YmKQApt6e1Cct72VJonX9euoWLrT766j8/Ai86078r78epZPJvX1Npa6SXdW72F29m51VO6lpr+nX+UR6RTI6bDRjwsYwJmwMoZ79W/1h1elo/PRTGj/62J506zp0KMEPPojXlAv6JNLW1mxk/fs5VB7WApB2YRQTrhqIyoktT4CCPTv5/s1XMLa34ebtw+UPPE5cL40NJYOFuvezMJfrUHpqCJ6fiibUsVhZvXo1Bw4cQKlUMnfuXBITe95m1evL2bX7SiwWLRER1zI08blux75aXM0LRdW4KhWsTh/EcJ/+/a780RFCRXDaqDKauHh3PvVmC1eH+rNwaEy3F9vS0g84XPAcCoWaESOW4Ofb80UvOzubr776ClmWGTlyJDNmOE5gNVXqqHsvC1lvwSXOh6DbUlC6OhYpVouFLV98yp61NlEUMXgoMx75M96BznVfba5r5/tF2TZ3YwWMmRHPqEvjUJykSZosy+h++om6NxbafHYApY8Pgbffhv+NN51Wb5pjqW2vtQuTXVW7KNd17uqqVqoJ9egfcVDTVoNF7txdN9Yn1i5aRoWNIsi9f7rrWpubafzkExo/+RSprQ0At9RUgh96EM/zzjtpwSJZJXauKWTfD6WAzZ152l0pTjcP1NZUs/bV56ktOgIKBeOvvo5xV1/XK2NDqd1M3QfZmCt0KL00BN+dhia4Z3EgSRIrV64kKysLpVLJddddx+DBg3s8pqHhVzIO3AbIDE18noiIuV2fW5a5NauI9Q0tRLpqWD9qCIEuIrm8vxBCRXBaMEkSs/cXsLelnSRPN9aNHIxHN4lqTU072J9xM7JsZfDgZ4iOurnHc+fm5rJixQpkWSY9PZ2ZM2eidBAeN1e3UbcoE6ndgkuMN0F3pPSqmVtrYz3fvPYiFXm5AIy8fBbnz7vVaUPBwow6fvrkICa9BTcvDZfckUz00ACnznE8siyj27SJ+tffwJBrm5/Sy4uAW24h4NZbUHmf3pLLBn0Du2t2s7tqN7uqd1HcUtzpeZVCRXJQsl0MDA8Zjrv61PvkdEW7uZ19tfvYVbWLXdW7ONh4EEnu7Fc00G+gPeIyKnQUfm5+p3WOlqYmGj/8iMbFi5H1egDc09MJfuhBPMaNO2nBUnSgjh8/7vhMemq4+PYkYpKd2/awmExs/GQRmT9+D0BsWjqXPfhEr/K1rG1m6t/PwlzVhtLHhZD5aagdlFBbrVa++uorcnNzUalUXH/99QwcOLDHY4qK36Sw8BWUShdGjljWrYlps9nC9L35FOlNTPL3YumwAahEiX6/IISK4LTwdH45H1XU46NW8sPIIcR7dL0/bDBWs2vXFZjNDYSFziIp6eUeL8B5eXksX74cSZJIS0tj1qxZjkVKTRt1i7KQ2sxoorwIvjMVpZtjoVGSlcG3b7zcUengwfR7H2HQ2AkOjzsWq1Vix6pCMjbY7l7DEnyZdlcyXv4nniciyzJtW7dR98brGA5kArYOqAE33UTgbbei8vM74XM7Q7OxmT01e+yLfYG2oNPzChQMDRzKmLAxjA4bzcjQkXhq+ie644gWUwv7avaxs2onu6t3c6jpUKfnFSgYEjDELlxGho7E2+X0CEFLQwMN771P09KlyEYjAB6jRhH88EN49KIZWk801+n54b1s6kpbQQGjL4tj1OXxKJ2M8uVu/pkN779pMzYMCGTGI08ROWSow+OsOhN172VhqWlH5etC8N3DUDuI7FitVlasWEFeXh5qtZp58+aRkNB951xZlsjMupf6+h9xc41g9OjVuLh0fZNwUKfnsr2H0UsSD8eG8nTCiXtzCU4cIVQEp5wV1Y08eNC2MH+aGs8lQV3fXUmSib375tHSsh8vr0RGjfwSlar7O6r8/Hy++OILJEkiJSWFq666yrFIqWu3RVJazWgivQi+IwWlR88JurIksXPlcratWIIsSwTHxjPzsafxD3Mu+VLXZGT9B9lUFdgSJIdNjWb87AGoTqIEsm3HTureeAP93r0AKNzc8L9hHoF33IE64OQiNI7QmXSdohB5jXnIdL5MDPYf3EmY+Lr2TYLw6abJ0GQXYburd3Ok+Uin55UKJUkBSYwOH83YsLGkh6TjoTm1eQ3m2loaFr2Hdtkyu/eS54TxBD34IB7p6Sd8XovZypblh8n5tRKA6KH+XHx7Mu7ezuVN1ZcWs+bV/9JUWY5SpWLSDbcz4rIrHEZ+rK0m6hZlYqnTo/JzJfjuNNQOhLzFYmH58uXk5+ejVqu58cYbiYuL63a82dzC7j2z0OtLCPCfyPDhH3XrCbSypol7c21J6B+nxDM9+Oz8DJ/NCKEiOKVkt7YzY99hDJLMY3GhPBnf/R1J3qFnqKhYjFrtw+hRq/DwiO12bEFBAUuXLsVqtZKUlMTVV1+NykG/CUu9ntpFmUgtJjThngTdmYrKs2eRYtK3s27BCxRl2IRAypRLuPD2u9G4OOdOXJbXyIYPctC3mnFxU3HhLUMZkO5chcWxtO/bR91rr9O+cycAChcX/K+/jsA770Qd3LuKC6df09xORm0Gu6ptwiS3IRerbO00Jt43vlNeR4DbqRVL/UW9vt6Wa9ORc1PSUtLpebVCTUpQCmPCbb+LYcHDcFOfmuoqc3U19e+8g/arr+GoYJl0PsEPPoR7as+luz1xaEcVvyw5hMUk4elnq0QLH+DcIm3St7P+3Tc4tN3WAn/w2IlMf+Axh98fa0uHWKnXowpws4kV356PsVgsfPHFFxQUFKDRaLjxxhuJje3+GqLTHWL3nquRJD2xsfcycMAT3Y792+Fy3iuvx1ul5PtRgxng0f+Vcn8khFARnDK0ZguX7Mmn1GDiwgBvFqcldOuIXFX1NbkH/wTAsLT3e2yPX1hYyJIlS7BYLCQmJjJnzhzHIqXRQN27mVibjahDPQi+KxWVg8oak0HP188/Q0VeLmqNCxfdYfM3cQZZktn7fTG71hbZelZEeTF9fsoJe/ToMzOpe+112rba2vOj0eA/Zw6Bd89HE9q3iahGq5EDtQfsi3FmfSYWqXPCabR3tF2YjA4bTbDHqRFJZzrVbdV24bKraheVbZWdnndRujAsZJh9qygtKA2Nqm9dlE3lFdS/8zbNK1eB1SYgvS68kOAHH8BtqONtl65oqNTx/bvZaGvaUSoVTLh6IGkXOtfbR5ZlMn5Yxy+ffoBktRA3bARXPvF/Dt3Drc1GahdlYm0woA60iRWVT89ixWw2s3TpUgoLC3FxceGmm24iOrr7XijV1WvIyX0UgLTUtwkOvqTr80oy12QUsLO5jSGebnw7YhCewmn5tCGEiuCUIMkyN2UW8VNjCzFuLvwwajD+3Tgit7bmsmfvNUiSkfi4B0lIeKTb8xYXF7N48WIsFguDBw9m7ty5qB0kslqaOkSK1og62J3g+WmoHISxzUYDK//7LGW5Wbh6eHLNX/9F2MCeKwqOx6Azs+GjXEpzbG3Lh04MZ9K1g1E72QUUQJ+TQ/0bC9H98ovtAbUav9mzCbr3HjQRfdf/Q2fS8WX+l/xa8SsZtRmYJFOn58M9w23CpCNSEOYZ1mevfS5R3lreSbjU6ms7Pe+mciM9JJ3J0ZO5atBVfZpEbCopof6tt2leuxYkW0Kw9yWXEPzgA7gOGuT8+QwWNi7Oo2CP7T0MSA9mys1DcXV3LoG8LDeLr//7DyxGIwkjRjPzsb+gdmATYNF2fHebev/dNZlMLFmyhOLiYlxdXbn55puJjOy+xX9+/r8oK/8YlcqLMaNX4eER3+W4GqOZi/ccotZk4coQP95JEsacpwshVASnhJeKqvhfcQ1uSgVrRwwi1bvrCILZrGXX7lkYDGUEBk5mWNr73bqclpaW8tlnn2E2mxk4cCDXXXedY5HSbLRd6BoNqIM6LnQ+DkSKyciqF/9FaVYGLu7uXPPXfxM+aEjv3ngH1UXN/LAoG12TEZVGyeTrBzN0gvOCwnDoEPULF9K6web+jFKJ75VXEnTfvbj0cKfoLO3mdpbmLeWjnI9oNjbbHw92D2Z02GjGho9ldNhoorz6rlPuHwVZlilpKbFvme2u3k2j4Td36kC3QO5MvZM5Q+bg2k0TshPBWFhI/cI3afnuO5BlUCjwufRSgh54ANeErhfjnt5D9qYKtqw4jGSV8Q12Z/rdKQQ5aHt/PKXZB1j532exmE0MGDWOmY8+5bBirlM0NMSD4Pm9iIaaTHz++eeUlJTg5ubGLbfcQnh419vOkmRm//6b0DbvxtNzEKNGfoVa3XWS9y6tjqsyCrDI8OzACO6OPvHtW0HvEUJF0OdsqG/mpqwiAF4fGsPcsK7zFGRZ4kDmnTQ0bMLNLZoxo1eh0fh1Oba6upoPP/wQk8lEQkIC119/PRoHd2PWFptIsTQYer/PbTKx+n//oThjLxpXN67+yz+JTOy562Xn9yST9UsFW7889oKeSlCUc2aClqYmav79H1o6/IpQKPCZMYOg++7FNd65RaYnDBYDyw4t48PsD+2LZ5xPHPOGzmNc+DjifOKEMOljZFnmiPYI26u28/nBz6nQVQAQ4h7CXWl3cdWgq3BR9Z2dgSE/n/qFb9K63mbxgFKJ76xZhD79lNMl6zVFLXz/Xha6xhMX4MWZ+1n14j+xms0MHjuRyx9+EqWjrdsGvU2stJjQhHkQdFeaw/wyo9HI4sWLKSsrw93dnTvuuIOgoK574RiNdezafQUmUy0hIZeRkvx6t5/798vr+L/DFagU8OXwgYzvprO2oO8QQkXQpxR3eGU0W6zcGhnEfwd374hcWPgaRcWvo1S6Mmrkl3h7dy0I2tvbWbRoEVqtlri4OObNm4eLo/3tYysH/DsqB/wclDlazKz533MU7tuN2tWVq596lqik3icj9lWIXH/gAOWPPIqlytat1vvS6QTffz+uDvpDOIPJamJF/grez3qfer3NCC/aO5p7h93LpfGXolaK5lanA7NkZnXBat7NfJfqtmrAtr02P20+Vw68Eo0DywhnMBw8SN0bC9H9/DMAmtgYol57DTcHHV1/d57jtzQnhDPpOue2NIv272H1y//GarEwZMIkLnvgcYdixVaxl4XUakuGD74r1WHFnsFg4LPPPqOiooLg4GDuvPNOXF27vlnRavewb/8NyLKFQQP/SkzM7V2Ok2WZBw6W8lVNE8EdXmVh3XiVCfoGIVQEfUa7VWLmvnxydAZG+niwMn0gLt2UC9fXb+RA5p0AJA19ifDwq7ocJ0kSS5YsoaCgAD8/P+bPn4+Hg9bvVp2JukVZWGrbUfl2iBRHvRgsFtYt+C8Fu3eg1rgw+6lniEkZ1ot3baOhQsf3i04+6bDp8yXUvPACmM24xMYS8b//4Z6S3OtzOMJsNbOyYCWLMhfZW9ZHeEZw97C7mTlgZp8ujILeY7Ka+Prw17yX+Z49nyXKK4p7ht3D5QmX96lwbN+3j4onnsBSWYXC1ZWwv/8dv6u7/v51hy1JvIRdawt/SxK/K8UpY8Mje3ey5n/PI1ktDD1/CtPve8RhF1tzbUd7AV1He4E7U1E6uBFobW3l3XffRafTkZyczDXXXNPt97Ks7BPyD/8ThUJF+vDP8Pcf2+W4NquVGXsPc7DNwCgfD77u4VonOHmEUBH0CbIs8+DBUr6saSJIo2bD6MGEu3Yd9WhvL2H3nllYLC1ERt5I4pBnuz3vxo0b2bRpE2q1mjvuuKPbfeajWNvM1L+Xibm6HZWPi02kBPacqChZrXzz2ovk79yKSqNh1pN/Jy6t930oDu2o4pfPfzMUvORO58s4rbo2qv/+N1q+/Q4A72nTCP/Pv1F59U1Y2SyZWXdkHe9mvvvbVoNHCHen3c3sgbP7vAJFcGIYLAZ7pOvYrbh7ht3D9LjpqHrRjr43WJqaqPzzn2nbbCsb9r36KsL+9jenDSpPtuz+8K5trH31v8iSRPLkqUy75yGHpou2ho2ZSG0WXKI7uko7aNhYWlrKxx9/jCRJTJs2jfHjx3c5TpZlcnMfp7pmNRpNIGPGrMHNteuE8aJ2I9P2HqLFInFbZBDP9xA9FpwcQqgI+oQPy+v4S8e+7fJhA5jo3/Xet9WqZ8/ea9Dp8vDxSWfkiCUolV0Lmvz8fJYsWQLArFmzGD58eI9zkNrN1L3X0YLb28VmbubIL8Rq5duF/+PQts2o1GqufOL/iE8f5fgNY2uM9evyw+QebYyVFMDFtyU53RjLkJ9PxcOPYCoqArWa0Cf/hP9NN/VJbohVsvJt0be8feBtylrLAJtT8J2pd3LN4Gv6NHnzhJBlaDgCRZugZCu01fXPPLzCIO48iD8f/OOhn/Ny2s3t9twhrVELwADfAdw7/F4ujr0YZTcJ584gSxINixZR9/obIEm4JiYSteBVXHpolNYVbVojP7x/4o0MD23fwjevv4gsSaReNI2L77zfoVgxVeqofz/LZoER60PQ7ckOLTB27tzJd999h0Kh4JZbbum2IZwz16j19c3c3JGP98bQGOZ0k48nODmEUBGcNLub25i9/zAWGZ4ZEMG9MV3fUdnuVp6gumaVw7uVxsZGFi1ahMFgYPTo0Vx++eU9zkHSdziwHjU1m5+GxkGvEkmy8v1bCzj460aUKjVXPP40A0Z2Heo9nuY6Pd8vyrIbCo6+PJ5Rl8U53Wq8efVqqp75B7LBgDosjMhXXzmprqJHkWSJH4p/4K2Mt+weOwFuAdyecjvXDrn2lDUf6xVNxVC0GYp+heJfobWq/+bSFb7REHe+TbTEnQ9+fVdd5Sxt5jaWHFzCxzkf02JqAWzdfu8bfh8XRl/YNw7KO3ZQ8fgTWBsaUHp5Ef7cf/C5pOt+It1htUrsXFXI/hO0hji4dRPfvfE/ZFli2MWXcdEd9zo2Fa3oMBU1WHCJ7zAV7SFPRpZlvv76a7KysvD09OTuu+/udi1oby/uiPq2EhV5E0OG/KPb875QWMWrJTW4KxWsGzmYZK/+8as6lxFCRXBS1Hb0FqgxWbgixI93e+gtUFb+Kfn5zzrc/zWZTHzwwQfU1NQQFRXFrbfe2mMZsmSwUP9BNqayVpSeaptIcWATL0sSP7zzOjmbfkShVDLz0acYNKZ3vj2dzNu8Oszbkpwzb5OMRmr+8xza5csB8Jw4kYiXXjzptveSLPFz6c+8mfGm3WvH19WX25Jv4/rE6095W/cuaS7/TZQU/QrNpZ2fV7lA1BiInwQBCac/miHLUJ9vm1/5bjiuqR3+8R2iZZLtX+/T3zum1dTK4tzFfJr7KTqzDoChAUN5IP0Bzo88/6QFi7mmlorHHrNbMQTceishjz+GwkFl3fH8zmzz9mSik3r3mc7d/DPfvfUqyDLpl85kyi3zHYuVslbq3s9CNlpxHeBL4C3JPYoVk8nE+++/T21trcNrS339zxzIvAuApKEvEx4+u8txVlnmxsxCNja2EtvRM8qvm55RghNDCBXBCWOWZOZkFLCjuY3BHm58N7L7bo2dM+r/QkzMHV2Ok2WZlStXkpmZ6fCuB0AyWqn/MBtTSQtKDzVBd6biEtFzXocsSWx4/02yfvoBhULJ5Q8/yZDx5zl8v5JVYsfqQvavP3rX6MMld6bg7SBR93hMZWWUP/wwxtyDoFAQdP/9BN17DwoHVQ89Icsym8o38WbGm+Q15gHgrfHm5uSbuXHojXi5nMYSytaaDlGy2fZvY2Hn55VqiBxpEyZx50P0GNCcIXehpjYo3fHb/Cv3w3EuygQN7hxx8ey65PVU0Gxs5pOcT1h8cDF6i81BOS0ojfuH38/4iPEnJVhks5naBQto/OBDwObMHLngVac7HjfXtfP9omx7tHHMjHhGXRqHohfRxqyN61n/zusAjJwxm8k33u7wPRlLW6j/INsmVgb5EXRzMgpN91tHDQ0NLFq0CKPR6DBaW1i4gKLiNxxWJjaZLUzr6MJ9UYAPn6XFd9uFW+A8QqgITphnDlfwbnkdXh3+FwO78b9wpkdBb/eRASSTlfqPsjEVtaBwUxN8VyoukQ5Eiizz04fvcGD9NygUSi594DGGnneBw/fa1mzkh/eO2Ye/MJrxVw1ApXYuV6D155+p/PNTSK2tqPz9iXjpJbzOm+jUOY5FlmW2Vm7lzf1vkt2QDYCnxpMbh97Izck34+NyGj7rbQ1QsuW37Zz6zk7DKJQQPty2sMdPguhx4HqW9J4wtEDp9o73thmqs+A440VCkn8TLXETwd3/lE+r0dDIx9kfszRvKQarAYARISN4IP0BRoednINy648/Uvn0X2yf0YAAIl9+Cc8JzrmEW0wd+VtbbPlbMUkBTL09CXcHjdoADmz4jh/ffxOAMbPmcN51NzsWK8XN1H+YjWyScBviT+BNSSh6+G4eOnSIpUuXAjB79myGDeu6wu/3vZ5Wo9F0nSif1drOzA5fsyfiwngiXnRt7iuEUBGcEKtqmrinw1H0w5Q4Lgv263KcM10fj83Mv+SSS5jQw8VRMllp+CQH45FmFK4qgu9MxSW65+ZVsizzyyfvse+7NaBQMP3eR0iefJHD91p+qIn1H+SgbzGhcVNx0c1DGTDCuY6UssVC3YIFNLz/AQDuw4cT+eoraBxUMfX0XnZW7+TN/W+SUZdhO6fanXmJ87g1+Vb83PxO6Ly9Qq+Fkm2/RUxqso8boICwlI6tkkkQOx7czhHH2fZG23s/GnGpzT1ugALC0zoiLpMgZjy4nbrrTb2+ng+yPmD5oeV2u4OxYWO5P/1+0kNOPNfJVFpK+cOPYDzYEfV74H6C7r3XYZLr8eRtr2LTkt8q4qbdlUJYguPPwv4f1vHzh+8AMO7q65k49waHxxgLtdR/lINslnAbGkDgDUN7FCu9rSjs3D37Aoalvddt9+xlVY08nFeKAvgsLYGpgWKt6QuEUBE4zUGdnsv2HkYvSTwYE8JfB3TfmTL/8L8pK/sIlcqL0aNW4umZ0OU4Z3odyGaJ+k9zMB7WonBREXRHCq6xPf9NZVlm8+cfsWft1wBccs9DpE5xnDCYv7uaHz/MtfWKiOwwFHSiVwSAubaWyscep33PHgACbrmZkMcfR+GgaV137K3Zy8L9C9lTYzufq8qVa4dcy+0ptxPo7lyuTK8wttq2Q4o22SIm1Zm/3w4JHvpbxCR2Inj8QaofdHWdo0kNhzs/r1BBRHrnaJJL3+cJ1bTV8H7W+3x5+Eu7ceTEiIncP/x+UoNTT+icksFgy6NasQIAz/POs+VR+TsXMerUY0ilYPrdqcSnOd4u2/vNan759D0AJs69kXFXX+fwGENBE/Uf54JFwi05kMB5iSi6qT46tkeTv78/8+fPx9296y3I1tYc9uyd0+FH9hAJCQ93O4c/Hyrjk8oGfNUqfhg1mDj3fq6sOwcQQkXgFC0WK9P35FOoNzLJ34ulwwag6kZQVNesJSfnEQBSU98iJHhal+OsViuffPIJpaWlDrtHyhaJhs9yMRxqQuGiJOj2FFzjer5Dk2WZLV98yq5Vtgvu1DvvZ9jFlzp8rwV7a1n/fjayDIPHhHLBjYlonDQUbNuxk4onnsBaX4/S05Pw557DZ5pzFRVHyajN4M2MN9lRtQMAjVLDnMFzuDP1zr51LTbrO+dpVOwD2dp5TODAznkaXsLzBICWqs75OU3FnZ9XaiBq1G8Rl6jRoOm7CqwqXRWLshax6vAqLLJNsEyOmsx9w+8jKbD3VhDHol25iupnn7VXpkUteBV3B60Cjsekt/Djx7kUHahHqVZw2T1pxKY4FtW713zF5s8/AuD8ebcy5sprHB5jyG+i/pMcsMq4pwYRcF0iClXX16hju14PGjSI66+/HmU3UaPeOrybJInZ+wvY29JOspcba0cMxqOXpdqCrhFCReAUj+WVsqSqkUhXDT+MGkKQS9fZ7TrdIXbvuRpJ0hMbew8DB/yp23N+//337NixAxcXF+bPn9+tH4dskWj4/CCGg40oNEqCbkvGNcHP4Zy3Lv+cHV/Z9qMvvP0e0qfNcHhM4f46vn8vG1mSSZwQzoU3JvYqGdA+V0miYdF71L3+uq1HxZAhRC549YR8enLqc1iYsZAtFVsAUCvVXDXwKu5Ku6tv3YsNzbD9LdjxFhhbOj/nF9u58sWn7xybz2m0pZ0rnlrKOz/v7g8THoIx8/s0b6estYx3D7zL2sK1SB3Rr4tiLuLeYfcyJMA5g00Aw6F8Kh5+GFNxcUevnyfxv+lGp5J3JavE+g9yOLKvDpVayWX3pfaqWm7nyuVs+eJTACbfdAejZnRdfXMs+rxGGj7LtYmV4cEEzB3S7fe3qqqKDz74AIvFwuTJk5kypWsBApB36O9UVHyOWu3D6FGr8PCI7XJcpcHEJXvyqTdbuDs6mGcHdu/eLHCMECqCXrOpsZVrDxxBAaxMH8i4bsy4LJZWdu2ehV5fTID/RIYP/wiFoutIRFZWFl999RUA1157LUOHDu1ynGyVaFiShyGnAdRKgm5Nwm2g4xD0jq++YOvyxQBccPNdjLz8SofHFGXW8/27WUhWmSFjw7jwlqFO9UexarVU/PnPtG3aDIDv7NmE/f1vKLsJK3fHocZDLMxYyC9lvwCgUqi4cuCVzE+bT6RXH174jK2w8x3Y9oZNrAB4R9ju+I9GTPy7viALnECWbRVQR0VL0WZos7XLxyMIznsURt3ep1tDxc3FvJP5Dt8WfovckQQ8LW4a9w27jwS/rrdhu8Oq01H1f3+j9fvvAfCePp3wf//Lqe7JVqvED4uyKTpQj0qjZMb9aUQlOt4m3LZiCdu/tDV/nHLrfEZceoXDY/S5DTQsPgiSjMeIEPyvGdytWMnIyGDVqlUAzJs3j8GDB3c5TpJM7N03j5aW/Xh5DWXUyBWoVF1/r39saOHGzEIUwLoRgxjp23PLBEH3nFVC5c033+Sll16iurqaYcOG8cYbbzBmzJheHSuEysnRZrEyeXce5QYzt0cG8Vw37aJlWSIz617q63/EzTWC0aNX4+LS9YWopqaG999/H7PZzHnnncfUqVO7fX3t2iPotlaCSkHQLcm4DXYsUnat/pJfl3wMwKQbbmP0FVc7PKYku4Fv38lEssgMGhXC1NuTnRIp+qwsKh5+BHNlZYePyt/wu9rx6x6LJEt8kPUBCzMWIskSSoWSGQkzuDvtbmJ8Ypw6V4+Y2mH3e7D1NWi3GcwRNASmPA1DrwThXXJqsVogawVs+u9vW0ReoXD+4zDilj7dEjqiPcLbB97mh+IfAFAr1Dw+6nFuGHqD835Uny2m5qWXbH5UcXFEvvYabkO6Xti7wmqR+O7dLEqyGlC7KJn54DAiBvX8fZZlma3LFrNz5TIALrrjPoZfcpnD12rPqqdx6UGQwPuiGHwv7l5wr1u3jj179uDm5sb8+fMJ6KankcFYza5dV2A2NxAWOoukpJe7/R0+kFvClzVNDPJw5cfRQ3AV36kTorfrd7//dpctW8Zjjz3GM888w759+xg2bBjTpk2jtra2v6f2h+C5wirKDWai3DT8NaH7SpWSkneor/8RhcKF1NQ3uxUpBoOBZcuWYTabSUhI4MILL+z2nO0ZtTaRAgRen9grkbJn3Uq7SDnvupt7JVJKcxv47p0sJIvMgPRgpt6W1GuRIssyjUuWUDLvBsyVlWhiYoj7YqnTIkVr0PLATw/w+v7XkWSJi2MvZuWVK/nPef/pO5Fi1tu2eF4bBhv+bhMpAQPgqvfgvu2QPFuIlNOBSg3Dr4cH9sAVb4BvDOhq4Lsn4Y0RsPsDsJj65KUG+A3g5ckv8+XMLzk/8nwssoUXdr/A45seR2fS9fo8CoWCgJtvIu6zT1GHh2MqLqb42mvRrlzV63Oo1Eqmz08hJikAi0li7cJMqgq0Dl934rU32r/HP33wFpk/fe/wtTxSg/C/yiaiWn8qRZ/X2O3Y6dOnExUVZb82mUxd/+7dXMNITXkdhUJFdc0qyisWd3vOfw6KJEij5nC7kQXFNQ7nKzg5+j2iMnbsWEaPHs3ChQsBW8Z2dHQ0Dz74IE899ZTD40VE5cTZqdVx5X5bl9NlwwYwOaDrMuCGhl/JOHAbIJOY+ByREdd2OU6SJJYtW8ahQ4fw9fVl/vz5eHp2HRY1V7dR+2YGslnC+4JofKfHOZzvvu/WsvHjdwEYf808JsyZ5/CY8rxG1r2ZidUsET8siGnzU3rtVSK1tVH192do+eYbALwvnkr4c8+h8u65XPp4suqyeHzT41S1VeGqcuWvY//K7EGO9+N7jcUI+z6FX//3W9t6v1iY/GdIu9a2cAr6D4sJ9n8Gm1+GVpswxzcGJv8Jhl0PfWQcKcsyS/KW8PLul7HIFmJ9YnnlglcY7N/7qAh0GBv+6Unatthyp/zmXEPo//0fym4S4X93vMnKN29lUp7XhMZNxRUPDycs3nFi/KbP3mfvN6tBoWDaPQ+TckH3kdijNK0qoG1HFQo3NaEPDu/WqLS5uZlFixbR1tZGWloas2fP7jZaUlL6PgUFz6NQqBkxYgl+viO7HLeuVsudOcWoFPDDyMGkePdDd+iznLNi68dkMuHh4cGXX37JrFmz7I/fcsstaLVaVq9e/btjjEYjRqPR/v+Wlhaio6OFUHESvVVi6u5DHNEbuT48gFcTu76r1+vL2bX7SiwWLRHhcxk69Pluz7l582Z+/vlnVCoVt99+O5GRXedbSAYLtW/sx9JgwHWgH0G3pzhMaD2w4Vt+fP8tAMbOnsvEax2b+1UebmLtGwewmCRiUwO5dH4qqh46Wx6LsaCA8ocfwXTkCKhUhDzxBAG33uJ0OP2LQ1/w4u4XsUgWor2jeeWCV0gMSOz1OXrEaob9i20L4NFkTp8o2wI4/IY+WwBPBkmSya9tpVHXNxEEZwn2dmVgiFefeOecNGYD7PvEJih1HXfh/vEdgnIu9JGDckZtBk9seoKa9hrcVG7837j/48qBjnO4jkWWJOrfeYf6NxaCLOM6dChRry3AJaZ30T+zyco3Cw9Qka/FxV3NlY8MJ6QXrQZ+/uhdMn5YBwoFl93/GEPP7z4BFmyJ+HWLMjGVtqIJ8yT4vmHdttovKiri008/RZZlLrvssm7TC2RZJjvnIWprv8XFJYQxo9fg6tp19d0d2UV8U9dMqpc7344cjMZJT7A/OmeFUKmsrCQyMpJt27Z1sud+8skn2bRpEzt37vzdMf/4xz949tlnf/e4ECrO8e8jlSwsrSXURc3mMYn4duFhYbUa2btvDq2tOXh7pzJyxDJU3bjyFhQUsHixLVQ6c+ZMRo7s+i5ElmRbGfLBRlR+roQ8mI7Ks+cFNfOnH9iw6A0ARs28ikk33OZw4ak60sya1zOwGK3EJAVw6b2pqDW9Wwia166j6u9/R9brUYeE2AwFu3k/3dFubucf2/7Bd8XfAbbKjH9N/BfeLs5FY7rEaoHMZbDpBdDamvPhHd6RA3EzqPuvv4MsyxTU6the2MD2Iw3sKGygqd3cb/MBCPJyYWxCIBMGBDI+IZD4IM/+FS6mdtjzIWx5FdrrbY8FDoILnoLkq/pke67J0MTTvz7N1sqtAFw96GqeGvOU06aVuq1bqXziT1ibmlB6exPx/HN495Bzdiwmg4V1Cw9QVdCMq4eaKx9JJzjGcfPGH99/k8wfv0ehUHLZQ0+QOGFSj8dYm43UvLEfSWfGIz0E/7mDu/37btu2jfXr16NUKrn11luJ6UZ4WSxt7N5zFe3tBfj5jSF9+Kcolb+/TtUazUzalYfWYuUvCeE8FOucLcEfnXNWqIiIysmT0dLO5fvyscrwSWo804J+H5aVZZmDeU9TVbUCjcaf0aNW4+7edYSkqamJRYsWodfrGTFiBFdc0X3mfsvPpbSsLwGVgpB7h+ES1fOFK2fTT3z/9gKQZUZcdiUX3Hynw0WmuqiZNa9lYDZYiUr05/L70lD3ok+KZDJR8/zzaJd+AYDH+HFEvvwy6kDnmq0VNBXw2KbHKGouQqVQ8ejIR7k5yXG7cMcTtEL2V/DLf6HxiO0xzxA4/zEYeWu/+OrIskxxQzvbjzTYxUm9zthpjIeLiih/dxScXnEgI1Pa2I7B3LmJXZiPG+M7RMv4AYFEB/RTyN6og12LYNvroG+yPRY81Jb0nDjzpAWLJEssylzEWxlvISOTGJDIK5NfIdrHOddoc3U1FY8+hn7/fgACbr+dkEcf6ZWxoclgYe3rGVQXtuDmqWHWY+kEOrLDkCTWL1pI9sb1KJRKZjzyZwaP7dmOwnBES/0HWSCB3xUD8JrQdZm9LMusWLGC3NxcvL29mT9/Pt7dbOW2tRWye89srFYd0dG3M3jQX7sct6K6kQcPluKqVLBh1BAGe/ajg/lZxlkhVE5k6+d4RI6Kc5gkiWl78jnYZmBWiB/vJMd1Oa6iYil5h/4PUJI+/GMCArq+UJjNZj788EOqqqqIiIjgtttuQ9PNBcyQ30T9R9kgg/9Vg/Ac03OvkIO/buTbN18BWWb4tBlceNvdDhf72pIWVi/IwKS3EDnYj8sfGNarZm6m8goqHn4YQ06OrbX4vfcQdP/9ThsKritcxz+3/xO9RU+IewgvTX6JEaEjnDrH75AkyF1lEyhH/XbcA+C8R2D0neByessjy5va2XakgR0d4qSq2dDpeVe1klFx/h1CIIi0KF80/dQYy2ixcqCsmW1H6tl+pIH9pVpM1s7CJcrf3S5axg8IJNz3NAs+Q0tHGflCMHaUkYemwpS/wJBLT9p1elvlNp7a/BRNxia8NF78e+K/uSjWscXEschmM7X/e4XGjz8GwH3kSCJfeQVNqOOGgEa9hTWvZVBb3IK7t4ZZj44gIMKxC/r3by8gd/PPKFUqZj76NANHj+vxmNbN5TR/WwRKBcF3p3Xb1dpoNPLee+9RX19PbGwsN998M6puvue1dT+QlXUfAMnJCwgLnfn7ucoyN2QW8nNjK6N8PFg9YlC3zTIFnTkrhArYkmnHjBnDG2/YQvuSJBETE8MDDzwgkmlPAf8rqual4moCNCo2jxnaZWO35pYD7N17HbJsYkDCn4iLu6fLc8myzJo1a9i/fz/u7u7cfffd+Pn5dTnW0migduF+pHYLnqPD8L96UI/zzNu2mW9ffxlZlkibOp2pd97vUKTUlbayesF+jO0Wwgf6MuOBYbi4OU4kbd24kcqnnkZqbkbl60vEyy/hdf75Do87FqPVyIu7XmR5/nIAxoaP5YXzXzi51veyDHnrYOPzUJtje8zNDyY8CGPvBtc+2EbqBTUtBrYfabAt9oUNlDXqOz3volIyPMbPvtinx/jh2o3bdn9jMFvZV9LEtg6RdaBMi0XqfAmMD/Jk3FHhkhBIsPdp2krTa2H7m7DjbTC12h6LSIcpf4WBU09KsFS3VfOnTX+y+0fdknQLD498GE0X2xk90bJ+PVV/+SuSTocqMNBmbHhMNLw7jO1mVi/IoK60FXcfF2Y/lo5/WM9iRZKsfLfwFfK2bkKpUnPlE38lYUT3xoyyLNO4NA99Zj1KbxdCH0pH5d21nUV9fT2LFi3CZDIxbtw4pk+f3u15C468REnJOyiV7owe9TVeXr9PTq4wmJi8Kw+dVeJfAyO5K7oPO0qfw5w1QmXZsmXccsstvPvuu4wZM4YFCxawfPly8vLyCO2FDbkQKr3noE7PJXvyMcsybyfFMjv09+XAJlMDu3ZfidFYRXDwJaSmvNWtQNizZw/r1q1DoVBw4403MmDAgC7HyWYrte9kYq7QoYnyIuTuYT3atefv3Mq6BS8gSxIpUy7hkvkPODRNa6jQseqV/RjazIQl+DDzoeEORYpssVD32us0vGfzHXEblkbUq6+iiXCuO2t5azmPb3qc3IZcFCiYnzafe4fdi+pEkyNlGfJ/gI3/sfnvALj6wPj7Ydy9p9wIsF5nZEfHNs72Iw0U1rd1el6lVDAsyrdjIQ9iZKw/7k5aEJwptBkt7C5uZHuhLUKUVdHMcbqFQSFejB9gy3EZGx+Iv+eJeTn1mvZG23bQznfB3G57LGqMLcKScMEJCxazZGbB3gV8mmvrBpseks5Lk14i1NO5vApTcbHN2PDQIVAqCX7oQQLnz3f4HTW0mVn16n4aynV4+Low+7ERDv21JKuVb954mfztv6JSq5n1p78RN7z7fDHJaKX2zQwste24xPkQfFdqt55ABw8eZNkyW/+Wq6++mtTUrr2TZNlKRsZtNDZtxd09jjGjV6FW//4m4ZOKev6cX467UskvY4YQK7yAHHLWCBWAhQsX2hu+DR8+nNdff52xY8f26lghVHqHRZKZse8wGa3tTAvy4eOU+N8JEEmykHHgVpqatuPhEc/oUSu7/EIClJeX89FHH2G1Wrnooos4v5sIhCzLNH15mPa9NSg91IQ8lI7ar/s93ILdO1j76vNIVitJky5k+r2POLwANla2serVfehbzYTE+XDFw8Nxde9ZpFibmyl/8CHad+0CwP+mmwj90xNOGwr+UvYLf9nyF1pNrfi6+vLf8//LeZHnOXUOO7IMR36Gjc9Bhc2YEBcvGHuPTaScIkNAbbuJHYWNdnFyqKa10/NKBSRH+DJhQCDjBgQyOi4AL9dzs+S5xWBmV2GjPd8mt6qz5YBCAYlhPvbE3DEJAfi4naLqKl0dbF0Au98HS8f2WuxEW4QlruecjZ74seRH/rb1b+jMOgLcAnhh0guMC+95W+V4JIOB6n/9i+avbGagnpMnEfXKKyi7aUdwFL3OxKpX9tNY2YaXvyuzHhuBb3DPW21Wi4VvXnuRw7u2oda4MOvPfyc2dXi348117dQuzEA2WvGaGIHfzK5voAB+/PFHtmzZgkaj4a677iIkpOutrGNv4IKCppKW+vbvnJYlWeaajCNs0+o4z8+LFcMHnBnVZmcwZ5VQORmEUOkdb5XW8s8jlfiolWweM5Qw199fXAsKXqCkdBEqlQejRn2Nl2fX2zNtbW28++67tLS0kJiYyLXXXtvtF1K3swrtygJQQNDtKbj10KmycP9uVr/0HySrhcSJk7n0gcdQOohKNFW3sfKV/ehbTATHeHPFw8Nxc1BFZG1tpfT2OzBkZaH08CD8P//G51LHZobHYpEsvLH/DT7M/hCAtKA0Xp78MuFe3TfN65GizTaBUrrd9n+1O4ydDxMeBs++dU5uNZjZVdRoT4DNrWrh+KtAYpg3EwYEMX5AIGPiA/B17/9S5/6gqc3EzqKGjq2vBg7Xdm6iplRASqSvfZtodFwAnn0t4lqrbRVCez4Ea0eZd/xkuPD/ILp3HbyPp6SlhMd+eYz8pnwUKLh/+P3clXYXSoVzuUTar76m+p//RDYa8Rg9muhF7zq0lGhvMbHqlX00VbfjFeDK7MdH4NNN/5OjWC1m1rzyPIV7d6F2ceWqp/9BdFL37tH67Hpbm30g4PoheAzrWoBYrVYWL15MUVERAQEBzJ8/Hze3rm+kWloy2bP32o4t8ceJi7vvd2OK9Uam7MpDL8m8PCSaGyNOgev5OYQQKgI7he1GLtydh0GSeWVINPO6+PLU12/kQOadAKQkv05o6OVdnuvYL3ZgYCB33XVXt19sU1krte8cAKuMz/Q4fC7ovtqg+MA+Vr30L6xmM4PHn8/lDz6B0kEiq7a2nVX/20dbs4nAKC9mPZKOm5cDkaJro+zOO9FnZKDy8yPmk49xG+KcmVtdex1Pbn6SPTW2qMcNQ2/g8ZGPozmRviUl221bPMW/2v6vcoXRd9j8YfrQubipzcQn24vZeKiO7IpmrMftbwwM8WJ8Rwnv2IRAAk719sZZSl1rx7ZYR8Sl6LhtMbVSwbBoPy5MDOGm8bF9G21prrD1YNn3Kf/P3nlHV1F2ffuaU3PSeycJKRB6770jXVBRxEqxI0VFsaEo2AABK0XsCjZ6770jPZBCSO+9nD7fHxP5DDMnged5Xuu51spa0Xvfc2ZCMrNnl9/GXtPyHdtfSgmF3Vr7PIDRamTesXn8nChFRbqHdWde93l4u3jf0nGqz5wh7eEJ2Csrce3SmQYff4zKwT3hNypLTaxZcJqS3Co8/V0YNb0tHr5177FaLKyb/yZXT59Aq3dh9KzXCI9v5tC+dMtVyvdkIGhVBD7RGq2Dmpjfv3g1btyYsWPHOpy0nJm1ioSEWYBA2zbf4OMjj/x/kpbH7OQsPNQq9naMJ9TF+bfkCKej4gSQwpGjTydxpLSSnj7urGolD0daLGUcPToYkzmXBuEP0qjRyw6Pt337dg4ePFhvqNRWYSZvyWlspWZcmvnhN76JYyXIc7+y5u3XsVrMxHbowrCpM1Fr6n4rLc2vZs2CU1QUm/ANdWPUtDYYHBTOXf9ZVFaSNvkRqk+eROXlReTnK3FxMCzREcdzjvPs3mcpNBbiqnHltW6vMTjKcSGeQzJOSA5K8i7pv9U6aQ5Mjxng+R9GZRQorbawYn8Knx1MpcJkvf7/o/xca7pc/Okc7Uugh7Ol8j8hu7SaIymFHEqSnJeM4v9faOxl0DK5ZzQPdo3630ZZiq/B/vfg9Dcg2qT/1+g2yWEJaXnLh/sl8RfePPomJpuJYLdg5veaT8uAWztO1anTpE+ciL2qCrfu3Qn/8IN6lWwrik38suAUZfnVeAUYGDW9Le4+de+xms2seXcO186eRuti4I4X5xDaSFlAUbSLFHx2HlNSCRp/A4FPtkbloG4tMzOTzz77rN5UNsDFi8+RnfMTBkMEnTpukg0vtIkiw08lcqqsigF+nnzZQp5mdyLhdFScALAys4AXrmTgqlaxp0NjIhQKvC5deoGs7NUYDFF06rgRtVr5oXXx4kVWr5a6Wu644w6aN2+uaCfaRApWnMOUUlrvDSI76TKrX5uF1Wwiul1HRkx/AbWm7rfQssJqfpl/iooiEz7Broya3hZXz3qclOpq0h95lKpjx1B5eBCxciWG5o7fxmT7RTufnf+MJaeXYBftxHrHsqD3Ahp6NbzpYwBQngsbpsLlTdJ/qzTQZjz0eAa8b03fos6PMVpYeTCVZftTKDdKDkrTEE8e6hZFt1h/Qr3/eM2VfwPpRVUcSCpgxYGrJNWkiXzddDzSM5r7u0T9b4uOi1Jg77tw9nsQa1qum90OQxfccj3T5aLLTN8znbTyNDQqDc+2f5Z74u+5pQds1YkTpE2ajFhdjXuvXoQtWYyqnpqv8iIjv8w/RXmhEe8gV0ZNb4ObV93OisVk5Je3Xyf9wll0Blfuef0d/COiFG2lF6ZfsZWacGla88LkQD325MmTrF+/vt7mAKu1nCNHB2My5RDRYAJxcbNkNpcrjQw4fhmzKPJhkwjGBP/f1Jf93XE6Kk5IN5rpfSyBSpudN+LCmBgub5krKjrI6V/vB6Bt2+/x8VZu/8vPz2fZsmWYzWa6dOnCoEGDHH5uyearVOzNQNDVhFyDlEOuVWWlfPX801QUFhDVqi0jn30ZTT0iUuVFRtYsOEVZwc3f2OxGI+mPPUbV4SOo3NyI+GwFhlat6tzze0pNpbx44EX2ZuwFYETMCF7q/BIGzS0+7FMPwI8PS/Lpglqa89LrWfCJurXj1EGlycoXh1NZui+FkhpF2MZBHkwbEMfApsG3NDHayX+OzS6y4WwW7+9IvJ4e8nfX83jvGMZ1isDlJlWSb4qCRElj5/xPgAheDeDOzyG8/S0dptxczquHXmX7te0ADI4azOyus3HT3rxOT+WRo6Q/+iii0Yh7v36Ev7+wXmG4soJqfllway8eFqORn+a9SmbCBXxCQrl37kL0rsrnWSsFPSgSzz6OxwCsXbv2puQW/n+qXEX7dj/g5dVaZrMwNYe3r0pSEHs7xhOg+3fWedWF01H5lyOKIuPOprC7qJyOXm6saROL6oa3I6u1kqPHhmA0ZhAedh+NG89WPNatCCRVnSug6JuaIrZx8bi2VNYTsNts/DT3ZdLOn8UnJKzmRlN3q2JFsYk1C05Rml+NZ4CB228iVGw3mch44kkqDxxA5epKg+XLcW3bps49v+dCwQVm7J1BZkUmOpWOFzq9wJi4MbcWyrXb4dAi2Pm69OYb2BTuWAmB/6OZP0C12cY3R6/x8Z5kCiulgsuYADem9m/E0BYhTgflT8Jqs/PL6UwW70q8rj8T5KnnyT6x3NWhwf9Wbyb7DPzwoBRpUWlh0FzoOOmW2plFUeTrS1+z4MQCrKKVKM8oFvReQJxP3bpHv6fy0CHSH30M0WzGY+BAwua/V6+zUppfxS/zT1NZYsIvzI2R09pgcK/bWakqK+Xr56dSXphPTPvOjJwxy2GHYOWxHIp/TpSK+h9q7nBSu8ViYeXKlWRlZRESEsLDDz/sUMDywoUZ5OSuwc0tjo4d1qJS1b4XWewig09e5kKFkRGB3ix1IK75b+Zmn9/Ome//UFblFLG7qBy9SmBBfAOZkwKQnDIfozEDF30oMTHPKB5HFEXWrl1LQUEBHh4e3HnnnQ6dFEteFcU/XAHAvUeYQycF4MD3X5J2/ixavQsjn3mxXielstTE2vdPU5pfjYefC6OmtanfSTGbyZzyNJUHDiAYDDRY+ulNOymiKLL68mru23wfmRWZhLuH8/WQr7mj0R235qRUF8P398CO2ZKT0uoemLjzf+akGC02Pj94lZ7v7uaNjZcorDQT6efKgrtasW1aL4a3CnU6KX8iGrWKO9s3YNeM3swb3YJQLxdyy0y8vPYCfd/by3fH0rDcoJT7HxPSCibvgSYjpGLbzc9KETxTeb1bf0MQBO5reh8rB68k0DWQ1LJUxm0cx/rk9Td9DLeuXQn/8AMErZbybdvImjkT0Wqtc49XgCujprXB1UtHYWYl6xb9irGy7hlRrp5eNaliDcknjnBs7Y+Oz6ljMG4dgkGEou8TsBYZFe20Wi133XUXBoOB7OxsNm3a5PCYjRq9hFbrR2VlIldTP5IfSyWwMD4CtQDr8krYlF9S5/U4cYzTUfkHkmuy8GqSNE7+mahgYl3lNSclJSfIyJCEn+Lj56LRKM/fOHToEBcvXkSlUnHXXXfh7q5sZzdZKfzqIqLZhq6hF16DHdduXDl6kOPrfgJg0GNP4xde90TWqjIzaxdKHQLuvnpGTWtTb4eAaLGQOW06FXv3Iri40ODjj3Ftf3Oh8CpLFS8ceIE5R+ZgsVvo06APq4avoonfrRXeknkKPu0JV7ZI3TzDF8Goj0H338+WMVvtfH3kGn3e28Ps9RfJLzcR5m3gnTEt2Tm9F6PbhqN2Oih/GbRqFfd0jGD3s72ZM7IZQZ56MkuqeeHnc/Sdv4cfTqRj/V84LC5ecNeXMGieVP904WdY2gfyLt3SYVoHtuaH4T/QJaQLRpuRWQdm8drh1zDZTPVvBtx79CBs8SLQainbtJmsF2Yh2mx17vEOkpwVg6eOgvQK1i36FVM9Ay2DYxvR9+HHADiw6itSz5xyfPwRMWjD3bFXWSn85hKiRfnn7e3tzR13SC8kp0+f5uTJk4p2Wq0PjRtLA3KvXfuE8nL5z7ilhytPNJAaDp6/kkGJpW6HzYkyTkflH4YoirxwJYNSq42WHgYeayDvyrHZTFxKeAEQCQm5Az8/5Qr3q1evsmPHDgAGDx5MgwbKxZ6iKFL8wxWs+dWoPXX4jYtHUCs/JAsz09ny0fsAtBs6isZd6paqr64ws27RaYpzqnDzlpwUT/+6a0NEi4XMGc9QsXMngk5Hg48+xK3zzQkIppSkMG7jODambEQtqJnRbgaL+izCU3cLaUVRhOMr4LNBUJIm1aBM3C4NDvwvq/8tNjurjqfR5709vLTmPNmlRkK8XHjz9ubsfqY3d3VogOZPmqvjpH70GjX3dYli77N9eGVYU/zd9aQXVfPsj2cZsHAfa05nylrHbxlBgC6Pw4ObwDMMChNhWV848/0tHcbXxZeP+3/MY60eQ0Dgxys/ct+m+0gvT7+p/R59+hC+cAFoNJStX0/2Sy8j2ut2xnyC3Rg5tTUGDy35aeWsW3wGU3XdD/eW/QbRvM9AEEU2Ln6X0rxcRTtBq8Lv3iaoXDVYMisoXpuEo8qHmJgY+vbtC8CmTZvIyMhQtAsKvI2AgEGIopVLCTOx2+XnOj0qmDhXPXlm6/UXSCe3hvOO9g9jfX4pmwpK0QjwfnwEGoW36qupi6mqSkGnCyAuVl6xDlBaWsoPP/yAKIq0atWKDh0cz9io2JdJ9flCUAv43tvE4XwNc3UV6957E4uxmvCmzel570N1Xoux0sK6Rb9SmFmJq5eOUdPa4BVQdzRCtFrJmvk85du2IWi1hH/4AW5du9a55zc2pWzi7o13k1yaTIAhgBWDVvBg8wdvLdVjroSfJ8PG6ZI4V+OhMHmvFJb/L7DZRX46mUH/BXuZ+dM5MkuqCfTQ89qIZux+pjf3dopEp3H+Of9dcNGqebh7Q/Y915sXbovHx1XL1YJKpq76lcHv72Pj2Wzs/63DEtEJHtkH0X0kKf5fHoH1U8GinPZQQq1S83jrx/mk/yd46725VHSJsevHsjtt903t9+jfn7D33gO1mtJffiHn1VfrdVb8Qt0Z8XQb9G4a8lLL2LDkDGZj3c5Kv4cfJSg6DmNFOesXzsNqNivaaXxc8L0nHgSoOpFL5bEch8fs3r078fHx2Gw2Vq9eTWVlpaJd40avodF4UV5+gbS05bJ1F7WKBfERCNSk5AvL5AdxUifOO9s/iEKzlReuSJ7/lMggmrrLIw9l5edJS5Nm28Q3fh2tVj43xmq1snr1aqqqqggKCmLo0KEOH9bGpBJKt1wFwHtYtMOJpaIosuXj9ynKysDdx5dhT8+sU9DNVCU5KQXpFTUTV9vUOxdEtNnImjWLsk2bQKslbPGimxouaLaZeePIG8zcP5NqazWdgjuxevhq2gXdoohW/mXpzfXcaqmrZ8AcuPsbMHjf2nF+h90usu5MFgMW7mXGD2e4VliFv7uOl4Y2Yd9zfXiga9T/toPEyR+Kq07DI71i2D+zL88OaoyXQUtiXgVPfHuKIYv3s/VCjsO3/pvCzR/G/wS9XwAEOLkSPhsIRVdv6TBdw7ryw/AfaBXQinJLOVN2T2HByQVYFSIIN+I5eBChb78NKhUlP/xIzpw59V6Tf7g7I59ug95VQ05KKRs+OIPF5Dh1pNHpGDH9BVw8PMlNSWLnZx87/AyXOB88B0YBULIuGXO6cg2PIAiMGjUKPz8/ysrK+PHHH7EppK/0+gAaxb0IwNXURVRWpshsOni5MTHcH4BnLqdTYa07DeakNk5H5R/EK0mZFFqsNHZzYWqkfNCY3W7m0qWZiKKNwMChBAQMVDzOli1byMzMxMXFhbFjx6JzoIVgLTFR9F0CiODaNhC3zo6Fyk5s+IXEo4dQqTUMn/4Cbt6OpfTN1VbWLzlDflo5Lu5aRk6rf9KqaLeT/dLLlK1bD2o1YQvm49GnT517ADIrMnlg8wOsuiwNJ5vccjKfDvgUf4N/vXtrce5HqRYgPwHcg+HBDdBtyn+c6rHbRTafy2bwon1M+e40KfmVeLtqmTk4nn3P9WFij2ing/IPwl2v4Yk+seyf2Yep/ePw0GtIyCnnka9OMvyDA+xKyP3PHRaVGno/LzksBl+pO2hpL0hwXCiqRLBbMCsHrWR8k/EArDy/konbJpJflV/vXq9hQwmdNxcEgZLvvid37rx6rycgwqNmuKia7KRSNn50BovZ8QPeMyCQoVOeRRBUnN+9nXO7tjq09egdjktTP7CJFH59CVuFcgTmt3ugVqvl6tWr7Nq1S9EuOHg0fr49pXtsgnSPvZHno0OIcNGRabLwRkp2ndfupDZOR+UfwraCUn7KLUYFLIxvgE6hTe/atU+pqEiQisAavap4nNOnT3PihCQNP2bMGHx9lYWKRKudwm8uYa+0oA1xw+f2WIdRl7TzZ9n/zecA9HlgEqGNHBelmo2Sk5J7tQy9m4aRU1vjF6pcwHv9XOx2cl6dTekvv0hOyvz38BwwoM49APsy9nHX+rs4X3geL70XH/b7kKfaPHVrU4+tJtj4DPw0ASyV0LAnPLofIm8u3SS7FlFk+8Vchi05wGPfnOJKbgWeLhpmDGjE/uf68FjvGFx1/8yBgE7A00XL1P6NODCzL0/2icVNp+Z8ZhkPf36C2z86xL4r+f+5wxLbT/rdDO8IxlKpG237K2C7+QJPrVrLzI4zmd9rPm5aN07mnuTO9XdyLPtYvXu9Ro4k5I05ABR/9RV577xb77UERUmT0LUuajIvl7D547NYLY6dlaiWbeg2VnKkdn32CdlJlxXtBEHA965GaPwN2EqlFy7RpnwugYGBjBw5EoCDBw9y8eJFxePFx7+JWu1GaekpMjK+ktm4qdXMbyzV+X2eWcDhkgqZjRNlnI7KP4Ayq42ZNSmfRxoE0NZTHn2oqLjC1dQPAWgU9wo6nXzeT3Z2Nhs3bgSgd+/exMU51k4oWZ+MJb0cwaCR1B4dvN2XFeSzYdHbiKKdpj370mrgEIfHtJhsbPjgDDkppehdNYx8ug3+4crTm39DFEVy5syh5IcfQKUi9O238Rxcv6T9L4m/8MTOJygzl9Hcrzmrh62mZ3jPevfVoiQNPhsMx6VUGj2fhfvW/EczekRRZPflPEZ+eJBJX57gYnYZ7noNU/rFsX9mX57qF4fH/9WUXid/ObxctTwzqDH7Z/blkV7RuGhV/Jpewv2fHeOuTw9zKLngPzxwODy4ETrXDNQ7uAi+HCENPrwFBkYN5Puh3xPnE0ehsZBJ2yexJXVLvfu8x4wh+DWpU6Zo5UryFyys11kJjvZi+JOt0OjVpF8qZvMn57A56NgB6DjqTmI7dMZmtbJ+wVtUlZUq2qlcNPjd1wRBp8KUXErZtlSHx2zevDldunQBYM2aNeTny6NILi6hxMbMBCAp+T2qq+VFxz18PRgfIt17pyekUfW/ak3/h+N0VP4BvJ6URbbJQkODjmcbytMvomjjUsLziKIFf/9+BAUNl9lUVVWxatUqrFYrcXFx9Ozp+KFdeSKXyqM5IIDv3Y3ROJh8arVY2LDwLarLSgmIiqb/pCccRl0sZhsbPzpDdlIpOhc1w6e0JiCificld+48Sr77HgSB0Hlz8RqmPEzx96xNWsurh6SI0pi4MXxx2xeEuofWu68WV7bBJz0g6xQYfGDcD9I021uJxtRcw4HEAsZ8fIiHVh7nbEYpBq2ax3rHsP+5Pkwf0OhfO7nYiSS//8JtTdj/XF8e7tYQnUbF8dRixi07yj1Lj3A8tejWD6rRweB5cOcXoPOAawel3+Wr+27pMFFeUXwz5BuGNByCXbTz/L7n2XFtR737fMbeRdDLLwFQuGwZBUuW1LsnJNabYU+0RKNVkXahiC1Lz2GzKj/kBUFg8OPT8AkJo7wwn42L3sbuoDVaG+SGzx2NACjfm0H1eccOYP/+/YmMjMRsNrNq1SpMJnmrdljYPXh7d8Jur+ZSwixFJ+yV2FBC9FquVpt596ozBXQzOB2Vvzn7i8r5OrsQgAXxEbgqtKampa+krOwMarU7jRu/rugsbN68mZKSEnx8fBg9erTD6aHmzAqK1yQC4NkvAkNjxzMs9nyxlOyky7i4uTNi+iy0OmWBNqvFxuaPz5J5uQRtjZMSFFV3O7AoiuS98y7FX0kh1pA35uBVE56ti40pG3n54MuIiIxtPJZXu7yKTn0L003tNtg5B769E4wlENpW6qxopFzvUxdHUwoZu/QI41cc5VRaCXqNikk9GrJ/Zh9mDo7HxznB2EkNAR56XhnelP3P9eH+LpHo1CoOpxRy5yeHuW/FUU6nFd/6QZuNkgTiAptBZR58OVKazlxPV87vMWgMzO0+l+HRw7GJNp7d++xNdQT53nsvQbNeAKDgo4/J/0gumHYjYY18GPpES9RaFannCtm2/AI2BxEJvasbI2bMQqt3Ie38WQ6skqdifsO1ZQDu3cMAKFp9BUtelaKdWq3mzjvvxMPDg4KCguvSDb9HEFQ0iZ+LSuVCcfEhsrJXy2w8NWrebhQOwKfp+ZwqU+4mcvL/cToqf2MqbTZmXJbCiw+G+dPFW17LUVWVSkrKAgDi4mbhog+W2Vy5coVz584hCAJjxozBYFCOkNgqLRR+fRGsIi7xvnj0dSzUdn7PDs5s3wyCwJCnnsE7SP65ADaLnc2fnCf9UjEavZrhT7YiOFreifR7RFEkf8FCilauBCD4tdfwHjOmzj0AW1K3MOvALERExsSNYVanWbfWelyRB1+NkibXAnScDA9vAe+6Betu5FRaMeOXH2Xs0iMcu1qETq3iwa5R7H+uDy8OlbQ1nDhRIsjThddHNmf3s725p6MkP7A/sYDbPzrEw58f53ymcprDIf6xMHEHtL5XUk7e+Tp8dzdU3XykRq1SM6fbHG6Lug2raGX63unsy6g/OuN7//0EPvssAAWLl1CwdFm9e8LjfRnyWAvUGhUpv+azfcVF7A6cFf8GkQx67GkAjq/9kcSjhxwe1+u2hugaeiGabRR+fRG7Sblux93dndtvv1065vHjpKamymxcXaOIjp4GQGLiXIwmeVptoL8XY4J8sAPTEtIx3YJz+G/E6aj8jXkrJZs0o5kwvZaXopVSPnYuJczCbjfh49OV0JC7ZDZGo5H16yV57M6dOxMeHq74WaJdpGjVZWzFJtS+Lvje1cjhFNLclCR2LJfqYbreMY6GbRwrwu5ffYW0C4VotCqGPdGSkFjv+i6bgiUfULhMuqkFvfwSPmPl13UjO6/t5Pl9z2MX7YyKHcUrXV5BJdzCr/+1Q/8/PK51gzErYMi7oLl5p8Jqs/Pu1gRGf3SIA0kFaNUC93aKYO9zvZk9ohmBnnWr7Tpx8hth3gbmjW7B7md6c2c7SYV4V0IeIz44wIe7k25Ng0XnCqM+ghEfgMYFErfCp70kZeWbRK1SM7fHXAZEDsBqtzJt9zQOZTp2DH7Db8LDBEyTHur5CxZQ+NnKevdENPVj8CPNUWkEkk/lcWStvB34Nxp36UG7oaMA2PzRQgozlcXqBLWA37h4VJ46rHnVFP+Y6LB2Jjo6mrZt2wKwbt06zAqaLRENHsLTsxU2WwWXL7+ieKzXY8Pw02q4XGlk0TVlkTonEk5H5W/K8dJKlmdI+dT3GjfAXWG4WWbW95SUHEWlMtAkfq5i9GDbtm2Ul5fj6+tLnzraect2XMN0pVhSd7yvKSpX5bqJ6vIy1i2Yh81iIbptBzqPHuvwmJcOZXFhfxYIMGhyc8IcDAr7PQUff0xBTZg4aNYL+N57b7179qTv4Zl9z2ATbQyPHs7sLrNv3kkRRang8PNhUJEDAfEweTe0uOPm9teQV27kvhXH+HB3MgCj24axa0Zv3ry9BSFetziF2YmTGhr4uvLuna3YMb0XQ1uEYBfh3a2XmfDFcUqqlFtuHdL2PpiwHXwaQmmapKx8fLn0N3ATaFQa3u75Nn0b9MVsNzNl9xSOZh+td5//I5Pxf+pJAPLeeYeiLx2naX4jqoU//R9sCsDpbWkkn8pzaNtj3IOEN2mOxVjNuvlzMVc7SO146PC7twmoBarPFVCxP9PhMQcOHIiHhwdFRUXs2bNHti4IaprEv4UgaCko2ElurnxWkp9Ow9xGUspp8bVcLlZU13XJ/2qcjsrfEKPNzvSENERgbLAvffzk9RxGYxZJSW8BEBvzDAaDXP4+JSWFU6ekt6YRI0Y41EupvlhI+S7pTcRndBy6EGVNE7vdxqYl71GWn4tXUDC3PTHD4TTT/LRy9n4rDTDsOKwhUS3q1y0pWLaM/EWLAQh89ll877+/3j37M/Yzfc90rHYrt0Xdxpxuc26+/bi6BL6/V2rhFG3Q4i6YtAsCGt/c/hqOphQybPEBDqcU4qpTs/ieNiy4qzUNfP/7mT9OnAA09Hfjg3FteHtMC3QaFbsv5zN08QHOpJfc2oFCWsIjeyF+mKSsvHEG/DwJTDfXSqtVaXmv13v0Cu+FyWbiqV1PcSLnRL37Ap54Ar/HHgUgd+5cir/7rt49ce2DaNVfuq/t/OISxTnKtR5qjYZhU2fi7uNLUWY6Wz9e5DBaoo/0xHtYNAClm69iTC5RtHNxcWHYsGEAHD58mMxMuVPj7t6IhlFPAHAl8XXMZnmh7ogAb4b4e2EVYWpCGtb/Vo34H4rTUfkbsiA1h8QqE4E6Da/FyrtVRFEkIeFFbLZKvLzaEh4uf6CbzWbWrVsHQPv27YmKilL8LEtBNUWrJC0C966huLZx3Hp7+IdvST1zCo1Oz8gZL+LiYIChscIitRha7US18KP9bcqf/XsKV35O/nyp1iZg2jT8Jjxc755DmYeYunsqFruFAZEDmNtj7s07KVm/SqJYlzeCWgfDFsLopaCrW3ju94iiyCd7kxm3/Ch55SbiAt1Z92Q3RrS6xQ4jJ05uAkEQGNshgl8e70qknyuZJdXc+clhvjqcemvaKy5eMPZrGPimpLB87gdJcTkv4aa2a9VaFvReQLewblRbq3l85+Oczjtd776AKVPwmzQRgJzXXqd4tbwQ9Ua63h5DaJw3FpONzZ+ccyi17+btw/DpL6BSa7hy9CAnNvzi8JhunUNwbRsoTVr+NgFrqfIgxsaNG9OiRYvrE+atChOiIyMfxd09HoulmMtXXpetC4LAvEbheGnUnC2v5uN0x5GhfzNOR+VvxtnyKj6s+WV+q1E43lq5+FdOzi8UFu1DpdLVhB/l/8y7du2ipKQET09P+vfvr/hZdrNNmohssqGL9MRriOOJyMknj3LkZ0nddcDkJwmIVLa120W2fXaB8iIjngEG+j/U1GGty28UffkVeW+/DYD/U0/i/8jkOu0BjmYfZcruKZjtZvo26MvbPd9Go7oJoTRRhJOfw4qBUJwqFcpO2AbtH74lldnSaguTvjzJW5sTsNlFRrUOZe2T3YgNrLvl2omT/5ZmoV6se7I7A5sGYbbZeXntBZ7+/lcqHRSIKiII0PVJSXPFIwQKLsOyPnD2h5varlPreL/3+3QO6Uy1tZrHdjzGmfwz9XykQMD06fg++CAAOa/OpuRnxw4FgEqtYtCk5rh56SjOqWLXF5ccOmWhjZrQ54FJAOz/5nPSzp91eB7eo2LRhrhhr7RQ9PUlRAet0IMHD8bV1ZW8vDz2798vPz+VtuYerCYvbyP5+dtlNkF67fUXzvdSc0iquvlZTP8WnI7K3wiLXWRaQho2EYYHeDMkwFtmYzLlcyXxDQAaRj2Nm1uMzCYtLY0jR44AMHz4cFxc5EWcoihS/FMi1twqVB5a/O6NR3Aw9K44J4vNH0jRjtaDhtG0h+Nal+MbrpJ+sQiNVsVtj7RA76DW5fqxv/uO3LlzAfB77FECnniiTnuAEzkneGrXU5hsJnqF9+K9Xu+hVd2EFom5EtY8BuufBpsJGt0mtR6Htql/7+84n1nKsCX72XEpF51axZu3N2fh2NZORVknfxheBi2f3teOl4Y2Qa0SWHcmi5EfHiQxV3mujUMiu8Aj+6FhL2mw4c8TYcN0SZG5Hlw0Lizuu5iOwR2ptFTy6PZHuVBwoc49giAQOPM5fO67D0SR7BdfpLQm8usIV08dgx9pgUotkHw6n1+3O57u3GrgEJr26IMo2tmw6G3KC5V1U1Q6tSRkadBgTi+nZH2yop2bmxtDhkgilvv37ycnR97h4+nZgogIyUFKuPwKFou8M2tssC99fD0w2UWmJ6Rj/2/mO/0DcToqfyM+SMvlQoURX636ehHWjVy+8ipWaykeHs2IiJgoW7dYLNdTPq1atXKoPltxKIvqM/mgAr9xTVB7Kne3WIxG1r33JqaqSkIbNaH3/RMcnv/VM/mc2JQKQO/x8fiH1y2NX7x6NTmvSeFSv0kTCZgypU57gNN5p3l85+NUW6vpFtaNBb0XoFXfhJNSkAjL+8OZ70BQQf/X4O5vJTG3m0QURb49msbojw+RXlRNuI+Bnx7ryr2dIm+tDdqJk/8BgiAwsUc030/uTJCnnqS8CkZ8cJC1vzouElXEPQDu+wV6Pif994kVUqFt8bV6txo0Bpb0XULbwLZUWCqYtH0Slwov1XveQbNewPueu0EUyXr+BUprFLMdERztRfc7pXvZ4V+SyLisrCsjCAL9Jz1BQGRDqstKWb9gHlaLRdFW42fA9+7GIEDl0RwqTyh35jRr1oz4+Hjsdjtr165VHFzYMGoKrq7RmM15JCbNVTyvdxo3wE2t4lhpJZ9l/ofKw/9QnI7K34TLlUYWpkp/KHNiwwjQyR++uXmbyc/fiiBoaBL/NiqFVMe+ffsoKCjAzc2NQYMGKX6WKbWU0o3SdFWvIdHoGyrrmoiiyLalSyhIv4arlzfDpz2PWqPsFJTkVrFjpTQjo0WfcBp3UtZVuW7/8y/kvDobAN8HHyRg+vR6H/Zn8s/w2I7HqLZW0zmkM+/3fv/mxNzO/wxLe0PeRXAPggfWQ/ep4KAQWIkqs5UZq88w65dzmK12+jcJZONTPWgRXrcmjBMn/9d0iPJl45QedIv1o9pi4+nvf+WlNecw3coEX5Ua+r4I9/4oOe9Zp+HTnnC5ftl8V60rH/X/iNYBrSk3lzNp+yQuFynP4PkNQRAIfvllvO+8A+x2sp6bSdkWx0MGAZr3CqNx52BEEbYtP095kXIKRat3YcSMF9G7uZGddJk9Xyx1eExDY188+0k6ScVrkjBnyouKBUFg6NChuLi4kJ2dzeHDh2U2arWeJvHzAIHs7B8pLJSniRq46HgpRkoBzU3JJq26/qjVvwWno/I3wCZKKR+zKNLfz5PRQfK3fIulmMuXJVn4yMhH8fCQD/7LysriwIEDAAwbNgxXV3nXia3MTOE3l8AuYmgVgHs3x4Wfp7esJ+HgXgSViuFTn8fdVz4/CKQZPps/PYfZaCM42otuY2LrvN7SdevIfvFFEEV8xo8ncOZz9TopFwou8Nj2x6i0VNIhuAOL+y7GRVOPLonVDJtnwo8PgbkConpIYe6o7nXvu4Hk/ApGfXiQn09nohLg+dviWXpfe7zqSWs5cfJH4e+u58uHOzGlr/S39/WRNO74+DDpRcqtug6JGyD9jYS1k5SZvxsLO16rd7Chm9aNj/p/RAv/FpSaSpm0bRJJxUl17hFUKoJfew2v228Hm43MZ56hfOdOx/aCQK9xjfELd6e63MLWZecdzgTyDgpmyFPPgCBwZvtmzu9xLP3v0TcCl3hfsNop/Poitkp5BMbDw+P6i9/u3bspKJBHRLy9219vbEi4/CJWq9zpeSDUj85eblTZ7DxzOf0/H0D5D8PpqPwNWJ6Rz6myKjzUKt5pFK740L5y5Q0slkLc3OJoGPW4bN1ms7Fu3TpEUaRp06Y0aSJ3ZK5PRC63oAlyxWdMnEMHISPhAnu/WgFAr/ETCG/aXNFOFEV2f51AUVallEue3By1g1oXgLJNm8h6/gUQRbzvHkvQi/Wrx14qvMTk7ZMpt5TTNrAtH/T9AIOmHm2SygL4fAgc/UT67+7TpYGCHkF177uB9WeyGLHkAFdyKwjw0PPtpM482isGVT0Fwk6c/NGoVQLTBzZm5UMd8HbVci6zlGFLDrDz0i2KjXk3gIe2QMdHpP8+sEBSbDbWrYrrofPgkwGf0MS3CcWmYiZum0hKqWOxNpCclZA35uA5fDhYrWRMnUa5gm7Jb2h16praNw25V8vY/0OiQ9voNh3oMuYeAHYu/4jcq8p1KIJKmrSs9nXBVmyiaNVlRIU24tatWxMTE3P9XmtXUJuNiZ6Bi0s4RmMmycnvydZVgsCC+AhcVAL7iiv4Luc/mOX0D8TpqPzFuVpl4q0UaXDVq7FhhLrIUxkFBbvJyV0DqGgS/xYqlbye5ODBg+Tk5GAwGK4Xf91I6aarmK+VIejVkqibTrmVt6K4iA0L38Jus9G4a0/aDhnh8PzP7sog8XguKpUgVed7O1ZyLdu6jcxnnwO7He877yD4lVfqdVKuFF9h8vbJlJnLaBXQio/6f4Srth59kqoiaa5JxnGpFfOeVdD/VVDffLGr2Wpn9roLPPXdaSrNNjpH+7JxSnc6RytHlZw4+avQp3EgG6f0oFUDb0qrLUz44gRvb0nAeiuTfDU6GPIO3LESdO6Quh++HgPGsjq3eeo8WTZwGY19GlNoLGTi1olcK6u71kVQqwmdNxfPIbeBxULmU1Oo2H/Aob1XgIEBDzcDAS7sy+TSIceD/7qMuZvoth2wWsysmz+X6nLl81e5amumxKswXSmmbIf8nAVBYPjw4eh0OtLS0jh+/LjMRqNxo0m8VKOSkfkVxSVym2hXPc/VDJednZRJjkm5hubfhNNR+QtjF0VmXE6n2i7S3dude0PkAwCt1nISLkuTSCMaPISXV2uZTV5eHnv37gXgtttuw11B36T6fAEVh7IA8B3bGK2/g3k/VivrF75FZUmxNEvjkSkOnYmsxBIO/SSFd7uOiSU0ztvhtZbv3EnmjBlgs+E1ahTBr73mUCzuN5JLkpm0bRIlphJa+Lfg4/4f46atR+ekulhyUnLPg1sgTNgBjQfXvecGMkuquevTw3x+KBWAx3vH8PWETgR6OCXwnfw9CPM28MMjXXiwaxQAH+9J5t7lR8krv8XW2Oaj4aHN4OItOf7f3FmvOJyX3otlA5cR6x1LfnU+E7ZOIL3ccacOgKDREPr223gMHIhosZDx5JNUKtSC/EZkcz86DpMkEvZ+e5n8NOVuJ0Gl4rYnZuAVFExZfi6blryH3a5cu6MLdcd7tFSwW74rHWOivGDX29v7utzDjh07KC6W2/j6drs+zuTSpeex2eQ/88nhAbT2cKXMamfmFWcKyOmo/IX5OquQQyUVGFQq5sc3UHQIkpLexmTKwWCIvD4I6/f8vhI9Li6OFi1ayGxslRaK10gOhUevcAxNHUcF9n69gqzLF9EZXKXppAqtzQCVpSa2LjuP3S4S1z6Qln2VZwgBlO/ZQ8bUaWC14jl8OCFvvlGvk5JSmsKErRMoMhbRxLcJnwz4BA9dPRolxlL4ajTknAVXf6loNqBR3XtuYM/lPIYu3s+v6SV4umhY8UB7nhscj0ZharUTJ39ldBoVs0c044NxbXDTqTl6tYihiw9wJKXw1g4U0hLuXwN6L0g/At+OlVr968DHxYflA5cT7RVNblUuE7ZOILOi7m4kQasl7L13ce/bF9FkIv2xx6k8esyhffvboohs4YfNamfzp+cwVihHJlzcpenuGp2e1DOnOPyjY1VctzaBuNU0AhT/lIjdJHdq2rdvT2RkJBaLhfXr1ys6GXFxs9DrgqiuTuXq1UWydY1KYGF8A7SCwNaCMtbmlTg8p38DzrvrX5RMo5nXk6UIx6zoECIN8pRJUfFhMrOkP6om8fNQq+VRkKNHj5KZmYler2fYsGGKzk7phhTsFRY0ga54Doh0eE6XDuzh9GZpZsVtT87AJ0S5RdpmtbN16Xmqysz4hrrR574mDqMuVSdPkvnUFLBY8BxyG6Hz5iKo61aPvVZ2jYlbJ1JoLKSxT2OWDVyGp04+RqAWxjIpNJ11Cgy+kpMSGF/3nt9fk11k/rbLPPT5cUqqLLQI82LjlB70a3JrNS1OnPzVGNYylHVPdadRkDv55SbGLTvCx3uSb22wYWgbqYVZ7wnXDkgTmC11z67xM/ixfOByojyjyK7MZsLWCeRUynVIfo+g0xH2/kLcevVENBpJf+wxqi8oa7MIKoH+DzbF09+F8kIj2z+74PCaAqOiGTBZmjd05KfvST7peEaR15Bo1D56bCUmSrdcla2rVCpGjBiBRqMhJSWF06flqrwajQeN4+cAcC1tOWVlcvG5Ju4GpkZK95dZiRkUmG9BsO8fhtNR+QsiiiLPXk6nwmanvacrD4fL5+DYbFUkXJoFQFjYvfj4dJLZFBUVsbOmSn7AgAF4eclbZasTiqg6nQcC+NwR51DULf/aVbZ9ugSATrePJba9/PN+4+BPSWQnl6JzkQrbtHplx8OSl0fG1KmIFgvu/fsR+vbbCJq660TSy9OZsHUC+dX5xHrHsmzgMrz09bQAmyqkkHTGcSlEff9aCGpa957fUVBh4v7PjrJkVxKiCPd1juTHx7o4Z/U4+ccQE+DOmie6MbpNGHYR3t6SwOSvTlBadQv1EeHtYPxPUs3K1X3w/Tiw1J1KCnANYPnA5TTwaEBmRSYPb32Y3Mq6i3tVOh3hixfj1rUrYlUVmVOexqqQYgFwcdNy26Mt0GhVpF0s4vgGuWPxG0179KH1IGl+z+YPFlCck6X8+Xo1PjUpoMrD2ZiuyouI/fz8rg953bp1K2Vl8tqXAP9+BAWNAOxcuvQ8drt8iORTkYE0cXOhyGLjpcQMh+f+T8fpqPwF+TG3mF1F5ehqKsDVCtGI5JSFVBvT0OtDiI15VrZut9tZt24dVquVhg0b0q5dO7mN0UrJL1JVvHu3MPQRylEJY2UF6+bPxWo2EdmyDV3vGufw3C8fzeHcbukPqv9DTfEOUn6Yi2YzmVOnYcsvQB8XR9g77yBo627nzazIZMLWCeRW5RLtFc3ygcvxcalHkM1cKYWi049Ioen710ih6pvkeGoRQxfv52BSIQatmkV3t2bOqOboFaZVO3Hyd8ZVp2H+Xa2YN1oabLjjUh5Dl+znXEbd3Ty1aNAR7v0BtK6QvAtW31evim2QWxCfDfqMMPcw0svTmbhtIvlV+XXuUen1hL2/EG1EBJbMTLKefQ5RQWgNwD/cg97jpejpiU2pXD3rWEyt9/0TCG3UBFNVJevmz8ViVHa0XOJ8cG0vRTuKf0pEtMg/u3PnzoSGhmIymdi4caNiCqhR3Mtotb5UVF4m9donsnWdSsXC+AhUwJq8ErYW3MK/xT8Ip6PyFyPfbOGVRClX+0zDYBq5yWtASktPk56+EoAm8W+i0chrM06dOkVqaiparZbhw4crp3w2X8VWakbt54LnQOWUj2i3s/mD+ZTkZuMZEMjQKc+icjDYryCjgj1fS4PL2t0WScNWAQ6vM/edd6k+dQqVuzvhSxajUtB0+T05lTlM2DqB7MpsojyjWD5wOX6GejpsLNVSCPraASkkfd8vNy2HL4oiy/alcPfSI+SWmYitGSg4srVyusuJk38CgiBwT8cIfn6sKw18DWQUVzPm40N8feTazRd0RnaFcatBY4DEbfDDg5JmUR0EuwWzYtAKQtxCSC1LZeK2iRRU163Oqvb0JHzJYgQXFyoPHCD/gw8c2jbuFEyL3lKd3I6VFynJU9aPUWu0DJ/2PK5e3hSkpbJt6RKH1+09NBqVpw5rQTWlO9Lkx1KrGTlyJCqVisuXL3P+/HmZjU7nS+NGkv5VaupHVFTIhfBae7ryeIQ0DPa5y+mUWv59KSCno/IX443kbIqtNlq4G3isgXxSsd1u4uKl5wGR4ODb8fPrJbMpLS1l27ZtAPTt2xdfX3m3kDG5hMqjUj7YZ3Scw1bkI7+sIuXUcdRaLSOmz8LgoRx1MVVZ2PzpOawWOxFNfek4PNrhNZauX0/x118DEPrOO+gcTG7+jdzKXB7e+jCZFZk08GjA8oHLCXB17AQBUsj5+3FSCFrnLilqhsujSornV23hka9O8uamS9jsIiNahbL2iW7EBTkHCjr5d9A8zIsNT/VgQM1gw5fWnGfaql+putk6iYY94J7vQK2Hy5vgp4fBVncaKcw9jBWDVhDoGkhKaQqTtk2i2Kic0vkNl8aNCZkjjdko/PgTynftdmjb7Y5YgqO9MFdb2fzJOSwKhbAA7r5+DJ/6PIJKRcLBvZzesl7RTmXQ4DNKEtCr2JeBOV3eWRQUFETPnj0B2Lx5M5WV8iLjwMCh+Pv3RxQtXLw0E7td/jOeERVMjEFPrtnKe6l11/H8E3E6Kn8hzpdXsbpG4OftRuFoFUTDrl79gKqqJHQ6fxrFvSRbF0WRDRs2YDabCQ8Pp1MneS2J3Wyj+Ccp5ePWKRiXGG/F87n660kO/fAtAP0nPE5QtLKirGgX2bHyImX51Xj4ujDg4WYOBc+Mly+T/fIrgDRk0KOv4wGGAAXVBUzcNpH08nTpRjZwBUFu9RSwWk2w+n4p9Kx1lULREY5ran7PhaxSRnxwgG0XpYGCc0Y1Z9HdrXHTOwcKOvl34WXQsvS+drxwWzxqlcCaX7MY+cFBkvJucrBhTB9pXpZaB5fWw8+T61WwbeDRgM8GfUaAIYCkkiQmb59MqanudIfX8OH4jB8PQNbMmZivKeuyqDUqBk9ujsFTR1FWJbu/TnAYLQlv2pxe46W5ZXu/WkFGgnLBrqGpH4ZWASBC8U9XFKcsd+/encDAQKqqqti8ebNsXRAE4hu/jkbjSXn5OdLTP5N/jlrF3EZSRGhlZgEpVf8ueX2no/IXQRRFZidlIQK3B3rT1kuuB1JefoFraZ8C0LjR62i13jKbs2fPkpiYWCvseCNl265hKzKi9tLjdVtDxfMpzcth0+J3QRRp2W8wzfsMcHjuJzanknquELVGxW2PtsDFXbnWxFZWRsZTUxCNRty6dyfgyScdHhOgsLqQCVsnkFqWSohbiBQadg+pcw82C/zwECRulULP41ZJoeh6EEWRVcfTuP2jQ1wrrJJ0Jh7twn2dnQMFnfx7EQSBR3rF8N2kzgR66EmsGWy47oxyoamMuP5w11eg0sKFn6Xp5A50Sn4j0jOS5YOW4+fiR0JRwnVBx7oIeu5ZDG3aYC8vJ+PJp7BXKad23Lz1DJ7UDEElkHg8l7O7HReoth0ygsZdemC32diw8C0qipVVYr2HR6Ny02DJqaJ8j1wPRqPRMHLkSARB4Pz58yQkJMhs9Pog4mJfBCDl6vtUVcmLfnv5etDP1xOrCG8k3+TP/x+C01H5i7C9sIwDJRXoVQKzYuTzdex2CxcvPY8o2ggMuI3AQPlAwYqKCrZskYaE9erVi4AAeXrElFZGxUGpBsZ7dCwqF3mkwGI2sXb+XIyVFQTHNqLPQ484PO9r5ws5VlNJ32tcIwIilNMjYs1gMUtaGtqwMELffafONuRiYzGTtk8ipTSFQNdAVgxcQZh7PfUhNgv8+DBc3iiFnO/5Dhr2rHsPUG228cwPZ5n5kzRQsG98IBundKdVA+969zpx8m+gY0NpsGGXaD+qzDamfHeaV9aev7nBho0Hw52fg0oD51bDuqdAQV7+9/xWLO/r4svFwos8uv1Rys2OIzlS2/L7qAP8MSUmkv3Kqw6jJaFxPtfnjR36MYmspBLlYwoCAx+dgl94BJUlxWx4/y1sVnlESO2uw3uEdLyy3elYcuTpnbCwMLp2lV6YNmzYQHW1vHU7JGQMvr49rqf3RVH+M3olNhS1AJsKSjlUXLew3j8Jp6PyF8BiF69rpkwKD6CBgkx+WtoyKiouotF406jxbMXjbNq0ierqaoKDg+nWrZtsXbTaKf7xCojg2jYQQ2N57Yooiuxc/hH5qSkYPDwZPu0FNA66cUrzq9n+2QUQoVmPUJp0dTzAsOCTT6jYswdBryds8SI0Po67dUpNpUzePpnE4kQCDAF8NugzGng2cGgPSCHlnyfDpXVSqPnub6XQcz2k5Fdw+0cH+elUBioBnhvcmOX3t8fb9SamLjtx8i8iwEPP1xM78WQf6aH85eFr3PXJYTKKb2KwYZNhMGYFCGr49RvY8HS9zkqsTyxLByzFS+/FuYJzPLZDGjrqCG1QIOELF4JGQ9mGDRR/9bVD25Z9w4lrH4jdLrJ16XkqS5VTKToXAyNmvIjO4EpmwkX2fS1PywAYWvrj0tQPbCJFP15BtMmdpN69e+Pr60tFRcX1GsLfI6WA3kStdqO09AQZmd/IbBq7uXBviNREMDs5E/u/RLHW6aj8Bfgqq4CkKhN+Wg1TIuX1F5WVSaRclTRMGjV6Gb1Orqty8eJFLl68iEqlYuTIkagVohVlO9Ow5lWjctfiPUy52PXsjs1c2LsTQVAxbOpMPP2Vi1atZhtblp7DVGUlMMqTHnc5Vnit2LePgiVSRX7wq69iaNbMoW2ZuYzJ2yeTUJSAn4sfywctJ9LTsQgdIIWS1zwmhZZVWinUHNe/7j3ApnPZjPjgIAk55fi76/lmYmce7x3rHCjoxIkD1CqBZwY1ZuWDHfAyaDmTUcrQxQfYnZBX/+Zmo2D0UhBUcOpL2PQM1POgbezbmGUDluGh8+BM/hke3/E4VRbHjpFr+/YEPSfJNeS+8w5VJ08q2gmCQJ/7muAb6kZVmZmtS89jczDryDc0jNuemA7Aqc3ruHRwr+LxfEbFILiosWRUUHFArrKr1WoZOXIkAKdPnyY5WT4E0WAII6ZGbiI5+V2qq+XHebZhMO5qFWfLq/k5t+5i438KTkflT6bU8v+ruJ9tGIznDfocomjj0qXnEUUzfn69CQ4aKTtGVVUVGzduBKBbt26EhMjrOMxZFZTvlfKn3iNjUbnKoyRZVxLYtXIpAN3vuZ+I5q0Uz1kURfZ+e5mC9AoMHlppIrJW+VfJnJ4uDRoURbzHjsV79O2OfhSUm8t5dPujXCy8iK+L73WJ7Tqx26VQ8rnVUmj5zs9vanbPF4dSefybU1SYrHRs6MumKd3pEuMcKOjEyc3Q57f0aLgXpdUWHv7iOD+evAlBshZ3wKhPAAFOrIDNM+t1Vpr4NZGcFa0Hp/JO8eSuJ6m2Ola99bnvPjyHDKmZtjwVS56yE6XVS4KUOhc12cmlHPoxyeExYzt0ptPt0nyebZ8uJj8tVWaj9tTjPVS6X5Vuv4YlX+5QRUZG0rFjRwDWrVuHySSP5ISH3Yu3VwdstkoSLr8oS2EF6LQ8XfNCOzclm6pbGSb5N8XpqPzJLLqWR5HFRpyrnvEh8gdlesaXlJadRq12J77xHMXCzq1bt1JZWYm/vz+9esnblUVbTcrHDoYW/ri2kEdkqspKWb9wHnablbhOXekwYozDc76wL5OEIzkIAgyc0AwPX+V5P3ajkYwpT2MvLcWlVUuCXpzl8JiVlkoe2/EY5wrO4aX3YumApcT6KHcZ/f8PsEsh5F+/kULKY1ZIIeZ6+PrINV5dJ1XxP9Qtim8ndiLQ0zlQ0ImTWyHcx5XVj3bh7g4NEEV49sczrDld97weAFqNhZE1mifHPoVtL9XrrDTzb8YnAz7BTevG8ZzjTNk1BaNVWYxNEARC3piDPi4OW34BmVOnIVqUW6O9g1zp/5CkUn12dwZXjjlu/e16171EtmyD1WRi3XtvYqqSp6Fc2wehj/MGq10SglOQ7O/Xrx9eXl6UlpZeVw6vff4qmjSZh0qlp6hoP9nZP8lsJoUHEKbXkmWysDT9JqJZf3OcjsqfyLVqE8szJAXGV2PD0NyQcqiuTiM5eT4AcbHP4+IirwFJTEzkzJkzAIwcORKNggR9+b4MLFmVqFw1eI+IUTyXncs/oqKoEN/QcAY/NtVhp0tOSin7V0utzZ1vjyE8Xl7nAlLUJWf2a5guXULt60v4okWodMp1H1WWKh7f8Thn8s/gofNg2YBlNPZtrGj7uw+QQsenvpRCyaOXSqHlelh1PI2X1kjCS5N7RvPKsKbOgYJOnPyH6DVq5t7egns6RiCKMH31r2w4exMdKW3Gw/CaYXyHP4Ads+t1VloGtOTj/h9j0Bg4kn2EqXumYrYpC8mpXF0lIUl3d6pPnSL3nXcdHrdhqwDa3Sall3d/lUBBhnKRqkqlZuiUZ/EMCKQkN5s9X66Q2QiCgM/tcQg6FebUMiqPZsts9Ho9I0aMAODYsWNcU2indnVtSHTDqQAkJr2JyVTbGXFRq3ippulicVoeeaZbGHXwN8R5h/4TeTMlG7Mo0tPHnX6+tbtlRFHkUsIs7PZqfLw7Exp6t2y/0Whk/XpJjKhz5840aCAvOLXkVVFWo5roNSwatYfcWUg8eogrRw8iqFQMmfIsOoOySmxVmZktS89jt4nEtAmgzYAIh9dW8v33lK5ZAyoVYQvmow0OVrQzWo08tespTuWdwkMrOSlN/Jo4PC4g3dC2PC+FjhGkUHKLO+reA/x4MoPnfz4HSJGUF26Ld7YeO3HyX6JSCbw5qjl3tQ/HLsLT3//KlvPyB7SMdg/CkPek7w++D7vn1rulTWAbPur3EQaNgYOZB5m+ZzoWu/JDWhcVReg7bwNQ/NVXlK7f4PC4HYdH06CpL1aLNGnZ5GDGkcHD83q9yvnd27h29leZjcbXBa/BkuxD6eZUrMXyyE9MTAxt2kgq2evWrcOiEPFp0OBhPDxaYLWWcfnyK7IU0KhAb9p4uFJls/PO1X+2CJzTUfmTOFFaybq8EgRgdmyY7IGZlbWK4uLDqFQuxMfPVXyg7tixg7KyMnx8fOjbt69sXbSLUsrHJuLS2AfXNnKl2+qKcnas+AiAjiPvIKihcsTFbrOzbfl5KktM+AS70veBOiYinz5Nztx5AATOmI5b586KdqIoMufIHI7lHMNN68YnAz6hmb/jQtuaTVKo+GjNXIyRH0ih5HpY+2smz/54BlGE+7tE8sqwpk4nxYmT/xEqlcC80S0Z3SYMm13kyW9Ps/1i3cMFAeg4CQZLzgT73oG979S7pX1we5b0XYJerWdvxl7mn5jv0Najb1/8HpXkFbJffhnjZblE/W/nP/BhKY1dll/NjpUXFdM2AOFNmtN60FAAti1dgtkor5dx6xyCLsoT0Wyj+OdExVbpgQMH4u7uTmFhIXv27FE4Jw1Nm7yNIGjJL9hOXt6mWuuCIPBarBRV+Ta7kEsVdU+r/jvjdFT+BERR5NUkKZd7T4gvTd0NtdaNxmwSk6QHfUzMM7i6yrterl69yokTJwAYMWIEOoW0SsWhLMxp5Qh6Nd63xyk+mPd8sYyq0hJ8wxrQebQ8avMbh39JJvNKiVSA9mgLdAr6KwDWggIyn54KFgsegwbh+/DDDo+5+vJq1iWvQyWoeL/P+7QMqGdYoCjCztekUDFIoeM24+veA2w4m8W0Vb8iinBPxwhmD2/mdFKcOPkfo1YJvHtnK0a0CsVqF3n8m5M31w3U+VEY+Ib0/e43Yf+Cerd0CunEOz0lp+abS9+wMWWjQ9uAp57CrXt3RKORjKemYFOYZAzg4i5NWlZrVKSeK+TE5lSHx+xxzwN4BgRSlp/Lge++lK0LKgGfMXGgUWFKLKHqpNxpMxgMDBsm1dQdOnSIzEx5fY+7e2Oioh4H4PKV2ZjNtUXnOnq7MyzACzvwWtI/VwTO6aj8CazNK+FkWRWuahUzG9bu0BFFkYTLL2OzVeDl2YYG4ffL9pvNZtatWwdAu3btaNhQri5rLaymbGsqAF5DGqLx1stsrp4+wcV9u0AQGPToFDQOakiSTubx6w6pY6jfA03wCZar5gKIViuZ02dgzctDFx1NyJtvOnQIfs37lbeOvwXA1LZT6RyiHHWpxe65cGCh9P2Q96TQcT1sOZ/N09//il2Eu9qH8+ao5s72YydO/o9QqwQW3NWKoS1CsNhEHvn6JPuu1D0JGYCuT0E/aTgfO1+DQ0vq3dI3oi+TWkwCYPah2VwuUo6WCGo1oe++gzY0FEtaGlnPzUR0oOESEOFBr3GS1MKxDVe5dqFQ0U5ncGXAJElZ+/TWDWQmXJTZaANc8apJj5dsuIqtTF5PEx8fT/PmzRFFkbVr12JVEJSLinwUd7fGWCxFXEmcI1t/KSYUrSCwp7icXYV1K/j+XXE6Kn8wRpudN1Ok/O2TEYEE6Wu3CeflbaSwcDeCoKNJk7cQBLkeyu7duykuLsbT05MBA+TS9qIoSuFGix19tBduHeT1IaaqKrYv+xCAtreNILSRcl1IUVYlO7+8BECbARHEtJWnj66f+/wFVB07JhWyfbAEtbuyQ1NQXcCMPTOw2q0MiBzAg80edHjM6+x9RwoNgxQq7jip3i3bL+by5LensdlFRrcJY97olk4nxYmT/2M0ahXv392aQc2CMFvtTPryBAeT6p6EDECP6dBHkpFn20tw5ON6tzzR+gm6hnbFaDMybc80h1L7Gh8fwpYsRtDpqNizh4JPPnF4zCZdQ2naIxRE2L7iAmUFyimVqFZtada7P4giWz9ZhMUsbzV27x6ONtwd0WileE2SYgrotttuw9XVlby8PA4cOCBbV6mkZwGoyM1dR0HhntrnYdAzIVzq5HwtOQurg5TV3xmno/IHszwjn3SjmRC9lkdvmI5ssxlJSpLytVFRj+PmJm/PzcjI4MiRIwAMGzYMFxd5W23l8RxMyaUIWhU+Y+IQFB7O+79dSXlhPl5BwXQfe5/iuZqrrdJEZJONsMbedB7lWNOkbMsWilauBCBk3jz00cq2VruVZ/c+S151Hg29GjKnm3LLde2TXSCFhEEKEXd+tG57YHdCHo9/cxJrzfTjd+9shdrppDhx8oegVatYck9b+jcJxGS1M+GL4xxJUY5O1KLXc9DzOen7Lc/DsWV1mqtVat7u8TahbqGkl6cza/8s7ArS8wCGZs0IflWK2hQs+YCK/fsdHrfnXY0IjPLEVFVzDzQrjwrofd9E3Hx8Kc7O5PCP38nWBbWA7x2NQC1gvFhI9Tm5w+bm5sZtt90GwL59+8jNlaeJPD1bEtHgIQASE+div6GAeGpkED4aNZcrjXybfRM/578ZTkflD6TAbGXRNemX8PmGIbje0Babnr4SoykLvT6EyAh5xMBqtbJ27VpEUaRly5Y0aiRXg7WWmijdKM3e8RwYhcbPILNJv3CWM9ulKZ4DJ09Bq+DsiKLIzi8uUZJbhbuPnoETmqNy0MZrSkoia5b0JuQ3cQKegwY6/Bm8f/J9TuSewFXjyvt93sdNqxx1uc6hJVIoGKTQcNen6rYH9l3J55GvT2KxiQxpEcyCu5xOihMnfzQ6jYoP721Lr0YBGC12Hv78OMdTlQf71aLPLOg+Tfp+0zNwYmWd5t4u3izssxCdSsfejL0sPbvUse2Y0XiPHQuiSOYzz2LOUBapU2ulScsu7loK0ivY++1lxWiIi7s7/SdINSQn1v9MbopcNE4b7IZHb6kjs2RtMrZKeYdP8+bNady4MXa7nbVr12KzyR2jhg2fQqv1paoqmaysVbWvS6thRkMpcv7O1RzKb2YG098Ip6PyBzI/NYdym52W7gbuDK4968ZsLiD1mhSOjI15FrVa7jzs27eP/Px83NzcGDxYrr4qiiIlvyQhmmzoIjxw7ybXXbGYjGz7VMr/tuw3mIjmygWsp7elkfJrPiqNwKDJzXH1VK5fsVVUkPHkU4hVVbh26kTA1KkOr39L6ha+uPgFAG90f6N+1dkjH0shYIDes6TQcD0cSipg0pcnMFvtDGwaxKK72zh1Upw4+ZPQa9R8el87usf6U2W28dDK45xKq0f2XRCkl5IuNdPVN0yF047n9gA09WvKS52le8VHv37E/gzH0ZKgF2fh0rIl9tJSMp6agt2oLBzn4evCoInNEARIOJLDhf3KxaqxHTrTuEsPRLudrR+/j80qd0Q8+zRAE+SKvdJCyXq5dL4gCAwdOhS9Xk9WVtb1qPnv0Wg8iG74NAApVxdhtdYe0vhAqD8xBj0FFisfpP2zROCcd/A/iCuVRr7MksJ+r8aGoroh3ZFydRE2WwUeHi0IChou25+Tk3M9fzlkyBBcXeVaJ9W/5mNMKAK14DDlc3D1N5TkZuPu50/P8Q8pnmt6QhFH1kh/TD3uakRwQy9FO1EUyX7hBcypqWiCgwlbMB9BQXAOILkkmVcOvgLAQ80eYkCkvLamFseWSaFfgJ7PQu+ZddsDR1MKmfDFCUxWO/3iA/lgXFu0TifFiZM/FRetmmX3t6dLtB8VJisPrDjG2YySujcJgpTm7VST5l37JJxZVeeW2+Nu545GdyAi8vz+58koV46WqHQ6whe9j9rXF9OlS+TMfs3hpOXweF86j5IkG/avukJOSqmiXd+HH8Xg4Ul+WirH1v4ovxyNSkoBCdJ9uvqSPD3j6enJoEGDAKkOsbBQbhMaejeurjFYLEWkptau4dGqBF6uEYH7ND2PDKOyGN7fEedd/A9iTnIWNhEG+3vSzae2uFtFxRUyM78HIC7uRQSh9j+LzWZjzZo12O12mjRpQjOFoX62cvN1T92zXwTaIHlKJTvxMqc2rgVgwKQn0LvKbcqLjGxbfgFRhPiuITTr4XgicuHy5ZRv34Gg1RK+eBEaP+VZORXmCqbunkq1tZqOwR2Z0naKw2MCcPJzKeQL0G3q/y+wq4MTqUU89Plxqi02ejUK4KPxbdFpnL/eTpz8FTDo1Kx4sD0do3wpN1kZv/wo5zOVH/rXEQQY/Ba0nwCIsOZROCd3An7PCx1foIV/C8rMZUzbM82hzL42JISwBfNBpaJ0zRpKVjl2gtoMjCCmTQB2m8iWpeepUujecfX0os9Dkl7LkZ9WUaAwC0jXwAP3HuEAFP+ShL1a3uHTpk0boqOjsVqtrFu3DvsN3UkqlYa4WOkFLi19JdXVtZ2xQf6edPV2x2gXmZdyE6J7fxOcd/I/gP1F5WwvLEMjcN3j/T1JyW8BdgICBuHj3UG2fujQIXJycnBxcWHIkCGKn1GyLhl7lRVtiBsevcJl61aLha2fLEIU7TTp0YfoNvLPsVpsbPn0HMYKi9Smd3cjh4WulYcPk7/wfQCCXnoJQ0vlFJIoirx08CVSy1IJcg3inZ7voFEpR10AOP0NrJ8qfd/lSeg/W7ph1cGptGIeXHmcKrON7rH+fHpfO/QaebeUEydO/jxcdRo+e6gD7SJ9KDNaGb/iKJey62mnFQRJiqDt/SDa4efJcGGNQ3OdWseC3gvwdfEloSiBOUfmOIyWuHXuTOAMKZ2c8+Zcqn/91cEpCPR9oAk+wa5UlpjYtvw8doVBgPFdexLdriN2m5Wtny7GbpfXiXgNiEDjb8BeZqZ001XFzxo+fDharZZr165d18r6PX5+ffDx6YoomklOfle2f3ZsKALwU24xp8rk84j+jjgdlf9jbKLI7GRJyOeBUH9iXGvXnhQW7qewcC+CoCU25jnZ/vz8/OuqhYMHD8bDw0NmU32+QKomV4HPHY0QFNIdR39ZRWFGGq5e3vR5QLm1d/+qRPKulaN30zB4cnM0OuWHvSUri8zpM8Bux2v0aLzvutPh9X92/jN2pu1Eq9KysPdC/Ax1TCg+swrWPgGIUsh34Bv1OilnM0p4YMUxKkxWukT7sez+9rhonU6KEyd/Rdz1Gj5/qAOtGnhTUmXh3uVHuZJbXvcmlQqGLYLW94Jog58mQIJjgbdgt2De6fkOKkHFuuR1/HDlB4e2vg8/jMfAgWCxkPH0VKwFym3UOhcNgx9pgVavJvNKCYfXpMhsBEGg/8TH0RlcyUm6cj16XctGq5aE4JC6M41J8nodHx8f+vfvD0jq4yUlJbLPiYudBQjk5m2gtPR0rfWWHq7cUVMD+VpSlkNH7e+E01H5P2Z1ThEXKox4adTXq7J/QxRtJNUo0IaHj8fVNarWut1uZ926ddhsNmJjY2nVqpXs+PYqC8VrpUpzj14N0IW5y2zyUlM4tkb6Y+1Xk0u9kSvHcrh4IAtqJiJ7+su7hQDsJhMZU57GVlyMS9OmBL/yssOoy5HsIyw+vRiA5zs+T4uAFop2gBTSXfMoIEqh3sFv1euknM8sZfzyo5SbrHSM8mXFg+0xOHCunDhx8tfAw0XLlw93pEWYF0WVZsYtO0pSnvIgwOuoVDBiCbQcC3YrrH4ALm9xaN4ppBNPt5UKT+cdm8eZ/DOKdoIgEDJ3LrroaKy5uWROn4GoILoG4BviRt/7Jb2pX7enkXpW7tR4+PrT+/6JABxc9TXF2XK1WX1DL9y6SEKfxT8nYTfJIy8dOnSgQYMGmM1m1q9fL3M2PDyaEBIiTbhPTHxTtv5CwxAMKoGjpZVsKqgnxfY3wOmo/B9SabXxVk2ecGpkEL7a2imPrOwfqai8jEbjRcOoJ2X7jx07Rnp6OjqdjmHDhik6BCUbUrCXW9AEGPDsKx8SaLfZ2PrJIuw2G3Edu9Koc3eZTVWZmX2rrgDQYUgUEU0dRz1y33gT4/nzqL28CFu8GJVCazNAdkU2z+19DrtoZ1TsKO5s5DjqwoU1UkhXtEsh3iHv1eukXMouY/yKo5QZrbSL9OGzhzrgqqsjpeTEiZO/DF4GLV9N6EjTEE8KKkyMW3aEqwX1pClUahj5ETQfA3YLrL4PEnc4NP+taN9qtzJ9z3QKqpWjJWp3N2nSsqsrVceOkbdgocNjxrYLpFVfqdV4zzcJisMLm/cZQESL1lgtZrZ9ukRRBddrcBRqbz22IuN1BfFal6pSMXLkSNRqNcnJyZw5I3e0YqKno1IZKC07TV7+5lproS666zpdc5KzMDtQ4v278Kc6KlFRUQiCUOvrrbfe+jNP6X/KR+l55JqtRLroeLhGOfA3rNYKUlKkPwipP9671npRURE7d+4EYMCAAXh7114HMF4uoupUHgg1KR+t/J/z+PqfybuajIubO/0mPKZ4nvu+v4Kp0op/A3faDYlyeD0lP/5IyQ8/gCAQOn8+uvAwRTuTzcS0PdMoNhXTxLcJL3Z60bGoW8oeKZQr2qTQ7rBF0ttTHVzJLefe5UcpqbLQqoE3nz/UAXe900lx4uTvhLerjq8ndiI+2IO8chP3LD3CtcJ6nBW1Bm5fCk1GgM0M34+D9OOKpoIgMKfbHBp6NSSvKo/n9j2H1a4cLdHHxBAyV5reXPTZZ5RtcRyt6TwqGq9AA5WlZg79JNdNEQSBgZOfRKPXk3HpPGd2yI+l0mvwGS2lgCoOZ2FKlUc9/P396dOnDwBbtmyhvLx2ikyvDyIycjIASUnvYLfXVsZ9MiKQQJ2G1GozKzNvQhn4L8yfHlF5/fXXyc7Ovv711FP1C3r9Hcg2mfkoTZpx8VJMKPobHr7X0pZiNudjMEQSHnZvrTVRFFm/fj0Wi4XIyEjatWsnO77dZKX4F+mPxL1rKPpIeTqnMDOdwz9+C0DvBybh5u0js0k5nU/yqTwElUDf+5qgdtDOW33uPDmvS3MmAp6egnv3bg6vfd7ReVwovICX3ouFfRbiolGOulCSDj8+LIVym98hhXbrcVKS8ioYt+woRZVmWoR58eXDHfFw0da5x4kTJ39NfN0kZyUu0J2cMiPjlh0lvaiq7k1qDdzxGTS6DWwmWH0/VCjrhrhp3Xi/9/u4alw5nnOcRacWOTys5+BB+E6QhqhmzXoRU5LcCQHQ6NT0vS8egIsHs0lPkIvYeQUG0+OeBwHY981Kygrk5+fSyAfXdkEgQvFP0siTG+nSpQshISEYjUY2btwoS/FERkxErwvCaEwnPaP2cEQ3jZrna2bJLUzNpdii7KT9HfjTHRUPDw+Cg4Ovf7m51aNU+jfhrZQcqu12Onq5MSygtg6J0ZhFWtoKAGJjZ6JS1RZTO3XqFFevXkWj0TBixAhUCg/v0s2p2EpMqH1d8BwUJVu3221s+2QxNouFqNbtaNqzr8zGWGlh73fSIK82AyMIiJAX6gJYi4vJeHoKotmMe9+++E2e7PC6f078mZ8Sf0JA4J0e7xDmrhx1wWKUQrdVhRDSCkZ+IIV26+BqQSXjlh2hoMJEkxBPvprQES+D00lx4uTvjL+7nm8mdSLa343MkmruWXaErBLl+TrXUWthzDLwbwTlWdILj035QRztHc2cbtJL1ucXPmdr6laHhw2cNg3XTp0Qq6qkScsVyrUzoXE+NO8l3dv2fJ2ARaHOpM2goYQ2borFWM32pR8oFrV6D22IykOLNb+asp1p8stUqxk5ciQqlYqEhAQuXrx4w7or0TFS51Jq6oey6cpjQ3xp6uZCidXGgtQch9f9V+dPd1Teeust/Pz8aNOmDe+++67i9MjfYzKZKCsrq/X1V+N8eRWrc6RfmNkxobK0R3LKfOx2I95eHQjwry03X1ZWxrZt2wDo27cvfgraJKaUEiqPSLUvPqPjUCkUkP66dSNZVy6hdTEwYNITiqmXgz8mUlVmxifYlQ5DoxSvRbTZyJoxA2tWNtrICELffgvBQdTjQsEF3jwizeR5ss2TdA3rqmgHwObnIOs0GHzgrq9Aq1y8+xtphVWMW3aEvHITjYM8+GZiJ7xdldVynThx8vci0MOFbyd1JtLPlYxiyVnJKVXWQLmO3gPGfgM6d0jdDztnOzQdGDWQh5pJApcvH3yZ5BK5OiyAoNEQtmA+muBgzFevkv3CLIddM11uj8HdV09ZgZEjaxXUZlUqBj06BbVWS+qZU9Kk+htQuWrxGSXNdCvfl445U+4YBQcH06NHDwA2btxIZWXt9FhI8Gjc3ZtitZZzNXVxrTW1IDA7VnKoVmYWkFIlH5z4d+BPdVSmTJnC999/z+7du3nkkUeYO3cuzz0nb9H9PfPmzcPLy+v6V4MGDf6gs705RFFkdlIWInB7oDdtvWpHiMrKzpGTswaAuLhZMgdi+/btmEwmwsLC6Ny5s+z4drON4p8SAXDrGIxLrLfMpjQvh/3fSVL1Pe99CE9/+cTjaxcKSTicAwL0vb8JGgctvfmLFlN56DCCwUD4kiWoFdqjAYqNxUzbMw2z3UzvBr2Z2GKioh0Ap76EU18AAoxZAT6Rjm2B9KIq7ll2hOxSI7GB7nwzqRO+bk4nxYmTfxLBXi58N6kzDXwNXPvtxaSsHmcloBGM+kj6/tASuPCLQ9MpbafQMbgj1dZqpu6eSoVZOVqi8fMjfNH7CFot5du3U7h8uaKdzkVDn/FSCujs7gyyk0pkNr6h4XS5YxwAu79YSkWxPE1kaOaPoaU/2KH4xyuIChotPXr0IDAwkKqqKnbv3l1rTRBUxMW+AEBm5ndUVtZune7p60E/X0+sIryRrDwG4K/O/9xRef7552UFsjd+JSQkADB9+nR69+5Ny5YtefTRR5k/fz5LlizBZHLs9b3wwguUlpZe/0pPT/9fX8J/xfbCMg6UVKBXCcy6QdxNFEUSa9qRg4NG4elZWyQtIyODc+fOATB06FDFlE/ZjmtYC42oPXV4DWkoWxdFkW2fLsFqMhHetDmt+stnApmNVvZ8I/0btOwTTnC0skR++Y4dFC6VBnyFvDEHF4UhiAA2u43n9j1HdmU2ER4RvNn9TVSCg1+tzFOwsUZ1tu+LENtP2a6GrJJqxi0/QmZJNdH+bnw7sRP+7vo69zhx4uTvSai3gW8ndibM20BKQSXjlh8lv7yeKEDTkdC1Ru16zROQl6BoplFpeKfnOwS5BpFalsrLB192GC0xtGpF0IuSInb+wvepPHxY0S6iqR/xXYJBhF1fJWC1KLQaDx9NUHQspspKdq74WDkFNCIGlasGS3Yl5Xvk0v8ajea62OfJkyfJy6td8+Lr2xV//36IopWk5Ldl+1+JDUUtwKaCUg4V19MK/hfkf+6ozJgxg0uXLtX5FR2tPIyuU6dOWK1WUlNTHR5fr9fj6elZ6+uvgsUu8nqNxzo5PIAGLrXf+gsKtlNSchSVSk9MzIxaa6IosnWrlDtt1aoVoaFyBVtzejkV+6W+fO/Rcahc5J0u53ZtI+38GTQ6PQMfmaKYpjn8SzIVRSY8/V3oPDJG8VpMV6+SNVOSavZ94H68hg51eN0f/PoBR7KPYNAYeL/P+3jqHPybVBZKhW82EzQeAt1nKNvVkFNq5J5lR0gvqibSz5VvJ3Um0NNBYa4TJ07+ETTwdeW7SZ0J8XIhKa+C8cul4vk66fcqRPUASyWsGg9G5ZIAP4MfC3ovQKvSsiNtB5+d/8zhIb3H3oXX6NFgt5M5fQaWLOVoRLc74nD11FGSW8XxjamydZVazcBHpqBSq0k6fpgrRw7KbNTuOrxHSPfisl1pWHLl3U9RUVHEx8cjiiLbt2+XrcfGzEQQ1BQU7KCouLZj1djNhfEhUhnB7ORM7H8zEbj/uaMSEBBAfHx8nV86nXLY/tdff0WlUhEYKE9V/B34MquApCoTfloNUyKDaq3Z7WYSkyRPN6LBBFxcajsily5dIj09HY1GQ79+8iiDaLVT9OMVEMG1TSCGeF+ZTXlRAXu/kop0u911Lz7Bcmcn80ox5/dKzk6f8fFo9fKUj72ykoynnsJeWYmhfTsCn3nG4TXvTNvJ8nNSaHR2l9nE+cQpG9pt8NPDUJoOvtFw+yd1dvjklRkZt+wI1wqraOBr4LtJnQn2cjopTpz8G4j47cXEQ8/l63IEdTgrag3csRI8w6AwEdY+Dg4exi0DWvJ8R+klbPHpxRzJlk8qBqnNOPiVl3Fp2hRbcTEZT0/FrhDtd3HT0mtcY0CaOp+fJlfaDYyKpuMoSUtq18pPqC6XO1KGVgG4NPEFm0jxj4mIdvn59+/fH5VKRWJiIsnJteti3NxiCAuT0kxJifMQxdoppGcaBuOuVnG2vJqfcuuZYP0X40+rUTl8+DDvv/8+Z86cISUlhW+++YZp06Yxfvx4fHzkbbR/dUotVubXVFU/2zAYjxtmzWRmfkt1dSo6nT+RkY/UWrNardc95G7duilGicp2p2PNrULlrsVrmDwiJYoiO5Z9iLm6iuDYRrQdOlJmYzHb2P2VFBZt2j2UcAVnRxRFsl56CXNSMpqAAMIXLkTQKnfWpJam8tIBabT6+CbjGRKtPIcIgF1vSJopWlepAM5FOd0EkF9uYtzyo6QUVBJWEwoO9a672NaJEyf/LBr6u/Hd5M74u+uvCzyWKgisXcc9AO76EtQ6uLQeDr7v0PTORncyMmYkdtHOc3ufI7tCeYCfysWFsMWLUXt5YTx3jtw33lS0i24dQGy7QES7yM4vL2FTqDPpdPtY/MIjqCotYfcXy2TrgiDgMyoWQa+WoucH5aq2/v7+dOggzWnbtm2bbGhhw6gpaDQelFdcICendr1OgE7L0zUv0PNSsqlSOMe/Kn+ao6LX6/n+++/p1asXzZo1480332TatGksramJ+Lux6FoeRRYbca766yG237BYSkm5ugSA6IZT0Whqy9wfO3aM4uJi3N3d6dpV3iljzq6kfLdUi+M9Iga1m9xxSDi4l5RTx1GpNQx69GlUCq2+x9ZfpTS/GjdvPV3HxCpeR9EXX1C+eQtoNIQtWoQmIEDRrspSJRWkWSpoG9iW6e2nK9oBcGkDHFggfT9iCQQ1dWhaVGlm/HJJUjvkenGdq+NjO3Hi5B9LTIA7303qhJ+bjvOZZdz/2VHKjHU4K+Ht4baaGo2dr0svRwoIgsBLnV+iiW8Tik3FTN8zHZNNuRZGFx5G6Pz5IAiU/PADJT8qT3DuMbYRLm5aCjMqOL31mmxdo9Uy6LGnEQQVl/bvJuWUXKhO7aXHe6j0Ilq27RrWAnmbdq9evXBxcSE3N5dfbxikqNP5EhX5OADJyfOx2Wpr0kwKDyDcRUuWycLSdGXtmb8if5qj0rZtW44cOUJJSQnV1dVcvHiRF154Ab3+71coea3axPIMSdzt1dgwNKranTypqR9itZbg5taIkJDaUvJVVVXs27cPkNqRb7x+0SZS/OMVsIu4NPPD0KK2wi1AVWkJuz6XHLzOY8bi30DeRZN7tYwzO6Q+/d7jGqM3yOtbKo8dI+/d9wAIev55XNu2UbxeURR55dArJJcmE2AIYH7v+WhVDvRMCpLgl0el7zs/Di3uULYDSqrM3Lv8KJdzywn00PPtpM5E+DmdFCdO/s3EBXnwzaRO+LhqOZNRyoOfSUNIHdLuIWg9XhrJ8ePDkrCkAi4aFxb2WYiX3ovzheeZd3Sew0O6d+9GwNNSwW7O63OoPndeZuPqqaPHWCn1fXxTKoVZ8qLVkNjG16Pd25d9gKlKXovi2iEIfaw3osVO0U/yFJCrqys9e/YEYNeuXbLmk/DwB3BxaYDJnMu1Gr2u69esVvFitFQSsDgtjzxTHU7fX4g/XUfln8CbKdmYRZFePh70863dvltVlXpdMTAu9gVUqtoOwt69ezEajQQFBdG6dWvZscv3Z2DJrEAwaPAZGauoh7Jr5acYy8sIiIii40j5TB2bxc6ury4hitCoYxBRLeXOjiU3j8xp08Fmw3P4cHzuHefwer+6+BVbU7eiETTM7z0ff4P8eACYKmDVvWAuh4iuMOB1h8csrbZw34pjXMouw99dz3eTO9PQ/58h/ufEiZP/jvhgT76e2Akvg5ZTaSU8vPI4VWYHzoogwND3JCHJqpoCfotym3OYexhv93gbAYGfEn/i58SfHZ6D3+TJuPfpg2g2k/H0FKzF8jqPuA5BRLXww24V2f1VAnaFOpNud92Ld3AIFUWF7Pt6pcLpC/iMjkPQqjBfLaXymFyorWPHjvj4+FBRUcGhQ4dqranVemJjngXg2rVPMZlya62PCvSmracrVTY771z9e4jAOR2V/5ITpZWsyytBAF6NlYu7JSW/iyha8PPtiZ9fz1prBQUFHD8uhf8GDhwoa0e25FdRtkMKIXoPi0btKS9CTjx+mMuH90viQo9NRa2RR0pObEmlKKsSg4eW7nfJi11FUSTn1VexFRaib9yYkNdfczib53jOcRaclNI4z3R4hjaBylEXRBHWPQn5CeAeDHd+LqlJKlBmtHD/Z8c4l1mKn5uO7yZ1IiZAPgXaiRMn/16ahXrx9YROeLhoOJZaxMOfH6faLG8HBiQBybu+kgQls05JApMO6BbWjSdaPwHAm0fe5ELBBUU7QaUi9O230EZGYM3KJneuPAIjCAK9xsWjc1GTe7WMs7vk0Ryt3oWBj0jRmbM7t5B2Xj5wUOPrgufgKABKN1/FWlI7aqLRaBgwYAAABw8epLS09qygwMAheHm2wW6vJjml9pBFQRB4rUYE7tvsQi5V1KMC/BfA6aj8F4iiyKtJUsHTPSG+NHWvXfBZUnKC/PwtgIrYGkGe37Njxw7sdjtxcXHExNRuExbtUuU3VhF9Ix9c28o7oYwVFexcLokd/darfyMFGRWc2iw5Oz3vbozBXe7slG3YSMWePaDVEvbeu6gMyoWruZW5PLP3GWyijaHRQxkX7zjqwpGPJPEllUYqcPMIUjSrNFl58LNjnEkvwdtVK839CFIWlXPixMm/mxbh0nwvd72GIylFTPryBEYF7RJAEpIcswIQJIHJU18q2wGTWk6id3hvzHazNFDVqNwVo/b0JOzdd0Glomz9esr37JHZuPvo6XaH9EJ4dG0KJXny2UUNmrag1QCp+WDbp4uxGOURH/cuoegiPRFNNkp+SZTprzRp0oSIiAisViu7dtVWvRUEgbg4SQcmO/tHyssv1VrvUDPaxQ68lvTXF4FzOir/BWvzSjhZVoWrWsXMmuFPvyGKdhITpQrx0NC7cHevLZaWmppKQkICgiBc94x/T+XhLMzXyhB0anxGK6d89ny1nMqSYnx+p374e+w2O7u+vITdLhLdOoCYtvLCWGthIblvSufp/9ij6OOU24stNgsz9s6gyFhEI59GvNrlVccTkVMPwLaXpe8HzYOITopmoijy3E9nOZVWgqeLhq8ndKJJyF9HF8eJEyd/PdpE+PD5Qx1w1ak5kFTAa+uVIyCAJCjZV3pgs/EZSXBSAZWg4s0ebxLhEUF2ZTYz983EZld2gAwtW+L7wAMA5Lw6G1u5vB25SbcQwuN9sFrs7Pk6QbHVuMe4B/HwC6A0L5cDq76SrQsqAZ8xcaARMF4upupU7eJXQRAYOFAawXLmzBmybtB58fJqQ2DgUEAkMWmuzNF5KSYUnSCwp7icXYV/vVE0v8fpqPyHGG123kyRWtqejAgkSF87rZGbu4Gy8rOo1W5ER0+rtWa326+Lu7Vr106mG2MtMlK6NRUAryFRaLzl+iGpZ05xYc8OEAQGPTIFjYI2za870slPK0fvqqHnPY0UHYvcN9/EVlKCPj4e/0mTHF7vO8ff4Uz+GTy0HizsvRCDxkG7cFkW/PAgiDZocRd0dHzMFQeusvFsNhqVwIoHO9A8zHHLshMnTpz8RvsoXz4e3w5BgO+OpbPquHyg33W6z6g9abmyUNHMU+fJwj7Sve1w9mE+/PVDh4cMmPKUlALKzb3egPB7BEGgz/h4NDoVmVdKuHBAHrXQu7oyYPKTAJzavI6sK5dkNtpAVzz7S80RJRtSsJXX1pIJDw+nRYsWgNSufKMzEhvzHCqVjuLiQxQW7qm1FmXQ83C4VF/4WnIWVgVn6q+C01H5D1mekU+60UyIXsujDWo7GjabkeTkdwGIinwUva52sem5c+fIzs5Gr9fTu3fvWmuiKFL8cyKi2Y6uoSduHWtHagDM1VVsWyq1O7cZPIyweHm7b3FOJcfWXwUk5UQ3L3k3VfmOHZRt2gxqNSFvvuFQL2V98nq+v/w9APN6zCPCM0LRDqu55kaQD0HNYfgiqbBNgSMphczbLGm6vDS0CR2i5JouTpw4ceKIXo0CmN5filS/vPYCZzNKlA1VKklg0jdaEpz86WFJgFKBRj6NmN1lNgDLzi1jV5p8kCCAymAg9I03AChZvZrKI3LROE9/w3Xl70M/J1FeJE/vNGzdjma9+oEosvXjRVjNclE7jx7haMPcEautlKxNkq3369cPjUZDamoqly9frrVmMITTIPxBABKT5mG31+7ymRoZhI9GzeVKI99mKztwfwWcjsp/QIHZyqJrUiX1C9EhuKpr/xjT01diNGWh14fQoMHDtdbMZjM7duwApEFT7u61i0arTuVhSioBjQqfMY0QVPIH/f7vvqC8IB/PgCC6332/bF20SxXnNqudiKa+0iyKG7CVlpL92msA+D38MIZmzRSvNaEogdcOS3aPtnqUXg16KdoBsHUWZByXxNzGfgU65dbinFIjT357CptdZFTrUB7oGuX4mE6cOHHigCf6xNK/SSBmq53Hvj7lWGrf4C0JTWpdJW2V3crCbQBDoocwvsl4AF488CKppamKdq4dOuB9z90AZL/0MvYqeS1Ki5pZahajjT3fXFac89Pr/om4enlTlJXBkZ+/l60L6poUkEqg+nwh1RcKaq17e3tfH2C7fft2bLbaTlhU1ONotb5UVSWTlbWq9l6thhkNpefDO1dzKLc6qPf5k3E6Kv8B81NzKLfZaelu4I6g2iq6JnMBqdc+ASA25lnU6tppm8OHD1NeXo6XlxedOtWu3bCbbddTPp79I9D6y9MrGZfO8+vWjQAMfOQpdC5ym3N7M8hOLkWrV9N7fLxyyuftd7DlF6Br2BD/J59QvM5SUylTd0/FZDPRPaw7j7V6zMFPBDjzPRyvUVscvUx6e1HAbLXz2DcnKagwEx/swbzRLR3Xujhx4sRJHahUAvPvak2UnyuZJdVM+e40NkcpjKCmkuAkwP75kLDR4XGnt59O28C2VFgqmLZnGlUWuRMCEDhjBpqQECwZGeQvWqR4fn3vj0etUZF2oZDLR+XtwAZ3D/pPlETajq39kdyryTIbXag7Hj3DASjddBXRWltVtnv37ri5uVFYWMiJEydqrWk0HkQ3fBqAlKuLsFpr19Q8EOpPjEFPgcXKB2l/TRE4p6Nyi1ypNPJlluTRvhobiuqGh+zVlPex2Srw8GhBUNDwWmvl5eUcOHAAkGY2aG9ItVTsy8BeZkbt64JH9zDZZ1vMJrZ9uhiAFn0HEtmitcymrKCaw2ukMd9dbo/Bw1de31Kx/wClP/8MgkDIm2+gUhDZs4t2Xtj/ApkVmYS5h/FWj7ccT0TOPgvrpT8Ees2ERoOU7YA5Gy5yOq0EDxcNn97XDoNOrqDrxIkTJzeLl0HLJ/e1w6CVimvnb7vs2LjFHdCp5oXrl0clQUoFtCot7/V6D3+DP0klSbx66FXFaIja3Z2Q16WIc9GXX1F16rTMxifYjQ7DogA4sDqRylK5Am5cx6406twd0W5n6yeLsFnlGjEefcJRuWuxFhqpOFJb8t/FxYU+ffoAsGfPHqqra7cch4bejatrDBZLEampH91wrQIvx0gicJ+m55FhrGcA5J+A01G5ReYkZ2ETYbC/J918arfRVlRcIbMmtBYX9yLCDQ/23bt3Y7FYCAsLo3nz5rXWbGUmyvdK4729BkchaOT/NIdWf0NxdhbuPr70um+CbF0URXZ/nYDVZCM0zpvmPeXOjq2ikuxXXwHAZ/x4XNu2VbzOT858wv7M/ejVehb2ltQbFakulqaVWo0QOwB6Pa9sB/x0MoOvjkit0u+PbU2kn1PQzYkTJ/898cGevDVGKir9aE8yWy/UIWQ2cI4kQGkqk+5dJrmCLECAawALei9AI2jYkrqFry7KO3MA3Hv0wGvUKBBFsl96SXFwYesBEQREeGCqsrL/+yuKx+n70CO4uHuQn5rC8XU/ydZVeg1eA6MAKNuZhv2GuUdt2rQhICCA6urq62rn1/eqNMTFSvfmtPTPqa7OqLU+yN+Trt7uGO0i81KU5x79mTgdlVtgf1E52wvL0Ahc90B/T1LyW4CdgIBB+Hh3qLWWk5PD6dOStz1o0CBZuqN02zVEix1dpKeiTH5O0hVOblgDQP9JT6B3lT/kLx3KJiOhGLVWRZ/x8Yr1LfkLFmDNykYbFkbg1KcVr3Nfxj4+PvMxAK90eYUmfk0U7bDb4efJUHINvCNh9FKHE5EvZJUy65dzAEzpF0e/Jsq6Kk6cOHHynzCydRgPdYsC4JnVZ0jJV3ZAUGslAUr3YMi/BOuecjhpuU1gG57pIE2PX3ByASdyTijaBT0/E7W/P+aUFAo++lj+kWoVfe+PR6USSD6dT9JJeYrFzduHPg9OBuDIT99RmCHvZHJtH4Q22BWx2krZDWJyarX6ervysWPHKCoqqrXu59cHH5+uiKL5erPHbwiCwOzYUATgp9xiTpXJpf3/TJyOyk1iE0VmJ0vibg+G+RPjWjulUli4n8LCvQiCltiY2iqIoihebx1r2rQpERG1u2bMWRVUnZSKc72GNpQ5MTarha2fLEIU7cR360VMO7kuSWWJiYM/SmHMTsOj8Q6SF7JWnThB8bffAhDyxhxUbnJnJ70snef3S5732MZjGREzwvEPZe/bkLgNNC5S8ayrcudOSZWZR78+iclqp3fjAKb2U9ZqceLEiZP/hllDmtAhyodyk5VHvjpJpaOZQB5BcNcXkiDlhZ8lgUoHjIsfx5CGQ7CJNp7Z+wx5VXInQ+3tTXBNpLpw+XKMFy/KbPzDPWg7WGo13vf9ZYwV8jk7Tbr3JrptB2xWK1s/WYT9hu4kQSXgVTO0sOJwlmxoYWxsLDExMdhstutNG9f3CgJxsbMAgdy8DZSW1k5TtfRw5c5gqebytaQsxVTXn4XTUblJVucUcaHCiJdGzfSo2l00omgjKUmSUw4PH4+ra1St9aSkJFJSUlCr1fTv3/+GvSKlG1NABEOrAPQRcsGzo7+spiD9GgZPr+se943H2PPtZczVVgIjPWjVL1xmYzcayX7xJQC877wDty5dZDbV1mqm7ZlGubmclgEtmdlhpuMfyJWtsPct6fth70tzNRSw20WmrvqV9KJqGvgaeH9sa1QKkR4nTpw4+W/RqlV8OK4tAR56EvMqmPnTWccP3IjOMGiu9P22lyWhSgUEQeDVLq8S5xNHobGQ6XumY7HJnQzPAQPwGDwYbDayXnwJ0SK3aX9bFD4hblSXWzjwQ6LiZ/Wf+AQ6gyvZiZc5vXm9zMYlzgeXxj5gEyndfFW2f+DAgQiCwMWLF0lLqx2V8fBoQkjIGAASE9+U/WxeiA7BoBI4WlrJpoLasvx/Jk5H5SaotNp4qyZvNzUyCF9t7Xk6Wdk/UlF5GY3Gi4ZRT9Zas9lsbNu2DZAGSfn61o46GBOKMCWXgkbAa1CU7LPz01I5+stqQMphunrKa0WSTuSRerYAlVqg7/1NUKnl/6z5S5ZgvnYNTWAggc/J516Iosjrh1/ncvFlfF18WdBrAVoHs3koSoGfa4TcOkyE1vco2wGLdiay53I+eo2Kj+9th7erXJjOiRMnTv5XBHq68PG9bdGoBDaczWbFgauOjTtOloQpRZskVFmmLCfvqnXl/d7v46H14Ez+Gd498a6iXfBLL6L28sJ06RKFK1bI1tVaKQUkCHD5aA6p5wpkNh5+/vQaL8laHPj+K0py5DUjXkMaggDVFwoxpdR2KIKCgmjTRprBtnXrVuz22h1CMdHTUakMlJadJi9/c621EL3uui7YnOQszDfs/bNwOio3wUfpeeSarUS66K4r+f2G1VpBSoo0pK9hw6fQar1rrZ86dYr8/HwMBsP10dy/IdrslG6S/og8uoWhuaFDx26zsfXjRdhtNmI7dKZxlx6yc6suN7NvlVSc1X5IFH5h8mF+1efOUbTycwCCZ89G7SGfpbMmaQ0bUjagFtS81+s9gtwc1JCYq2DV/WAshfAOkkS+A3Yl5LJop/TWMPf2Fk7lWSdOnPwhtI/y5aWhUm3dvM0JHElxIGYmCJIwZVBzSahy9QOScKUCEZ4RzOsh3e++S/iO7de2y2w0/v4EvTgLgIIPP8KUJO8qCm7oRct+DQDYWxMJv5EW/QYR0bwlVrOJbUuXIN7gMGiD3HDrKEX2SzalyCT6+/Tpg1arJTMzkwsXao8Y0OuDiIyUIvNJSe9gt9cu/n0yIpBAnYbUajMrM+WO1J+B01Gph2yTmY/S8gFpNoL+hmLRa2lLMZsLMBgiCQ+7t9aa0Whk9+7dAPTu3RvDDcP+Ko/lYM2vRuWmwaNPA9lnn9jwC7kpiejd3Og34XFFvZH9q65grLDgF+ZG20GRsnXRbCZ71otgt+M5bBgeffvIbPKq8nj3uPSG8GSbJ+kQ3EFmIx1MhA1TIfccuAVIwwY1yhGSa4WVTP3+VwDu6xzJmHbydJQTJ06c/F/xQNcoRrUOxWYXefLbU+SUypVhAUmY8q4vQe8FGcck4UoH9GrQiwnNpY7LN468QYmxRGbjOXw47r16IVosZL/4EqJNLqLWaUQ0ngEGKopNHPpZ7swIgsCAyVPQ6PWkXzjL2Z1b5Z8zIBJBr8aSUUH1mfxaax4eHnTv3h2Qht9abkhDRUZMRK8LwmhMJz2j9rBGN42a52tm1y1MzaXY4qDO5w/E6ajUw1spOVTb7XSsmTb5e4zGLNLSlgMQGzsTlar2Q/vAgQNUVVXh5+dH+/bta63ZjVbKdkitup79I1G51E4nFWVlcvgHqfC1930TcfeRF6pePZNP4ok8BJWU8lErtDQXfLoUU2Iial/f657+7xFFkTlH5lBuKae5X3MebPag4x/GsWVwdhUIaqlq3lPe+QRQbbbx6NenKDNaaRPhzcvD5BL/Tpw4cfJ/iSAIzB3dgvhgDwoqzDz+zUnMVgepDL8YqWsRJOHKM3KF2N94vPXjxHjFUGQs4p3j7yh+bvBrs1G5u1N95gxFX8nbmrU6NX3HxwNwYX8WmZfl05q9g4LpPlZSHt/3zWeUFdR2RtTuOjx6Sy+4pVtSEW+YIt2lSxc8PT0pLS3l6NGjtfeqXYmOmQ5AauqHmM21O4TGhvjS1M2FEquNBal1tHr/QTgdlTo4X17F6hzpH3B2TKgsopGcMh+73YS3VwcC/AfWWispKeHw4cMADBgwALW6trBZ2e507JVWNIEG2Twf0W5n26eLsFrMRLZsQ7PetQtwAUxVFvZ8KwkbtRnQgMBIeRGu8fIVCj79FJBypxofH5nNltQt7Enfg0al4fVur6NRaWQ2AKQdha0vSN8PeB2iuiuaiaLIrF/OcSm7DH93HR/f2w6dggPlxIkTJ//XuOo0fDK+HR4uGk6llfDGRnk3znUaD5YEK0ESsMw+q2imU+t4rdtrCAisT1nPvox9MhttcDCBzz4LQP77izCnyVuNwxr70KxG62rXV5ewmOSRlza3DSOkUTzm6mp2LP9QVvzq0T0UtbceW6mJ8gOZtc9Tp6Nfv34A7Nu3j4qK2u3aIcGjcXdvitVaztXUxbXW1ILA7Fjp3FZmFpBSJdeG+SNxPkEcIIois5OyEIHbA71p61W7lbes7Cw5OWsAiIubJXNidu7cic1mIyoqisaNG9dasxYZqaj5pfIaEo2grr331+2byEy4iNbFwMDJTymmfA7+mERVqRnvIFc6DG0oP3+rlewXXwSrFfd+/fC47TaZTZGxiHlHpZzr5JaTifNx0DZcnisNG7Rbds/BpQAAX6pJREFUodnt0EVZch/gy8PX+OV0JmqVwJJ72hLsJVfGdeLEiZM/iih/N94f2xqQ7k8/n8pwbNzreUm40mqE1fdJgpYKtApoxX1N7wPg9cOvU2GWa7Z433Unrp06IRqNZL/8iqzOBKDr7TG4++gpKzBydF2KbF2lUjPokadRazRcPX2CSwf21FoXtGq8BkcBUL47QzZduUWLFoSEhGA2m9mz54a9goq4WOnlMzPzWyora0v39/T1oJ+vJ1YR3khWLjL+o3A6Kg7YXljGgZIK9CqBWTeIu4miSGJNO3Jw0Cg8PVvWWs/IyODcOUnc7LdWsd9TuuUq2ET0sd5Sm9nvKMvPY/83nwPQY9wDeAbUnswMkH6xiEuHskGAvvfFo1GQoS/6/HOM58+j8vQk+JVXFJ2dt46+RbGpmDifOCY2n6j8g7BZpGr4ihwIiIcRHziciHzyWhFzNkhvLM8PjqdLjJ/yMZ04ceLkD6RfkyCm9I0F4IWfz3Ehy0HrrUolpYC8I6E4VRK0dND58mSbJ2ng0YDcqlwWnFwgWxcEgZA5ryMYDFQdPUrJ6h9kNjqDht73SimgM7vSyUmRn5dfeAO63DEOgN2fL6WypLbzZGgZgDbcHdFso2z7tRsuR8WgQdJIk5MnT5KXV1sDxte3K/7+/SSJjeS3ZZ/9SmwoagE2FZRyqNiBgN4fgNNRccAvudIvw+TwABq41K49KSjYTknJMVQqPTExM2qtiaLI1q1S4VOrVq0IDa3t5JiulVF9tgAEqcXsRgdi71crsJiMhMU3o/WAIbLzMhut7P46AYAWvcMJifWW2ZiuXiV/yQcABM2ciTZI7uzsTtvN5tTNqAQVc7rOcdyKvP1VSDsEOg8Y+zXo5V1FAHnlRh77+hRWu8jQliFM7CGP8jhx4sTJn8XT/RvRq1EApppJy6VVcp0TQBKuHPuVJGSZuA32yetQAAwaA691leb8/HDlB47nHJfZ6CIiriuA5737LpZseatxZHM/GncOBhF2fXkJm0XuGLUfPprAqBiMFeUc+L52zYugEvAeJonAVR7PwZJTW1U2KiqK+Ph4RFFk+3Z5p1JszEwEQU1BwU6Kig/XWmvs5sL4EOmFc02ecnTpj8DpqDjgw6aRfNQ0kimRtdt07XYziUmS5xnRYAIuLrUdkUuXLpGeno5Go7meH/yN6+JugGu7IHShtR/6mQkXuXL0IIKgot+ExxAU5OiPrE2hvMiIh58LnUfKJxSLdjvZL72MaDLh1q0bXqNvl9mUmcuYc2QOAA80e4Bm/s2UfwjnfoQjH0rf3/4x+Cunhiw2O09+c5q8chNxge68M8Y5EdmJEyd/LdQqgUV3t6aBr4G0oiqmrjqN3dGk5ZBWkpAlwJ634Mo2RbMOwR24s9GdALx66FWqrdUyG5/x4zG0bo29spLs2bMVBei63xmHwVNHcU4VJzanys9do6HfhEcBOL9nO3mptdNE+igvDM39QISSTXLdmP79+6NSqUhMTCQ5uXaKx80thrAwKWKTmDgXUaxdK/NMw2CWN4vi7UZ/Xuem01FxgEoQGB3kg4emdlolI/MbqqtT0en8iYx8pNaa1Wq97rF269YNT8/aBa7V5wowp5Uj6FR4DazdSiza7ez5Suogat53AAERUbJzykoq4dxuKb/a5954dC7ywtfi776j+uRJVK6uhLz+mqLDMP/EfPKr84nyjOLxVo8r/wByL0ozMAC6T4Mmw5XtgLc2J3AstQh3vYZP7muHm95BQa4TJ06c/Il4u0oF/nqNit2X81m8S64Oe53W90D7CYAIP0+UhC4VmN5uOkGuQaSXp/PB6Q9k64JaTcibbyBotVTu3UfZegW1WTctve5uBMDJLdfITy+X2YQ2akKjLj1AFNn79Wcyh8frtoagFjBdKcZ4pXb0w9/fnw4dJNkJJRG4hlFT0Gg8qKi4SHbOL7XWAnRahgV6/6kvn05H5RawWEq4enUJANENp6LR1I6IHDt2jOLiYtzd3enatWutNdFip3RLKgAePcNRe+prrScc3k9O0hW0Lgb+X3v3HR1VtTZw+HemJpPeSUiDhBJKIHRC7yAqIthFLNdrQa8gIKgUQVFR7BevfhbsolIEFaVJ7y20UAMhgYT03qad748ToycnQVBS1P2slbWGvPvM7DME5s0u7+51852a17ZbHWz4VJnyiekVTFgb7XZl6/kLZL6izJUGTH4cY1Pt6cnb07az7NQyJCTmxM/BxVDDYtfyAuVUUVspNO8PA2fW/IYAKw+mVVV+XHBTB6ICap4aEgRBaAzaNfVi3mjlpOU31p9iw3Ht2T1Vhr+oFLYsL1AKXVpLNU3cTe7M7jkbgE8TP+Vg1kFNG3NUFP4TlE0IGfOex56tLaQW1SmQqE4ByE5ZmQJyaKeA+t4+Hr3BQMrhBM4mqA9INPi54t5TGeHP/+EMskOdyPTr1w8XFxcyMzNJSEhQxUwmXyIjlF9azyS9isOhvc+GJBKVK3A2eSF2ewFubi0JDr5JFSstLa06WnvgwIGYzepEpHh7Go7ccnSeJtz7qofQbNYKtnzxEQDdRo3FzVu7jXjPD2fJzyjFzctErzHRmrgsy1ycNQu5tBTXLp3xuU1b1r7UVsqc7cqc6q2tb6VTUCftTTqdsPwhyE0CrzAY8yHotIt1AU5cLGLaEmUL30P9oxjerkmN7QRBEBqTsZ1DubNHOLIMjy0+wLmcWk4LNpiUYnBuAUqhy+8n1njScp/QPlzX/DpkZGZtm4XVoa1u63ffvZhjYnAUFHDx2edqfLm+t7bC7GYgO7WYhLXaLc1egU2IG6EcFLvp0w9xVism5zkwDJ3FgD2jlJK96vonFouFfv36AfDzzz9TUaHechwaOh4XlzAqrBmcq6wP1liIROUylZYmc/68soipRfST6KrVG9m0aRPl5eUEBQXRsWNHVcxRYqNwg/JD5zUsEl21XTr7V62kKDsLdz9/Oo8cpXntzHOFHFijXN/v9laYLdqFrwXLllOyfTuS2Uzws8/WuL7ljf1vkFaSRohbCBM7Taz5Rre+Cid+AP0v/0Br3rlTWG7jwc/2UWZz0DvanylDW9XYThAEoTGadW1b4sK9KSy38+Bn+ymzauuYAEphy7GLlEKXh76CPTV/iE/rNg0/Fz/OFJzh3UPvauKS0UjIvOdAr6do9WoKV2vXvVg8TfS5SVkLuPv7s+SmaxOo7qNvxsXDk9wLqZqKtTqLEY9B4QAUrj2Hs9rp0V27dsXHx4fi4mK2bdumiun1ZqKjlNov5879HxUVGTW/Hw1AJCqX6XTSy8iyDT/fvvj5qc/syc7OZs8eZcX30KFD0VVLEgrXnUMud2AMccMSp96BU1qQz+5vlUMH+9x6F0azeirGYXfy8yfHkGVo0TWIZh0CNH2zZWSS8aJyknHAfx7F3Ey742Z/xn6+OK5Uup0dPxuL0VLDTa6Hnysz/WsWQNMaRlxQTkSe/PVBzmaXEOLlwhu3dkQvTkQWBOEvxGTQ8fYdnfB3N3EsvZCnlh+u/aTlZn1giDIazU/TlQKY1XiZvXi6x9MAfHD4A47nHte0cWnTBr/7lVIQF599Fkd+vqZNy+5NiGjnh9Mus+HTY5oFvy5u7sSPVUbMt3/zORWl6mTGvXswBn9XnMU2ijaqa8YYDAaGDBmiXLt9OwUF6u3QgYHX4OUZh9NZRtKZ12p+LxqASFQuQ17+HrKyfgJ0RFcWyPmtdevW4XQ6adGiBVFRUaqYLbOUkl3KljSvkc2Rqn2gb//mc6xlZQQ1jyamd3/Nc+9ffY6cCyW4uBvpc7N2140sy1ycOxdnUREu7drhO368pk25vZzZ25U51NHRo4kPide0IT8VllYuHOt0F3TWPs8v/rcpibWJGZj0Ov53Z2f83M21thUEQWisgr1ceeu2Tuh1EssPXODTnedqb9zzEaXgpdOuFMAs1q5tGRIxhCERQ3DIDmZtm4XNqd0C7f/ww5iionBkZ5PxwouauCRJ9Lu9FUYXPRfPFFZtoPit2MEj8AkJpaywgF3fquuzSAYdXiMiASjacgF7vnqKJyYmhvDwcOx2Oz///LPmtVu0UJKt9PQlFBVdopJvPRKJyu+QZSenTz0PQEjIzbi7t1TFk5OTOX78OJIkMXToUM31BT+eBSe4xPjiEuWtiuWcT+HQOmXorv+4f2mma3IuFLN3VTIAfW9piauH9gDAoh9/pHj9ejAaCZ43D8mg3XHzv4P/I7kwmQDXAKZ0nVLTTSo7fMryICQORtR8hDnA5pNZLFijlO6fO6otHcK8a20rCILQ2PWM8mP6cKXo2tzvEtl3LrfmhpKkFLwMaK0UwFxVw/+lwFPdn8LT5Mmx3GN8fPRjTVxnMhH83LMgSRSsWEHxZm0Jfg9fF+JvVNYi7lyRREGWetuz3mCg3533ALB/1QoKMtXTNC5t/DA18wK7k8LVydVuQ6oqAnfw4EHS0tRVZ7284ggMHAkohU1rHWWqRyJR+R0ZGd9TWHQIvd6N5s0nqWJOp7OquFvnzp0JCFBPy5Sfzqf8WC7oJLyu0U7HKFvMnER37Ulom3bq53YoUz5Oh0xkrD/RXbRF2+y5uVx8bh4A/g88gEurlpo2R7OPVv1jmdljJp4m7ZlAJHwOZzYoBY5ufB+MNZe9T80t5T+LDyDLcGvXMG7tFl5jO0EQhL+Sf/Vpxsj2wdidMg9/vp/MolpOWja7K5VrJT0kroDElZom/q7+TO82HYD/JfyPM/nabc2WuDh871IOHEyf/QyOYm3V17a9Q2ja0hu71cmGz45rEobmnboR3i4Wh83G1sXqE5AlScK78miV0gOZWM+rtzs3bdqU9u2VnU9r1qzRPHd01BPodCby8raTk7Ox5veiHolE5RIcjnJOJylVCSMjHsRs8lfFDx06RHp6Omazmf79+6tisvPX4m5u3ZtgDFCvCUk+dICzB/ai0+vpe8fdmtc+uP48meeKlBLLt7eqcQ97xrznceTmYm7ZEv9/36+J2xw2Zm6fiUN2MCJyBAPCB2hvsjD912PN+z8J/todRQDlNgcPf76f/FIbsaFePHN9LUXiBEEQ/mIkSWL+2FiiA93JKKzgkS8OYKthezCgFIPrPVF5/MNkKNWOwFzb/Fp6N+2N1Wll1vZZOJzahboBEx/DGBaGPT2dzAULtH3SSQwY1xqDUceFE3kkblWPfEiSRL9x/wJJ4vi2TaSfOqGKm0I9qtZE5n9/RpOMDBo0CIPBQHJyMidOqK91dQ0lLPRuAE6dfgFnDVNY9UkkKpeQmrqIiop0zOZgwsLuVcWsVivr168HoE+fPri7q+uHlO7PxJZeguSix3Owurib0+lg06cfANBx6Eh8gtX1TvIzStn1nZLk9BobjZu3dg1I0c8bKPzhB9DplGJCJu200PtH3udU3il8zD5M7z5de4OyrPxDKy9Qpnx6PlLj+yDLMrNWHOHwhQJ8LEbevqMTLsaatywLgiD8FbmbDbw7rjPuZgO7z+by4o/axbBV+j4B/q2gJPPXX/R+Q5IkZvecjZvRjYNZB/ny+JeaNjpXV4KfVSqE5y/+ipJduzVtvAIsdK+sQL596WmK89QjPYGRzWnbV6mAvvGT9zXJiOewSCSjDmtyIeVHc1Qxb29vevToAcDatWtxVNvqHBn5MEajL6WlSaSlfVX7e1EPRKJSiwprNsnn3gEgOmoqer16OmTHjh0UFRXh5eVF9+7dVTGn1UFB5byg58Bw9G7q7cRHN64nOyUZFzd3eoxV1zuRnTIbPjuOw+YkLMaHmPhgTd8chYVcfOYZAHzvuRvXyiG83zqVd4r/O/R/ADzZ/Ul8XbQF4ji6TNmKrDPCqIWgr7mi7OI9qXy99zw6Cd66rROhPjXsGBIEQfiLiwpwZ8FNHQD4YOtZvjtYy6nBRhcY9V9AgoNfwintGTpN3JrweOfHAXjzwJukFqVq2rj16I73zTcDkD5zJs4ybQn+2IFhBDXzxFruYNMXJzTJSK9b78RgNpN28hindqm3HBu8zbj3UX4RLvjxLLJdPUrUu3dv3NzcyMnJYe/eagXkDB40b6acU3Tm7BvY7dpqufVFJCq1OHvmdRyOYjw82hMUpC4fX1RUxNatWwHlDAWjUZ2IFG8+j7PIit7XBfd49VlA1vIytn2l1GPpMeZWXN09VPFj29NJO5WPwayn/x2ta5zyyXz5ZeyZmZgiIgh49FFN3O60M2vbLOxOO/3D+jM8crj2BktyYNUTyuM+kyGo5qmchNR8Zq84CsCUYa3o3cK/xnaCIAh/B8PbNeGh/sruzWlLD3Eyo5YP6LBu0OMh5fF3E6G8UNNkbMuxdG3SlTJ7GXO2z6lxYWrg1CkYmjTBlpJC1ptvaeI6ncTAcTHoDBLJh3M4vU+928jD15+u190IwObPF2G3qadpPPqFonM3Ys8pp3in+lBEFxcXBgxQlgRs3LiRsmqJUkjIrVgsUdhsuSQnv13z+1APRKJSi4CAYbi5taRFi6eRJPXbtGHDBmw2G02bNqVdO/UiWEdhBUWblO1kXsMjkQzqa/esXEpJfh7eQcF0HDZSFbOW29m5Qjkwqsf1zfH0d9X0q2T7dvK/WQJA8Lzn0LloF75+lvgZR3KO4GH0YGaPmTWf0fDTNCjNhsA2SqJSg5ziCh7+bB9Wh5OhbYJ4qF9Uje0EQRD+TiYPaUmvaD9KrQ4e+HQfheW1rNEYOAN8IqHwPKx7RhPWSTrm9JyDi96FXRd3sfTUUk0bvYcHwXOUa3M//piyg9oS/L4hbnQeHgnAjuVJ2G3qaZqu143BzceXgswMEn5SnyWkMxvwGqpcW7g+BWe1U6Pj4uIICAigrKysqrp61bU6Ay2ip+Ph0RY/vxrWONYTkajUws+vD927/YCPd1fV9y9evMiBAwcAGDZsmCYJKFh9DtnmxBThiWt79ehDUU42e79TDnzqe8c96A3qkZj9P52jrMiGd5CFdv215/Q4S0pInzkLAJ/bb8fSpYumzbnCc/w3QTkYa0rXKQRatLuFOPEjHP4GJJ0yfGnQrm+xO5w8+uUB0grKae7vxis3dxAnIguC8I9g0Ot489Y4QrxcOJtdwuSvD9Z80rLJDa6vHAXZ+wGc3aJpEuYZxiNxyvq/V/a+wsWSi5o27v364Xn9deB0kvb00zit2hL8cUPDcfM2U5RTzqGf1bVVjC4u9L5lHAA7l31FaaG6kJulSxDGJhbkMjuF69Wl+fV6fVVpjd27d5Obq14c7Oc3gK5dvsXHp5v2/uuJSFQuofpIiizLVVu52rRpQ3i4enuuNa2Y0v3Kfnavkc00H+xbF3+C3VpB09Ztie7WUxUryi0nYb0yh9lzdBR6vfavJvP1N7BduIAhJJiAxx/XxJ2yk9nbZ1PhqKBHcA9GR4/W3lRZPnxfuc265yPQtHON975gzUm2J+VgMel5Z1xnPFy0ZfsFQRD+rvzczfzvzs6Y9DrWJmbwv01JNTds1hc63608XvlojQcX3hlzJ7H+sRTbinlu53M1TgEFPfkkej8/rKeTyHnnHU3caNLT4wZlYe2+H5MpK1InM236DSQgohkVpSXsXLpYFZN0El4jlWuLd6Zjz1ZP8fxSrNThcLBu3Tr1tZKk+SysbyJRuQKnT5/mzJkz6PV6Bg8erIrJcuV2ZBlcOwRgDlfXK8k4c5rEzUoVwP7j7tMkMTu/TcJhcxLSwptmHbTrQEr37yfvs88ACJ77LHp3N02br098zb6MfbgaXHkm/pmaR0DWzoSidPCNggHa1eoAPx1J553Kf5QvjY2lZZBHje0EQRD+zjqEeTNnlLJ+75U1J9hyKqvmhkPmgkcI5J2FDfM0Yb1Oz9xeczHqjGw6v4kfzv6gaWPw8aHJTOWk+uz/e4/y49pdR626NSEg3ANruYPd359VxXQ6Pf3G3QfAwbWryE1Tj7q4tPDBpZUPOGSlEGk1Q4cORZIkEhMTSUnRHojYkESicpkcDkdVcbfu3bvj66veRVN+PJeKpAIwSHgNi1TFZFlm46fKQVYxvfvTJFpdmC0juZCTuzNAgt43tdAkGM6KCtKfngGyjNeNN+Leu5emf2nFaby2Tzmb4bFOj9HUXTt1RNIG2F9ZGGjUf8GoXQNzOrOYyV8rc6T/6t2Ma2NDNG0EQRD+KW7rFs4tXcJwyvCfLw9wPk87YoKLF1z3uvJ459twfq+mSZR3FA/EPgDA/N3zySnL0bTxHD4MjyFDwG4n/amnke3qQwUlnUSvMUqtq6Nb0jSHFka070jzTl1xOhxs/nyR5vm9rmkGEpQdzaHijHp6KCgoiLi4OABWr16N01lLHZkGIBKVy7R//36ys7NxdXWlT58+qpjscFKwSslQPXo1xeCrXuCatHcX5xOPYDCa6H3bXeprZZltS04B0Kq7ki1Xl/3fhVjPnkUf4E/QtCc0cVmWmbtjLqX2UuIC47it9W2aNlQUw3f/UR53vR8itOf9FFfYefCzfZRYHXRv5sv0Ea1rf0MEQRD+IeaMaktsqBd5pTYe+mw/5TZtATdaDoPYW0B2wooJYK/QNLm3/b209m1NfkU+L+x+ocbXajJrJjovL8oTE8n5UJtsNG3lQ7MO/shOmR3LTmvife+8F0mnI2nvLlKPHlLFjEFuuHVrAkD+qjPI1dbdDBgwAJPJxIULFzh69Git70d9E4nKZSgvL2fDhg0A9O/fH1dX9UhEye6L2LPK0LkZ8BgQpoo57DY2f/4hAJ2vvQFPf/Xi1jMJWaSfLsBg1NGjsrDPb5UdOUrOh8r1wc88g97LS9NmZdJKtqVtw6QzMSd+Drqa5hN/fhbyU8ArDAbP1oRlWeaJJQc5nVlMkKeZ/97eCUMN62QEQRD+aVyMet6+oxM+FiOHLxRUlWzQGP4iuAVA1nHYrK02a9QZmRs/F72kZ3XyatafW69pYwgIIOhJpUBn9n//S8UZbQn++Buj0emU7cqpx6stfm0aRochIwDY+MkHyNVGRjyHRCCZ9djOF1N6UD2V5eHhQa9eyoj9unXrsNkatiLtL8Qn0WXYunUrpaWl+Pn50aXaThtnuZ3CdcqJm56DI9C5qIumHVz7I3npaVi8vOk2aqwq5rA72bFMWQvScUg47j7qkRjZaiX96afB4cDzmhF4DBqk6VtWaRbz98wH4OGOD9PMS3umECk7Yde7yuPr3gCzdtTms10prDp8EaNe4u07OhPgIU5EFgRB+EWoj4U3b4tDJ8FXe1NZkXBB28jiC9dUJihbX4WLhzVNYvxiuKedcqDgc7ueo6CiQNPGa9Qo3Pr0qfwMmIFcrWqsd5CFdv2U6f1tS05rdiT1HHs7JlcLmclJJG7ZoIrp3U149Fd+oS78KRm52uhQz5498fT0pKCggJ07d17iHak/IlH5Hfn5+ezYsQOAIUOGoNerS8cXbkjFWWLHEOiKWzd1Fdny4mJ2LFFKJ8ffdAcmV3VF1yObLlCQVYbF00TcUO0Bf9nvv0/FiRPovb0JmjFDE5dlmXm75lFkLaKNXxvGtx2vvQFbOax4BJCh450QrU12zueV8uKqYwBMHxFD5wif2t8QQRCEf6g+LQL4z6AWADyz8ijZxdrpHdreADHXgdOuTAE57JomD3Z4kGZezcguy+blPdrT6iVJInjOM+gsFsoOHCDv8y80bbqObIbZYiDnfDEnqhVys3h60X20UvF26+JPsJWrS+979A5B723GUVBB0VZ1wmUymRhU+Uvxli1bKK7hwMT6JhKV37F+/XocDgeRkZG0atVKFbPnllNc+ZfsdU1zJH21nTzLFlNeXIRfaDjtBw5VxcpLbOz5QVnX0n1Uc0zVRmIqTp0i+3/KFrWgp5/GUG3xLsCac2tYn7Ieg2RgbvxcDLoaSuBvehFyToF7EAx7ThOWZZmnlh+hxOqgS4QP98RHXvoNEQRB+AebMCCamGBP8kptzF5ZyxTQNa+AizekH4Ttb2rCZr2ZufFzkZBYkbSCbRe2adoYQ0IInDoFgMzXXsN6vtouHncjXa6JBGDnijNYy9UJUacR1+MZEERxbg57v1+uiklGPV6VBeSKNpzHUW2rc/v27QkODsZqtbJx48Za3on6IxKVSzh//jyHDytDdzUWd/vpLDhkzNHeyrav38i/mM6Bn74HoN+4+9BVG4nZ+0MyFaV2/Jq607qneiRGdjhIe3oG2Gy4DxiA57XqCrYAeeV5PL/reQD+FfsvWvm20rQh7QBsq/xHMvJVcNWOlCzdf4HNJ7MwGXTMHxuLTieKugmCINTGqNfx8thY9DqJHw6l89MRbQE3PIJgeOVi2Y0vQtZJTZOOgR25I+YOAObsmEOJrUTTxvuWW7B07YpcVkb6zJma+ivt+4Xi6e9CaYGVhLXqLcUGk4k+tyuj7HtWLqU4T72WxTU2AGOoO7LVQeHac6qYTqdj2LBhAOzbt4/MTHXZ/vomEpVayLJctR25Q4cOBAerk4mKc4WUHcoGSdnyVT2J2fLFRzgddiJi42jWUV1ULT+jlMMbley415hoTXKQ+/EnlB86hM7dnSbPzK6xHsr8PfPJLc8l2juaf7f/t/YG7FZlykd2QNsbIeZaTZPMwnLmfqf8RjBpcEuiAtw1bQRBEAS1dk29eKCvsvlh5oojFJTWsOi0w20QPRgcFbDyEXBqdwo9GvcoTd2bkl6SXlVe4rcknY7g555FcnGhdMdO8pcsUcX1Rh09RyvblQ+sSaE4Tz0V1apnH4JbtMJWUc62rz6r9twS3tcq91Cy5yK2i+pEKTIyktatWyPLMmvXag9drE8iUalFYmIiqampGAyGqvm6X1QVdwMsnYMwhag/4M8fP8rJXduQJF1VAZ7f2rE8CadTJqKdH2Ft1FM61nPnyHpTGQUJnPYExqAgzfWbz2/mhzM/oJN0zI2fi1FfQ9XYba9DxhFw9YVrtHOgsiwzc8URCsvttG/qxf19aliEKwiCINToP4NaEBXgRlZRBc/+kKhtIElw7etgcofUXbD7PU0Ti9HCM/HPAPDVia/Ye1Fbf8UUEUHAf5TSEpnzX8KWkaGKR3UKIDjKC7vNya6V6uq5kiTR/65/AXBk41oyk9U7iMyRXri28wMZ8ldpi8ANGTIEnU7HqVOnSEqqpTJvPRCJSi1OnlSG6nr16oWnp7rKbNnhbKwpRUgmHV5DI1Qx2elk06cfANBu4BACwiNV8bRTeZxJyELSScTfGK153Yz5LyGXl2Pp2QPvsWM18SJrEXN2zAHgrjZ30T6gvbbzmcdg00vK4xEvgZu20u2qwxdZfTQDg05i/phYsRVZEAThCrgY9bw0NhZJgiX7zrPpZA1Va73DYIjy/zXr50BesqZJj+AejGkxBoDZ22dTZi/TtPEdfxcusbE4i4vJevVVVUySJHqNVRb4Ht95kawU9WnPIS1jaNmzD8gymz77UDN95DWiGeglKk7mUX6i+jk/fnTtqpx398tnYkMQn061uOGGG7j11luJj1cXRpNtzqrywx59Q9F7qrfxHt+xhYunT2J0caXXzXeqr3XKbP1GKdDTpncIviHqMvglO3dR/PPPoNfTZGbNpx6/svcVMkszCfcI5+GOD2s77nQoK82dNmg5HNprk53cEiuzVx4B4OEB0bQJ8dS0EQRBEC6tc4Qvd1duQHhq2WGKK7Q7fOh8L0T0AlsprPwP1HDOz+Qukwm0BJJSlMLbCW9r4lLlZwJAwYqVlB0+oooHNfOkRdcgkGHb0lOaZKTv7ePRGwykHE7gbIJ61Mbg54p7T6UCef6qs8gO9bX9+vXjjjvuYMSIEZd+M+qQSFRqIUkSrVu3xmxWJyLF29Nw5FWg8zTh3jdUFbNZK9jyxUcAdBs1Fjdv9eLVk3syyEopwuiip9u16qkW2ekk4yWlHorPLbdgbq4t/rYr/ddjwufEz8HVoC2Bz8634cI+MHvCta8pw4/VzP3uKNnFVloGufPIAO2ojiAIgnB5pg5rRZivKxfyy5j/o/Z8HnQ65YRlgyuc3fTrMSa/4WHyYFaPWQB8kvgJR7KPaNq4tm+nnLAMZM6fr0lGetzQHL1Bx4UT+SQfVpfn9wpsQtyI6wHY9OmHOKvVZfEcGIbOYsCeUUrJXvXiYIvFQosWLX7nXahbIlG5Ao5iK4U/KyurvYZFojOpd/LsX7WSouws3P386TxylCpmszrY+a0yx9d5eAQWT5MqXrBiJRWJx9C5u+P/yATNa5faSpm9Xakoe0urW+jSpIumDTlJ8HPlFuShz4Gn9pyen49n8G1CGjoJXhrbAZNB/AgIgiD8URaTgRdvjAXg053n2HVGe4YPflEw8Gnl8ZoZUJimadIvrB8jm4/EKTuZuW0mNod2gW7gpElIZjOle/dSvF5d1dbTz5UOg5RCbtuXnsbhUFek7T76Zlw8PMm9kMqh9atVMZ3FiMcgpZZX4dpzOGsaGWpA4lPqChSuT0GucGAMccMSpy6FX1qQz+5vvwagz23jMZrVVWYPrkulOK8CD1+Xqh+mXzhLS8l6TVnx7f/QgzXWTHnrwFtcKL5AsFswkzpP0nbO6VSGFe3l0KwfdLpL06Sw3MZTy5RM/b7ezegY5n3Z9y4IgiDUrFe0P7d2Vf5fn77scM1nAfV4GJp2hopC+P7xGqeApnWdhq+LL6fzT/PeYe3iW2NwML733A1AxssvI1vV9U86D4/A1cNIfkYpRzerkyEXN3fib7odgO1ff0ZFqXqXj3v3YAz+rjiLbRRtVNdsaWgiUblMtsxSSnYp1f+8RjZHqralePs3n2MtKyOoeQtievVTxUoKKti/Wtmn3mN0cwxG9UhMzqJF2DMzMTZtis+d6nUtAAmZCXx+7HMAZvecjZvRTdOGfYvg3FYwWuD6N2uc8nlh1XEuFpYT6Wfh8SE11F0RBEEQ/pCnRsbQxNOFs9klvLa2hoWnOj2MWgg6I5z8EY4s1TTxcfHhye5PAvDeofc4kXtC08bvX/ej9/fHdi6FvMWLVTGTq4Fu1ynLBvZ8f5aKatumYwcNxycklLKiQnZ9+40qJhl0eI2IBKBoywXs+TVU3W0gIlG5TAU/ngUnuMT44hLlrYplp57j0DplKK3/uPuQdOq3dfd3Z7FVOAiM9KRFF/V2Y1tGJjnvK7uEAqdMRldtTUyFo4JZ22chIzMqahS9mvbSdi4/FdYq85sMmg0+kZom209n8+VuZdpq/phYXKtNWwmCIAh/nKeLkXmj2wHw3pYzHEzN1zYKjIF+TyiPV02FYu1OoWERwxgUPgi7bGfW9lnYneppGL27GwH/eRSArIVv48hXv06bXsH4BLtRXmJj74/qQm56g4F+dyrnDO1ftYKCTPVWZ5c2fpiaeYHdSeHq5Mu887onEpXLUH46n/JjuaCT8LpGW29k82cfIstOorv2JLRNO1Us50Ixx7YpQ3C9x0ZrdvJkvfkGclkZrh074jF8uOa53z34LmcLzuLv6s/UrlO1nZNl+H4iWIshrDt00xZ/K7XambZMOe77zh7hdG/ud7m3LgiCIFymQTFBjOoYglOGJ5Ycwmp3ahv1ngRB7aAsF358QhOWJImnuz+Nh8mDxJxEPknULr71HjMGc4sWOAsKqo5a+YVOr6PXGGWTxKENqRRmq7c7N+/UjfB2sThsNrZ8+bHmtb1HKp9xpQcysaaqtzo3FJGo/A7Z+WtxN7fuTTAGqA8WTD50gLMJ+9Dp9fS9427N9duXnkaWK4vyRHurYuXHj1OwTDmDIXDaE5okJjEnkQ+PfAjAjO4z8DJ7aTt4cDGcXgd6M1z/X2WFeTULVp8kNbeMpt6uTB8Rc7m3LgiCIFyh2de1xc/NxImMIhZuOK1toDfCqP+CpIejy+DY95omAZYAnuiqJDELDyzkbIG6GJuk1xP4hBLP/eILrOfUIyfhbX0Ji/HBaZfZsVxbBK7fuH+BJHFi+2bST6mnl0yhHlVrMPN/OKPZXdQQRKLyO0r3Z2BLL0Fy0eM5WF3czel0VBV36zjsWnyCm6ri547mkJKYi04v0XN0lComyzIZ8+eDLON5zQgscXGquM1pY/b22ThkB8MihzEoQnvqMUUZ8NN05XH/6RDQUtNk37lcFm1Xfsifv7E97uYaDi4UBEEQrgpfNxNzRrUFYOGG0xxLL9Q2ComDXkq1WX54HMryNE1GRY2iV0gvrE4rz2x/BqesHp1x79Mbtz59wGYj8xVtEbj4MS1AgtP7MklPKlDFAyOb07af8pmy8ZP3NcmI57BIJKMOa3Ih5Udr2MVUz+osUZk3bx7x8fFYLBa8vb1rbJOSksLIkSOxWCwEBgYydepU7PbGsy3KaXVQULkI1nNgOHo3dan6IxvWkZ2SjIubOz3G3Kq+1uFk+1Ilm44dEIpXtZGY4k2bKN2xE8loJODxxzWvvejIIo7nHsfb7M2T3Z6suYOrJkN5PgR3gPj/aMLlNgdPLDmELMOYTqH0axlwubcuCIIg/EEj2wcztE0QdqfME0sOYXfUMAXUbzr4tYDiDFg9QxOWJInZPWdjMVjYn7mfxccXa9oEPTEVdDqK1qyhdK+6kJt/qDtt4pUz6rYt0RaB633LOAxmM2knj3Fyp/r0ZoO3Gfc+yi/eBT+eRa5pCqse1VmiYrVauemmm3jooYdqjDscDkaOHInVamX79u18/PHHfPTRR8yaNauuunTFijefx1lkRe/rgnu8uiaJtbyM7V8rhzz1GHMrru4eqvix7enkppVgdjPQuXIl9S9km43Ml5Tzd3zuGocpVF04Lik/iXcOKvOO07pNw8+1hjUlR7+FY9+BzqCsJNdrR0re+vkUSVklBHiYmXmtmPIRBEGoD5Ik8dwN7fB0MXD4QgHvb9Weo4PRRZkCQoKEz+D0ek2TYPdfy1G8vv91LhRfUMXNLVpUHbWSMf8lZKc6oeh2fXMMZj0ZZws5vU99ArK7rx9dr7sRgC1fLMJuU+8Q8ugXis7diD2nnOKd6Vd0/1dbnSUqc+bMYdKkSbRvX8NZNMCaNWtITEzks88+o2PHjowYMYJnn32WhQsXYq22N7whOAorKNqk7CX3Gh6JVK0w2p6VSynJz8O7STAdh41UxaxldnatVNa1dLu2GS7VRmLyvvkG65kz6H188H/gAfXrOh3M2jYLm9NGv9B+jGymfm4ASnNh1RTlce/HoYn2PT5yoYB3Nil9eHZUO7wtJk0bQRAEoW4Eerow89o2ALy69iRJWcXaRuE9oHvlZ8B3E6FCu3j15lY30zmoM2X2Mp7Z/oxmZCTgP4+is1goP3yYwh9+UMXcvMx0HqYUctuxLAl7tfouXa8bg5uPLwWZGST89J0qpjMb8BoaCSg1xJw1nRBdTxpsjcqOHTto3749Qb85HXjYsGEUFhZy9OjRWq+rqKigsLBQ9VUXClafQ7Y5MUV44tpefahfUU42e79TFsH2vf0e9AZ1IrJ/9TnKimx4B1lo21e9bsVRVET2W/8FwP+RCeirHXj49cmvOZR9CHejOzN71HzeDz9Nh5IsCGgNfadowjaHkyeWHMLhlBnZPpjh7Zpc8f0LgiAIf87YzqH0bRmA1e5k+tJDOJ01LEwdOBO8w6EgBdbN0YR1ko458XMw683sTN/J92fUi28N/v74/VvZ7Zn56ms4y8tV8Q6Dw3HzNlOUW86hn9WF3IwuLvS+ZRwAO5d9RWmhei2LpUsQxiYW5DI7hetTrvj+r5YGS1QuXryoSlKAqj9fvHixpksAeOGFF/Dy8qr6CgsLq7Xtn+HWNQhjmAdeI5tpkoWtiz/Bbq2gaeu2RHfrqYoV5ZaTsD4VgJ6jo9BXO5U45//+D0deHqbmzfG5+WZVrNBaWHUg1WOdHiPITf3+AHByDRz6CiSdMuVjMGuavLspicT0QrwtRp65vu0V37sgCILw50mSxPOj2+Fm0rMnOY9Pd57TNjK7w3VvKo/3vAfntmuaRHhG8GCHBwFlCqj6Ccu+d4/HEByMPT2d3I/V25mNJj09blCKwO37MZmyIvWMRZt+AwmIaEZFaQk7l6rXwUg6Ca+RzTFFemLpqK7GXp+uKFGZPn06kiRd8uv48RoOZbqKnnzySQoKCqq+UlNT6+R1zJFeBD7cAXO4esQj48xpEjf/DFQWd6uWxOz8NgmHzUnTlt4066AeibGev0DuR8q+9cCpU5CM6pGY9w69R35FPlFeUYxtqT31mPJCpWYKKOWYQ7Xn/ZzKKOLN9coi3meua0uAhzaREQRBEOpHqI+F6SNaAzD/p+Ok5pZqG0UNgDhlZIMVj4CtTNNkXJtxhLiFkFmaySdH1cmIzsWFwMeVtSw5776LPTtbFW/VrQkB4R5Yyx3s/l69Xkan09Nv3H0AHFy7itw09aiLSwsfAh6IxRSmXodZn64oUZk8eTLHjh275FfzGk79rUmTJk3IyFBXxfvlz02a1D5VYTab8fT0VH3VlepJiCzLbPz0fQBievenSbR6O3BGciEnd2eABL3GttAWd3v1VWSbDUuPHrj376+KpRalVpXJn9xlMgZdDduI186Cwgvg0wwGPK0JO5wyU5ccwupwMrB1IKM6ag8lFARBEOrXHd0j6NbMl1KrgyeXHa65NsnQ58AjGHKTYOMLmrBZb2Zi54kAfHDkA7LL1MmI58iRuLRrp5wdV7m84BeSTqLXWKUI3NEtaeSmq8/5iWjfkeaduuJ0ONj8+SLNa9e4BKEeXVGiEhAQQOvWrS/5ZTJd3qLNnj17cvjwYTIzf12JvHbtWjw9PWnTps2V3UU9Sdq7i/OJRzAYTfS+TX3onyzLbFtyCoBW3ZXs9bfKEhIoXLUKJImgGoq7vb7vdWxOG/Eh8fRu2lv74mc3K+f5gLJS3GTRNFm07SwJqfl4mA3MG92uwX+4BEEQBNDpJOaPicVs0LH1dDbf7K3h0D9Xb7hWOZyW7W/BhX2aJsMjhxMbEEuZvYz/HqiejOgImj4NgPxvvqHi1ClVvGlLH5p18Ed2ymxfpi1E1/fOe5F0OpL27iLlyKE/dqN1pM7WqKSkpJCQkEBKSgoOh4OEhAQSEhIoLlZWPg8dOpQ2bdowbtw4Dh48yOrVq5kxYwYTJkzAbG580xUOu43NnytVYjtfewOe/ur5ujMJWaSfLsBg1NFjlHpUSZZlMl6cD4DX6NG4xKi3CidkJrDm3Bp0ko7JXSZrEwxrCaxUznagy70QqU1kzuWUsGCNUmHwqZExBHu5/uF7FQRBEK6uZv5uTB6qjMI/+0MiGYXl2katRkC7sSA7YcWjYFevJ5EkialdlKNUlp9ezsk89eGHli5d8BgyBJxOMipLYPxW/I3R6HQS5w7nkHo8VxXzaxpGhyEjANj06Qearc4Nqc4SlVmzZhEXF8fs2bMpLi4mLi6OuLg49lYWpdHr9Xz//ffo9Xp69uzJnXfeyV133cXcuXPrqkt/ysG1P5KXnobFy5tuo9TrRxx2J9uXKWWKOw4Jx93HRRUvWr2asoQEJFdXAh57TBWTZZmX9yg/UKOjR9PSR1tdlp/nQV4yeIbCYO2qcKdTZvrSw5TbnMRH+VUdNy4IgiA0Hvf2akaHUC+Kyu08vfxIzVNAI+aDxQ8yj8LWVzXhjoEdGRoxFKfsZMGeBZrnCJwyGYxGSrZsoXjLVlXMO8hCu37KTtRtS05rdiH1HHs7JlcLmclJJG7Z8Cfv9uqps0Tlo48+QpZlzVf/36zNiIiIYNWqVZSWlpKVlcWCBQswGBpfiffy4mJ2LPkSgF4334nJVT3tcnjjeQqzyrB4mogbGq6KOa1WMhe8AoDfffdhDFKPxPyU/BOHsg/hanDlkbhHtC+euht2KjuBuO51cNGuyflyTwo7zuTgatTz4o2xYspHEAShETLodbw0tgNGvcS6Yxl8d6iGQmpu/nBN5WjI5pchQ1uuY2LniRh1Rnak72DrBXUyYoqIwPf22wHIfOklZEe12ikjm2G2GMg5X8zxHerXt3h60ePGWwBld6utvIZRnwYgzvq5DDuXLaa8uAi/0HDaDRiiipWX2Ni7KhmA7qOaY3JRJ1p5n36G7fx5DIGB+N17jypW4ajg9X2vA3Bfu/vwd1XvEsJeoawAR4YOt0EL9WsDpOWX8cIqZafVlGGtCPfTrl0RBEEQGodWTTyYMEBZ2PrMyqPkFFdoG7W9EVqNBKcdVkwAh/pomTCPMO6IuQOAV/a+gt2pjvs/9CA6Ly8qTp0if+lSVczF3UiXayIB2LXyDNZy9bVxw6/DMyCI4twc9n6//M/c6lUjEpXfkX8xnQM/KQV2+o27D51er4rv/SGZilI7fk3dad0zWBWz5+WR/Y5SCj9g4kR0FnUS8VniZ6SVpBFoCeSuturFuQBsegmyT4BbIAx7XhOWZZmnlx+muMJOp3Bv7o6P/BN3KgiCINSHh/tH07qJB7klVuZ8l6htIEkw8hUwe0HaAdi5UNPk/tj78TZ7k1SQxLJTy1Qxvbc3ARMeBiDrzbdwFKt3+bTvF4qnvwulBVYS1qoLuRlMJvrcPh6A3SuXUJz7Nz6U8O9i8xeLcDrsRHboRLOOnVWx/IxSDm9UVm/3GqssUvqt7P8uxFlUhDkmBq8bRqliueW5vH9Y2eo8sdNEXA3VFr+mH4StlSvAR74CFl9N375NuMCGE1mY9DpeGhuLXiemfARBEBo7k0H5P1snwcqDaaxNzNA28gyG4ZW/oG54HrLVO3U8TZ481EE5S29hwkKKreoS/T633ooxIhxHdjY577+niumNOuJvVEZ1DqxJoThPParTqmcfglu0wl5RwbbKM+0akkhULuH88aOc2rUdSdLR7857NfEdy5NwOmUi2vkRFqNOJCrOnCXvq68AlO3IOvVb/XbC2xTbimnj14aRzaud5+OwKcN9sgPajII212teO6uooioTf2xwC6IDG64YjyAIgnBlYkO9ub+vskP06eWHKSir4SydjndA1ECwl8PKR6DaTpybWt1EpGckueW5fHDkA1VMMpkInKIcsZK76CNs6er1KM3jAgiO9sJuc7JrZZL6Wkmi/13/AuDIxnVkJp/5U/f6Z4lEpRay08mmT5W/+PYDh+IfHqmKXziZx5mELCSdVJWZ/lbmggVgt+M+YABuPXqoYmfyz7Dk5BIApnSZgk6q9tew7Q24eBhcfeCaBTX2b/bKI+SX2mgb4sm/+15ekT1BEASh8Zg0uCXN/d3ILKrg+R+OaRtIElz7OhjdIGUH7FUnI0adkcldJgPwydFPSCtOU8U9Bg/G0qULckUFWa+/Xu2pJXqNaQHA8Z0XyUpRH4gY0jKGVj37gCwr25Vr2qFUT0SiUovj2zdz8fRJjC6uxN98hyomO2W2LVGG4dr2DsE3xE0VL9m5i+Kffwa9nsCp2kMDX9n3Cg7ZwcCwgXRt0lUdzDoJm5SaKwx/Edy15yv8eDidVYcvYtBJvDQ2FqNe/DUKgiD81bgY9cwfG4skwVd7U9lyKkvbyCcCBj+jPF47G/LVa0r6hfajW5NuWJ1W3tj/hiomSRKB05QicAUrVlJ2+IgqHtTMkxZdg0CGbUtPaZKRPrePR28wkHLkIGcP7P1zN/sniE+4WpxPVP5Cu40ai5u3jyp2ck8GWSlFGF30dL22mSomOxxkzFcSDZ9bbsFc7UiBHWk72Hx+MwbJwKTOk7QvvPpJcFghegjE3qIJ55damblC2a72YL8o2oZ4/eF7FARBEBpW10hf7uoRAcD0pYcpqbDX0OhfEN4TbCVKsvIbkiQxpcsUJCRWnV3F4azDqrhr+3Z4Xn8dAJnz52uSkR43NEdv0HHhRD7Jh9ULZ70CmxA3Qll6kJqoft76JBKVWgz59yOMnfEcnUeqF8HarA52fqvM53UeHoHFU31kQMGKlVQcO4bOwwP/RyaoYg6ngwV7lamcW1vfSqRXpPpFT69TvnRGuOYlZdivmrnfJ5JdXEF0oDuPDtJOOQmCIAh/LU8Mb01Tb1cu5Jfx8uoT2gY6XWVtFQmOLlPqa/1GjF8M10cpCcXLe1/WFoGbNAnJbKZ0716K1q1TxTz9XOkwSCkSun3paRwO9TqYHjfewi2zX6xxnWZ9EYnKJUS074jRrK4ye3BdKsV5FXj4ulT95f7CWVpaNQ/o/+ADGHzVC2xXJq3kZN5JPEweVUd2/3qxA9bMVB53+zf4atedbDiRybL9F5AkeGlsLGaDXtNGEARB+GtxMxt4cUx7AD7ekcze5FxtoybtIa5yGcLqp6BaMvJo3KO4Glw5kHmAdSnqZMQYHIzvPXcDyvpJ2aouzd95eASuHkbyM0o5ulm9zsVscSO0Tbs/cXd/nkhUrkBJQQX7V58DoMfo5hiM6kQhZ9Ei7JmZGEND8bnzTlWs1FbKmwfeBOCB2AfwMlebsjnwKWQmKgto+03VvHZRuY2nlylDb/f2akancB9NG0EQBOGvqU+LAG7uEooswxNLDlFuc2gbDZihLKw9vweOqouxBbkFMb6tUv/k1b2vYnWokxG/f92P3t8f27kU8hYvVsVMrga6Xaf8crzn+7NUlNawA6kBiUTlCuz+7iy2CoeyAKlLkCpmy8gk531lRXbg5MfRVTtYcdHRRWSXZRPmEcZtrW9TP3FFEfz8nPK43zQlWanmxR+Pk1ZQTrivhSlDW129mxIEQRAahadHtiHQw8yZ7BJeX3dK28AzGHpVnhe3bjbY1CXu72l7DwGuAZwvPs+Xx79UxfTubgT8RzncNmvh2zjy81XxNr2C8Ql2U6qt/3juqt3T1SASlcuUc6GYY9uUIbFeY1toztPJevMN5LIyXDt2xGP4cFUsoySDj458BMCkzpMw6dXrWtj6OpRkKdM9Xe7TvPaOpBw+36Ws9H5xTHtcTWLKRxAE4e/Gy9XIvNHKFNB7W85w+HyBtlH8I+ARrOz+2f2uKmQxWng0TklG3j30Lvnl+aq495gxmFu0wFlQQPb/3lHFdHodvcYo6x4PbUilIKvsKt3VnycSlcu0belpZBmiOgUQHKWetik/fpyCZcowXND0aZok5s0Db1LuKKdTYCcGhw9WP3HBedjxX+XxkGfBoE5iyqwOpi87BMDt3cOJj6p2HpAgCILwtzGkTRDXdQjB4ZSZuuQgVrt6cSsmNxg0S3m8eQGUZKvC10ddT0uflhRZi3jnkDoZkfT6qu3KuV98gfWceuQkvK0vYTE+OO0yO5ari8A1JJGoXIZzR3NITcxFZ5DoOTpKFZNlWdmOLMt4XjMC144dVfFjOcf4Luk7QCnupjnZeP1cpepgRC9oXa1CLfDq2hOcyykl2MuFJ0e0vqr3JQiCIDQ+z1zXBl83E8cvFvHOphoShthboUksVBTCxhdVIb1Oz5QuSv2ur45/RXJBsiru3rsXbn36gM1G5oJXVDFJkipnDCBpfybpSTWM6DQAkaj8DqfDyfalSnG32P6heAWoDxYs3rSJ0h07kYxGAh5/XBWTZZkFexcgI3NNs2toH9Be/eQX9sMhpcw+w+ZptiMfSMnjg61nAXh+dHs8XIxX8c4EQRCExsjP3cwz17cF4K2fT3HiorpqLDqd8pkBsPdDpVDob/QM6Unf0L7YZTuv7XtN8/xBT0wFnY6itWsp3asu5ObX1J2YeOWA3W1LtEXgGoJIVH5H4rZ0ctNKMLsZ6DwiUhWTbTYyX3oZAN/xd2EKDVXFN6ZuZPfF3Zj1ZiZ2mqh+YlmG1U8rj2NvhZA4VbjC7uCJJYdwynBjXFMGtNZWqBUEQRD+nq6LDWZwTBA2h8wTSw/hcFZLGJr1hVbXKGfCrZ2puX5y58noJT0/p/7Mnot7VDFzixZ433QTABkvzkeudoZQt+ubYzDryThbyOm9mVf3xv4AkahcgrXMzu7vlMOYul3bDBc39YhG3jffYD1zBr2PD34PPKCK2Zw2Xt33KgDj2owj2D1Y/eTHv4eU7WBwgUHaH7KFP5/mVGYx/u4mZl7b5irelSAIgtDYSZLEvNHt8HAxcDA1nw8rR9dVhswFnQFO/gRnNqlCzb2bM7blWABe3vMyTlmdjAQ8+gg6i4XyI0co/OEHVczNy0znYeGAcviuvaat0vVIJCqXsH/1OcqKbHgHWWjbt6kq5igqIvstZRGs/yMT0HuoTy/++sTXJBcm4+viy33tqu3ksVthbeViqPhHwUs9EpOYVsjbG5V5ybmj2uHjVm2XkCAIgvC3F+TpwoyRMQAsWHOCs9kl6gb+LX7dKbrmaaVw6G883PFh3I3uHMs9xvdnvlfFDP7++P373wBkvvoaznL1VucOg8Nx8zZTlFvOoZ/PX8W7unIiUalFUW45CetTAYi/MQp9tYP/ct59F0deHqbmzfG5+WZVrNBayDsHldXWEzpOwN3krn7yPe9D7hlwC/x1T3wlu8PJE0sPYnfKjGjXhGvaVxuJEQRBEP4xbu4SRu9ofyrsTqYtPYSz+hRQv2lg9oKLh+GgunaKr4sv98feD8Ab+9+gzK7ecux793gMwcHY09PJ/ehjVcxo0tPzBqUI3L4fkykrUheQq08iUanFzm+TcNicNG3pTWSsekuw9fwFcj/+BIDAqVOQjOopofcOvUd+RT5RXlHc2OJG9ROX5v56OvLAp8GsHon5aHsyRy4U4uVqZM6otlf3pgRBEIS/FEmSeOHG9lhMenafzeWbfanqBm5+0FfZ5cP6Z8GqHnW5I+YOQtxCyCzN5JOjn6hiOhcXAh9XDsfN+b//w56t3urcslsTAsI9sJY72P19DVNP9UQkKrXoODicpq18ai7u9uqryDYblp49cO/fXxVLLUrl82OfAzC5y2QMOoP6iTe/DOX5ENgW4sapQnklVt5cr1QjfOqa1gR6qM8ZEgRBEP55wnwtPD6kJQAL1pzUnrDc/QHwjoDii7DtTVXIrDczsfNEAD448gFZpVmquOfIkbi0b6+cVVe5nOEXkk6i19howtv60q7a8of6JBKVWgSEe3DDpDgCwtUjHmUJCRSuWgWSRNA0bXG31/e9js1pIz4knt5Ne6ufNCcJdr+nPB76LOjUFWbfWH+KwnI7McGejO2sPvBQEARB+Oe6q2ckkX4WsooqeLd6bRWDGYbMUR5vfxMK01Xh4ZHDiQ2IpcxexsKEhaqYpNMRNF0pApf/zTeUn1RvdW7a0ofrHu2IX9NqSxjqkUhUroAsy2S8qEzbeI0ejUtrdQG2hMwE1pxbg07SMbnLZG1xt3WzwWmD6MEQPUgVOpNVzGc7lSqBM0bGoNdVu1YQBEH4xzIZdEyvLPr5f1vOkF5QrcR9mxsgrDvYSn89O66SJElM7aIcdrv89HJO5J5QxS2dO+MxZAg4nWS+vKDO7uGPEonKFShavZqyhAQkV1cCHlMvgpVlmZf3KDVVRkePpqVPS/XFydvg2Hcg6WCo+ocI4IUfj2N3ygxqHUivaFEmXxAEQVAb1rYJ3SJ9Kbc5eXm1OtlAkmBoZRG4hM8h/ZAq3DGwI8Mih+GUnbyy9xVNIbfAKZPBaKRkyxaKt2yty9u4YiJRuUxOq7Wq3LDfffdhDFIXYPsp+ScOZR/CYrDwSNwj1S52KlvHADqNh8AYVXhHUg5rEzPQ6ySevEYdEwRBEARQRkZmXKt8Rizbf0F7aGFYV2g3BpCVz5xqycjEThMx6ozsSN/B1gvqZMQUEYHv7bcDkPnSS8iOhq2d8lsiUblMeZ9+hu38eQyBgfjde48qVuGo4PV9rwNwb7t78XetNiJyZAmkHQCTBwx4ShVyOmXmrUoE4PZu4UQHNtw8oCAIgtC4xYZ6c0PHEACe+yFRW+J+0GzQm+HsZji5WhUK9Qjljpg7AFiwdwF2p3pRrv9DD6Lz8qLi1Cnyly6tu5u4QiJRuQz2vDyy31HqogRMnIjOoj7v57PEz0grSSPIEsRdbe9SX2wrg3WVi5z6TAJ39UjM8gMXOHKhEA+zgYmDW9TZPQiCIAh/D1OHt8Zs0LHrbC5rEzPUQZ8I6PGQ8njNDHDYVOH7Y+/H2+zNmYIzLDu1TBXTe3sTMOFhALLeeBNHcbUCcw1EJCqXIfu/C3EWFWGOicHrhlGqWE5ZDu8ffh+Axzo9hqvBVX3xjoVQeB68wqDHw6pQmdVRNc84YWA0fu7mursJQRAE4W+hqbcr/+rTDFDWN1rt6vL49HkcLH6Qcwr2faQKeZo8eaiDksgsTFhIsbVYFfe59VaMEeE4cnLIef+9OruHKyESld9RceYMeYsXAxA07Qkknfot+9/B/1FsK6aNXxtGNh+pvrg4E7ZWnlw5aDYY1UnMe1vOcLGwnFAfV+6Oj6yrWxAEQRD+Zh7qH42/u4mz2SV8vuucOuji9esyg40vQFm+KnxTq5uI9Iwktzy36hftX0gmE0FTlR1CuYs+wpau3urcEESi8jsyX14ADgfuAwbg1qOHKnYm/wxLTi4BYEqXKeikam/nhnlgLYaQTpULnH7zvIXlvFO5F37a8Na4GNU1VQRBEAShNu5mA48PaQUoNbgKStVTPHS6G/xbQWkObHlFFTLqjEzuMhmATxM/Ja04Tf3cgwZh6dIFuaKCzNdeq7N7uFwiUbmEkp27KN6wAfR6AqdO0cRf2fcKDtnBwLCBdG3SVR3MSIT9leWKhz0P1UZiXllzklKrg7hwb66NFef5CIIgCFfm5i6htAxyJ7/Uxls/n1IH9QalsCjArncgL1kV7hfaj25NumF1Wnlj/xuqmCRJBE5TisAVrvyOssNH6uoWLotIVGohOxxkzFeKu/nceivm5s1V8R1pO9h8fjMGycDjXR7XPsGaGSA7IeZ6iOipCh1LL+TryvMaZoxsoy0MJwiCIAi/w6DX8fTINgB8vCOZcznVFr+2GArN+4PDCuueUYUkSWJKlylISKw6u4rDWYdVcdf27fAadT0AmfPna3cX1SORqNSiYMVKKo4dQ+fhgf8jE1Qxh9PBgr1K9b5bW99KhGeE+uLT6yBpPeiMv5Y1riTLMvN+OIYsw8jYYDpH+NTpfQiCIAh/X/1aBtC3ZQA2h8z8n46rg5JUWWBUgqPLIXW3KhzjF8P1UUoy8vLelzXJSMDEiUhmM6V791K0bl1d3sYliUSlFuWJSm0T/wcfwOCjTiZWJq3kZN5JPEwePNjhQfWFDjusnqE87v4A+KpHYjaeyGLr6WxMeh3Th6tL8AuCIAjClXr6mhh0Eqw6fJE9ybnqYJP2EHen8nj1U5oicI/GPYqrwZUDmQdYl6JORozBwfjeczcA5UeO1lX3f5dIVGrRZMbTRHz5BT533qn6fqmtlDcPKKdTPhj7IF5mL/WFBz6FrGPg6vPr0duV7A4n81YdA+CeXpGE+arrsQiCIAjClWrVxINbuoYD8NwPx3A6q03TDJwBRjc4vweOqmunBLkFcXfbuwF4de+rWB1WVdzvX/cT+c03BE6aWFfd/10iUbkES1wcOrO6tsmio4vILssmzCOM21rfpr6gokjZ6QPQb5qSrPzG4j2pnM4sxsdi5OEB0XXZdUEQBOEf5PEhLXEz6TmYms93h9S7ePBoAr0qz6db9wzYylXhu9veTYBrAOeLz/Pl8S9VMb27G67t29Vhz3+fSFSuwMWSi3x05CMAJnWehFFvVDfY+jqUZIFvFHS5TxUqKrfx2lrl+OxJQ1ri5VrtWkEQBEH4gwI8zFW/AL/00wnKbdXO6ol/BDxCID8Fdr+rClmMFh6NexSAdw+9S355fn10+bKJROUKvHXgLcod5XQK7MTg8MHqYMF52PFf5fGQuWAwqcJvb0wip8RK8wA3busWXk89FgRBEP4p7uvdjBAvFy7kl/HhtrPqoMkNBs1UHm9eACXZqvD1UdfTyqcVRdYi3jn0Tj31+PKIROUyJeYk8l3SdwBM7TpVu6V4/Vywl0NEL2itrlB7Pq+UD7YqPzRPjYjBqBdvuyAIgnB1uRj1TB2uFIF7e0MS2cUV6gaxt0KTWKgohI0vqkJ6nZ4pXZV1lV8d/4rkguT66PJlEZ+Yl0GWZRbsXYCMzDXNrqGdf7X5ugv74NBXyuNh85QtYb/x0k8nsNqdxEf5MShGfSihIAiCIFwtozo0JTbUi+IKe9Vygyo6nfIZBbD3Q8g6oQr3CO5B39C+2GU7r+57tZ56/PtEonIZNqZuZM/FPZj1ZiZ2mqgOyvKv25Fjb4WQOFX4QEoeKw+mIUnw9MgYUdxNEARBqDM6ncSMyiJwX+5O4WRGkbpBs77Q6hqQHbB2lub6yZ0no5f0bEjdwJ6Le+qjy79LJCq/w+a0VWWW49qMI9i9Wrn7499DynYwuP46/1dJlmWe+0HZjjymUyhtQ6ptZRYEQRCEq6xbM1+GtQ3CKcPzlSUxVIbMBZ0BTv4EZzaqQs29mzO25VgAXt7zMk7Zqb2+nolE5Xd8feJrkguT8XXx5b526p082K2/ZqTxj4BXqCr845GL7DuXh6tRz5Shreqpx4IgCMI/3fQRMRj1EhtPZLHlVJY66N/i152pq2eAU71D6OGOD+NudOdY7jG+P/N9PfW4diJRuYSCigLeOaisfp7QcQLuJnd1gz3vQ+4ZcAv8dY96pQq7gxd/VMoZ/7tvc5p4udRLnwVBEAShmb8b43pEAjDvh2M4qheB6zcNzF6QcRgOqmun+Lr4cn/s/QC8sf8Nyuxl9dHlWolE5RLeO/Qe+RX5RHlFcWOLG9XB0lzYpBxayMAZYPZQhT/Zfo6U3FICPcw80E9dRl8QBEEQ6tp/BkXj5Wrk+MUivtmbqg66+UG/qcrj9c+CVX2g4R0xdxDiFkJmaSYfH/24nnpcM5Go1CK1KJUvjn8BwJSuUzDoDOoGm1+G8nwIbPvrOQqV8kqsVUduTxnWCoup2rWCIAiCUMe8LSb+M6gFAK+sPUlJhV3doNu/wScSii/CtjdVIbPezKTOkwD48MiHZJVWmz6qRyJRqcWb+9/E5rQRHxJP76a91cGcJNj9nvJ46LOg06vCb6w/RWG5nZhgT8Z0Uq9bEQRBEIT6Mq5HBJF+FrKKKnh3U5I6aDDD4GeUx9vfhEJ16f1hkcOIDYilzF7GwoSF9dPhGohEpRYPdniQ/qH9mdxlsja4dhY4bRA9BKIHqUJnsor5bOc5AGaMjEGvE9uRBUEQhIZhMuiYPiIGgP/bcob0gmrrTdrcAGHdwVYKPz+nCkmSxNQuUxkSMYR7291bTz3WEolKLaK8o3hr0Fu09GmpDiRvU7YkSzplNKWaF348jt0pM6h1IL2i/eupt4IgCIJQs2Ftg+gW6Uu5zcnLq9VF3pAkGPa88jjhC0g/pAp3DOzIq/1fJdyz4Y5+EYnKlXA6Yc3TyuNO4yEwRhXekZTD2sQM9DqJJ6+JqeEJBEEQBKF+SZLEjGuVz6Rl+y9w+HyBukFoF2g3BpCVzzhZ1j5JAxKJypU4/A2kHQCTBwx4ShVyOmXmrUoE4I7u4UQHutf0DIIgCIJQ72JDvRkd1xSA535IRK6ejAyaDXoznN2sFIJrRESicrlsZcrBgwB9JoG7+sye5QcucORCIR5mA49VrrIWBEEQhMZi6rBWmA06dp3NZW1ihjroEwE9HlIer5kJDlv9d7AWIlG5XDsWQuF58AqDHg+rQmVWR9W834SB0fi5mxuih4IgCIJQqxBvV/7VpxmgrKe02quVx+/zOFj8IecU7Puo/jtYC5GoXI6iDNj6mvJ40GwwuqrC7205w8XCckJ9XLk7PrL++ycIgiAIl+Gh/tH4u5s4m13C57vOqYMuXjDgSeXxhuehLL/e+1cTkahcjo3Pg7UYQjpVLjj6VWZhOe9U7k2fNrw1LkZ9Tc8gCIIgCA3O3Wzg8SHK2XNvrD9FQWm1KZ5Od4N/KyjLhS2v1H8HayASld+TkQj7P1EeD3sedOq37JU1Jym1OogL9+ba2OAankAQBEEQGo+bu4TSKsiD/FJbVRX1KnoDDK2sp7LrHchLrvf+VVdnicq8efOIj4/HYrHg7e1dYxtJkjRfixcvrqsu/TFrZoDshJjrIaKnKpSYVsjX+5TzE2aMbIMkieJugiAIQuNm0Ot4aqSyXfnjHcmcy1Gf80OLIdC8PzissO6Zeu9fdXWWqFitVm666SYeeuihS7ZbtGgR6enpVV833HBDXXXpyp1aB0nrQWeEIXNUIVmWeX7VMWQZRsYG0znCp4E6KQiCIAhXpl/LAPq2DMDmkHnxx+PqoCRVjqpIcHQ5pO5ukD7+os4SlTlz5jBp0iTat29/yXbe3t40adKk6svFxaWuunRlHHZlNAWg+wPgqz4BeeOJLLaezsak1zF9eOsG6KAgCIIg/HFPXxODToIfj1xkT3KuOtik/a8H7q5+qkGLwDX4GpUJEybg7+9Pt27d+PDDD7VFaKqpqKigsLBQ9VUnDnwKWcfA1Qf6TlGF7A4n81YdA+CeXpGE+Vrqpg+CIAiCUEdaNfHglq5KafznfjiG01nt83fgDDC6wfk9cHRZA/RQ0aCJyty5c/n6669Zu3YtY8aM4eGHH+att9665DUvvPACXl5eVV9hYWF107ncJECCftOVZOU3vtyTyunMYnwsRh4eEF03ry8IgiAIdezxIS1xM+k5mJrPd4fUpyfj0QR6T1TOtss+3SD9A5Dk3xvC+I3p06czf/78S7Y5duwYrVv/OhXy0UcfMXHiRPLz83/3+WfNmsWiRYtITU2ttU1FRQUVFRVVfy4sLCQsLIyCggI8PT1//yauRPohCGgNBlPVt4rKbfR/eSM5JVbmjmrLXT0jr+5rCoIgCEI9WrjhNC+vPkFTb1fWT+6nLrNhLYX8c5qz7a6GwsJCvLy8fvfz23AlTzp58mTuvvvuS7Zp3rz5JeOX0r17d5599lkqKiowm2uu7mo2m2uNXXXBsZpvvb0xiZwSK80D3LitW8OdJikIgiAIV8N9vZvx+c5zXMgv48NtZ3m4/29mCkyWOklSrsQVJSoBAQEEBATUVV9ISEjAx8en/hKRK5SaW8oHW88CyiIko77Bl/gIgiAIwp/iYtTzxPDWTPwqgbc3JHFzlzD8G9FRMFeUqFyJlJQUcnNzSUlJweFwkJCQAEB0dDTu7u589913ZGRk0KNHD1xcXFi7di3PP/88U6ZMufQTN6CXV5/AancSH+XHwNaBv3+BIAiCIPwFXN8hhA+3neXQ+QJeW3uSeaMvvWO3PtVZojJr1iw+/vjjqj/HxcUBsGHDBvr374/RaGThwoVMmjQJWZaJjo7m1Vdf5f7776+rLv0pB1LyWHkwDUmCp0fGiOJugiAIwt+GTicxY2Qbbn53B1/uTmF8fCQtgzwaulvAFS6mbYwudzHOnyHLMmPf2cG+c3nc1DmUl2/qUCevIwiCIAgN6cFP9/HT0Yv0bxXAR/d0q9PXutzPb7HI4jL8eOQi+87l4WrUM2VYq4bujiAIgiDUiekjWmPUS2w8kcXmk1kN3R1AJCq/q8Lu4IUfleJu/+7bnCDPRlI5VxAEQRCuskh/N8b1iATg+VXHcFQvAtcARKLyOz7Zfo7U3DICPcw80O+Pb70WBEEQhL+C/wyKxsvVyPGLRXyzt/a6ZvVFJCqXkFti5c3KI7CnDGuFxVRna48FQRAEoVHwtpj4z6AWALyy9iTFFfYG7Y9IVC7hzfWnKCq30ybYkzGdQhu6O4IgCIJQL8b1iCDSz0JWUQXvbkpq0L6IRKUWZ7KK+WznOQBmjIxBrxPbkQVBEIR/BpNBx/QRSkXa97acIb2grMH6IhKVWry8+gR2p8yg1oHER/s3dHcEQRAEoV4NaxtEt0hfym1OXlt7ssH6IRZd1OLJETEY9Doeq5ynEwRBEIR/EkmSmHFtDB9tT2bSkJYN1w9R8E0QBEEQhPomCr4JgiAIgvCXJxIVQRAEQRAaLZGoCIIgCILQaIlERRAEQRCERkskKoIgCIIgNFoiUREEQRAEodESiYogCIIgCI2WSFQEQRAEQWi0RKIiCIIgCEKjJRIVQRAEQRAaLZGoCIIgCILQaIlERRAEQRCERkskKoIgCIIgNFqGhu7An/XL4c+FhYUN3BNBEARBEC7XL5/bv3yO1+Yvn6gUFRUBEBYW1sA9EQRBEAThShUVFeHl5VVrXJJ/L5Vp5JxOJ2lpaXh4eCBJ0lV97sLCQsLCwkhNTcXT0/OqPndjIO7vr+/vfo/i/v76/u73KO7vj5NlmaKiIkJCQtDpal+J8pcfUdHpdISGhtbpa3h6ev4tfwB/Ie7vr+/vfo/i/v76/u73KO7vj7nUSMovxGJaQRAEQRAaLZGoCIIgCILQaIlE5RLMZjOzZ8/GbDY3dFfqhLi/v76/+z2K+/vr+7vfo7i/uveXX0wrCIIgCMLflxhREQRBEASh0RKJiiAIgiAIjZZIVARBEARBaLREoiIIgiAIQqMlEhVBEARBEBotkahcoYqKCjp27IgkSSQkJDR0d66a66+/nvDwcFxcXAgODmbcuHGkpaU1dLeumuTkZO677z6aNWuGq6srUVFRzJ49G6vV2tBdu2rmzZtHfHw8FosFb2/vhu7On7Zw4UIiIyNxcXGhe/fu7N69u6G7dNVs3ryZ6667jpCQECRJ4ttvv23oLl1VL7zwAl27dsXDw4PAwEBuuOEGTpw40dDduqr+97//ERsbW1WxtWfPnvz4448N3a068+KLLyJJEhMnTqz31xaJyhV64oknCAkJaehuXHUDBgzg66+/5sSJEyxdupSkpCTGjh3b0N26ao4fP47T6eTdd9/l6NGjvPbaa7zzzjs89dRTDd21q8ZqtXLTTTfx0EMPNXRX/rSvvvqKxx9/nNmzZ7N//346dOjAsGHDyMzMbOiuXRUlJSV06NCBhQsXNnRX6sSmTZuYMGECO3fuZO3atdhsNoYOHUpJSUlDd+2qCQ0N5cUXX2Tfvn3s3buXgQMHMmrUKI4ePdrQXbvq9uzZw7vvvktsbGzDdEAWLtuqVavk1q1by0ePHpUB+cCBAw3dpTqzYsUKWZIk2Wq1NnRX6sxLL70kN2vWrKG7cdUtWrRI9vLyauhu/CndunWTJ0yYUPVnh8Mhh4SEyC+88EID9qpuAPLy5csbuht1KjMzUwbkTZs2NXRX6pSPj4/8/vvvN3Q3rqqioiK5RYsW8tq1a+V+/frJjz32WL33QYyoXKaMjAzuv/9+Pv30UywWS0N3p07l5uby+eefEx8fj9FobOju1JmCggJ8fX0buhtCNVarlX379jF48OCq7+l0OgYPHsyOHTsasGfCH1VQUADwt/335nA4WLx4MSUlJfTs2bOhu3NVTZgwgZEjR6r+PdY3kahcBlmWufvuu3nwwQfp0qVLQ3enzkybNg03Nzf8/PxISUlhxYoVDd2lOnP69GneeustHnjggYbuilBNdnY2DoeDoKAg1feDgoK4ePFiA/VK+KOcTicTJ06kV69etGvXrqG7c1UdPnwYd3d3zGYzDz74IMuXL6dNmzYN3a2rZvHixezfv58XXnihQfvxj05Upk+fjiRJl/w6fvw4b731FkVFRTz55JMN3eUrcrn394upU6dy4MAB1qxZg16v56677kJu5CcsXOk9Aly4cIHhw4dz0003cf/99zdQzy/PH7k/QWhMJkyYwJEjR1i8eHFDd+Wqa9WqFQkJCezatYuHHnqI8ePHk5iY2NDduipSU1N57LHH+Pzzz3FxcWnQvvyjz/rJysoiJyfnkm2aN2/OzTffzHfffYckSVXfdzgc6PV67rjjDj7++OO67uofcrn3ZzKZNN8/f/48YWFhbN++vVEPZV7pPaalpdG/f3969OjBRx99hE7XuHP1P/J3+NFHHzFx4kTy8/PruHd1w2q1YrFYWLJkCTfccEPV98ePH09+fv7fbqRPkiSWL1+uute/i0ceeYQVK1awefNmmjVr1tDdqXODBw8mKiqKd999t6G78qd9++23jB49Gr1eX/U9h8OBJEnodDoqKipUsbpkqJdXaaQCAgIICAj43XZvvvkmzz33XNWf09LSGDZsGF999RXdu3evyy7+KZd7fzVxOp2Ash27MbuSe7xw4QIDBgygc+fOLFq0qNEnKfDn/g7/qkwmE507d2b9+vVVH95Op5P169fzyCOPNGznhMsiyzKPPvooy5cvZ+PGjf+IJAWUn9PG/n/m5Ro0aBCHDx9Wfe+ee+6hdevWTJs2rd6SFPiHJyqXKzw8XPVnd3d3AKKioggNDW2ILl1Vu3btYs+ePfTu3RsfHx+SkpKYOXMmUVFRjXo05UpcuHCB/v37ExERwYIFC8jKyqqKNWnSpAF7dvWkpKSQm5tLSkoKDoejqs5PdHR01c/sX8Xjjz/O+PHj6dKlC926deP111+npKSEe+65p6G7dlUUFxdz+vTpqj+fPXuWhIQEfH19Nf/f/BVNmDCBL774ghUrVuDh4VG1tsjLywtXV9cG7t3V8eSTTzJixAjCw8MpKiriiy++YOPGjaxevbqhu3ZVeHh4aNYU/bKGsd7XGtX7PqO/gbNnz/6tticfOnRIHjBggOzr6yubzWY5MjJSfvDBB+Xz5883dNeumkWLFslAjV9/F+PHj6/x/jZs2NDQXftD3nrrLTk8PFw2mUxyt27d5J07dzZ0l66aDRs21Ph3NX78+Ibu2lVR27+1RYsWNXTXrpp7771XjoiIkE0mkxwQECAPGjRIXrNmTUN3q0411Pbkf/QaFUEQBEEQGrfGP0kvCIIgCMI/lkhUBEEQBEFotESiIgiCIAhCoyUSFUEQBEEQGi2RqAiCIAiC0GiJREUQBEEQhEZLJCqCIAiCIDRaIlERBEEQBKHREomKIAiCIAiNlkhUBEEQBEFotESiIgiCIAhCo/X/iT3XKhL2IXkAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import time\n", + "from IPython import display\n", + "\n", + "x = np.linspace(-4,4,16)\n", + "fig, ax = plt.subplots()\n", + "cvalue = \"c = \"\n", + "\n", + "for c in range(10):\n", + " y = -x**2+c\n", + " plt.plot(x,y)\n", + " cvalue = \"c = \", c\n", + " ax.set_title(cvalue)\n", + " display.display(plt.gcf())\n", + " time.sleep(0.5)\n", + " display.clear_output(wait=True)\n", + "\n", + "# Just run this code\n", + "import math_code_test_b as test\n", + "test.step01()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "vteEy9QFGD5I" + }, + "source": [ + "# Step 21 - The Quadratic Formula" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "xALyhEsNGD5J" + }, + "source": [ + "For a projectile, you also need to find the point when it hits the ground. On a graph, you would call these points the \"roots\" or \"x intercepts\" or \"zeros\" (because y = 0 at these points). The quadratic formula gives you the x value when y = 0. Given `a`,`b` and `c`, here is the quadratic formula:
x = $\\frac{-b \\pm \\sqrt{b^2 - 4ac}}{2a}$ Notice it's the vertex plus or minus something: $\\frac{-b}{2a} + \\frac{\\sqrt{b^2 - 4ac}}{2a}$ and $\\frac{-b}{2a} - \\frac{\\sqrt{b^2 - 4ac}}{2a}$
\n", + "Write the code to output two x values, given a, b, and c as input. Use `math.sqrt()` for the square root." + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": { + "id": "R3OIh1pOGD5K" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0 = ax² + bx + c\n" + ] + }, + { + "name": "stdin", + "output_type": "stream", + "text": [ + "a = -2\n", + "b = 26\n", + "c = 20\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The roots are -0.7284161474004804 and 13.72841614740048\n", + " \n", + "Code test passed\n", + "Go on to the next step\n" + ] + } + ], + "source": [ + "import math\n", + "\n", + "# \\u00b2 prints 2 as an exponent\n", + "print(\"0 = ax\\u00b2 + bx + c\")\n", + "a = float(input(\"a = \"))\n", + "b = float(input(\"b = \"))\n", + "c = float(input(\"c = \"))\n", + "x1 = 0\n", + "x2 = 0\n", + "\n", + "# Check for non-real answers:\n", + "if b**2-4*a*c < 0:\n", + " print(\"No real roots\")\n", + "else:\n", + " # Write your code here, changing x1 and x2\n", + " x1 = (-b + math.sqrt(b**2 - 4*a*c))/(2*a)\n", + " x2 = (-b - math.sqrt(b**2 - 4*a*c))/(2*a)\n", + " print(\"The roots are \", x1, \" and \", x2)\n", + "\n", + "\n", + "\n", + "# Only change code above this line\n", + "import math_code_test_b as test\n", + "test.step21(In[-1].split('# Only change code above this line')[0])" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "VXxx7RCVSs4j" + }, + "source": [ + "# Step 22 - Table of Values" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "9Bd8bgPISiRH" + }, + "source": [ + "In addition to graphing a function, you may need a table of values. This code shows how to make a simple table of (x,y) values. Run the code, then change the title to \"y = 3x + 2\" and change the function in the table." + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "metadata": { + "id": "e4dBSioJGGd3" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAg0AAAGbCAYAAABHz6NXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAq/0lEQVR4nO3dfViUZaLH8d8w6kiKKAohxxCz0kmLwszQMCwPRS1HzcxcMbSstgUL3dzs6lBea7512o7lC7WlUCFp7UmtdtIlTUWEEso2d1HTMNdXNBMVX5vh/LGXnOW46j0wwzPh93Nd/DHPc/Pw+6N79+f93PM8tpqamhoBAABcRJDVAQAAwM8DpQEAABihNAAAACOUBgAAYITSAAAAjFAaAACAEUoDAAAwQmkAAABGKA0AAMAIpQEAABihNABN2IkTJ/Twww+rZ8+eCg0NVevWrRUbG6tXXnlFZ86csTrev7R582b99re/1Q033KCQkBB17NhR99xzj0pLS62OBlzybLx7Ami6Dh06pLvvvlv9+/dXTEyMgoKCtH79euXl5emBBx5Qfn6+1RHP8dRTT2n+/PkaOnSobr75ZlVVVen111/Xjh07tHz5cg0cONDqiMAli9IAXILGjRunOXPmaO/evYqMjPTL30hMTFRMTIxyc3O9+r2ysjJ169ZNrVu3rj32ww8/yOl06pprrtG6det8nBSAKW5PAD722WefyWazacmSJeecy8/Pl81mU3FxsQXJ/k9MTIwk6fDhw5KkyspKhYeHKzExUf/874ht27apVatWGj58eKNl69WrV53CIEnt27dXQkKCysvLGy0HgHM1szoA0NQkJibqiiuu0MKFCzVkyJA65xYuXKiuXbsqPj7+vL/v8Xh06NAho78VGhqq5s2bX3Tc6dOndeTIEZ04cUKlpaV66aWX1LlzZ1111VWSpIiICGVnZ2vYsGGaPXu2nnjiCXk8Ho0ePVohISGaN2+eUR5/2rdvnzp06GB1DOCSRmkAfMxmsyk1NVUvv/yyqqqqFBoaKkk6cOCA/vznP+vZZ5+94O/v3LlTXbp0Mfpbn332mRITEy867oMPPtCIESNqP990001asGCBmjX7v/8JuO+++zRixAg988wzSk5O1rJly1RUVKSlS5eqffv2Rnn8pbCwUMXFxfrP//xPS3MAlzr2NAB+sHnzZjmdTr355pt6+OGHJUlz5szRuHHj9O2339b+C/9fOXnypPF9+169eqldu3YXHbd//3598803Onz4sFauXKmvv/5aL7/8sm655ZY64w4dOqSePXsqPDxcW7du1bBhw/T2229f9PpnzpxRVVVVnWODBg1SdHS0Zs+eXed4WFiYgoLM74xWVlaqV69eatGihb7++utzbl0AaDyUBsBPbr75ZrVu3VqrVq2SpNpbElbvZ5CkadOmafr06fr222/P2Qj5xz/+UcOGDdPll1+uzZs3q23bthe93urVqzVgwACjv11RUVG7p+JiqqurNWDAAG3dulXr1q1Tz549jX4PgH9wewLwkwcffFBPPvmkdu3apVOnTqmkpERz5sy56O+53W4dOHDA6G+EhYWpRYsWXme777779Oyzz2rZsmV67LHH6pxbsWKFJOnHH3/Url27jEpDbGysCgoK6hz7zW9+o8jISE2cOLHOcdNva5w+fVr33nuv/vKXv2jFihUUBiAAUBoAP3nggQc0YcIEvfvuuzpx4oSaN29u9C2Ev//97z7f0/D/nThxQpLOuaWwfPlyvfnmm/rtb3+rhQsXKi0tTZ9//nmdvQ//Srt27c55fkK7du3UsWPHej1XwePx6MEHH9TKlSv13nvv6bbbbvP6GgB8j9IA+EmHDh2UnJysvLw8nTx5UnfddZfR7v/IyMhz/tV+PrGxsRc8f/DgQbVv3142m63O8TfffFPSPzZEnnX48GGNHTtWN998s6ZNm6YBAwYoOTlZ06ZN03PPPWeUx1fGjRunxYsX6/XXX9e9997bqH8bwPlRGgA/evDBB3XfffdJkqZMmWL0Oy1btvTZUw/z8vL02muvafDgwbryyit19OhRrVixQgUFBUpJSdHtt99eO/bJJ5/UDz/8oE8//VR2u1133XWXxo4dqxdeeEGDBg26aEHxlVmzZmnevHmKj4/XZZddpry8vDrnhwwZolatWjVKFgB1sRES8KPTp08rMjJSHo9H+/btU8uWLRv175eWlurFF1/U559/rv3796tZs2bq1q2bUlNTNW7cuNrbDh9++KEGDRqk3//+95owYULt7x89elTXXXed2rZtqw0bNhg9E+Ks+j4RcvTo0XrrrbfOe96bjZQAfIvSAPjRTz/9pKioKKWkpGj+/PlWxwGABuEx0oAfLV26VAcOHNCDDz5odRQAaDBWGgA/+Pzzz/WXv/xFU6ZMUYcOHfTll19aHQkAGoyVBsAPsrOz9fjjjysiIsLoiYoA8HPASgMAADDCSgMAADBCaQAAAEYoDQAAwAilAQAAGKE0AAAAI5QGAABghNIAAACMUBoAAIARSgMAADDSzNcX3Llzpw4ePOjrywIIAKdOnZLD4bA6BgA/6NChg6Kjoy84xqelYefOnXI6nTp+/LgvLwsgQNjtdrndbqtjAPCDyy67TOXl5RcsDj4tDQcPHtTx48eVl5cnp9Ppy0sDsJjL5VJWVhbzG2iCysvLlZqaqoMHDzZeaTjL6XQqLi7OH5cGYJHy8nJJzG/gUsZGSAAAYITSAAAAjFAa4JUDBw4oMjJS06ZNqz22fv16tWjRQitXrrQwGYCGevvtt9W+fXudOnWqzvHBgwdr1KhRFqVCIKE0wCvh4eFasGCBJk+erNLSUh09elSjRo1SRkaG7rjjDqvjAWiAYcOGye1268MPP6w9VllZqT/96U966KGHLEyGQEFpgNfuvvtuPfLIIxo5cqR+9atfqVWrVpo+fbrVsQA0UHBwsH75y18qJyen9lheXp6io6OVmJhoXTAEDEoD6uWll17STz/9pPfff18LFy7kgT9AE/HII4/oz3/+s3bv3i1Jys3N1ejRo2Wz2SxOhkBAaUC9bN++XXv27JHH49GOHTusjgPAR2688UbFxsbq7bffVllZmf76179q9OjRVsdCgPDLcxrQtJ0+fVqpqakaPny4unXrprFjx+qbb75RRESE1dEA+MDYsWM1a9Ys7d69WwMHDtQVV1xhdSQECFYa4LVnn31WVVVVevXVV/X000/rmmuuYZMU0IT88pe/1K5du/TGG28wt1EHpQFeWb16tWbNmqV33nlHbdq0UVBQkN555x0VFhYqOzvb6ngAfCA0NFRDhw5V69atNXjwYKvjIIBwewJeSUxM1JkzZ+oci4mJUVVVlUWJAPjD7t27NXLkSDY5ow5KAwCg1o8//qjVq1dr9erVmjdvntVxEGD8UhpcLlfty20ANA1FRUWSmN9NXWZmpo4dO6bhw4ertLRUpaWlVkdCI6ioqDAaZ6upqanx1R8tLi5WQkKC3G63ry4JIIAEBQXJ4/FYHQOAH9jtdhUWFio+Pv68Y3y60uBwOOR2u5WXlyen0+nLSwOwmMvlUlZWFvMbaILKy8uVmpp60T0sfrk94XQ6FRcX549LA7DI2VsSzG/g0sVXLgEAgBFKA+pl7ty5iomJUcuWLdWnTx998cUXVkcC4CPMb5wPpQFeW7x4sSZMmKDnn39eX375pWJjY3XnnXeqsrLS6mgAGoj5jQuhNMBrL7/8sh555BGNGTNG1157rV577TVddtllWrBggdXRADQQ8xsXQmmAV06fPq2ysjINHDiw9lhQUJAGDhyo4uJiC5MBaCjmNy6G0gCvHDx4UG63W5dffnmd45dffrn27dtnUSoAvsD8xsVQGgAAgBFKA7zSoUMH2e127d+/v87x/fv3KzIy0qJUAHyB+Y2LoTTAKy1atFCvXr20cuXK2mMej0crV6684KNHAQQ+5jcuhrdcwmsTJkxQWlqabrrpJt18882aNWuWqqurNWbMGKujAWgg5jcuhNIArw0fPlwHDhzQc889p3379umGG27Q8uXLz9k8BeDnh/mNC6E0oF4yMjKUkZFhdQwAfsD8xvmwpwEAABjxy0qDy+WqfSMegKahqKhIEvMbaIoqKiqMxtlqampqfPVHi4uLlZCQILfb7atLAgggQUFB8ng8VscA4Ad2u12FhYUX/KaMT1caHA6H3G638vLy5HQ6fXlpABZzuVzKyspifgNNUHl5uVJTU+VwOC44zi+3J5xOp+Li4vxxaQAWOXtLgvkNXLrYCAmvrV27VikpKYqKipLNZtPSpUutjgTARyZPniybzVbnp3v37lbHQoCgNMBr1dXVio2N1dy5c62OAsAPevToob1799b+rFu3zupICBA8pwFeS05OVnJystUxAPhJs2bNeNcE/iVWGgAAdXz77beKiorSlVdeqZEjR2rnzp1WR0KAoDQAAGr16dNHubm5Wr58ubKzs1VRUaGEhAQdPXrU6mgIANyeAADU+udbj9dff7369Omjzp0767333tPDDz9sYTIEAlYaAADn1bZtW11zzTXatm2b1VEQACgNAIDzOnbsmLZv366OHTtaHQUBgNsT8NqxY8fq/KujoqJCGzduVFhYmKKjoy1MBqChnnrqKaWkpKhz587as2ePnn/+edntdo0YMcLqaAgAlAZ4rbS0VAMGDKj9PGHCBElSWlqacnNzLUoFwBd27dqlESNG6IcfflB4eLhuvfVWlZSUKDw83OpoCACUBngtMTFRPnzPGYAAsmjRIqsjIICxpwEAABihNAAAACN+uT3hcrlq34gHoGkoKiqSxPwGmqKKigqjcbYaH96cLi4uVkJCgtxut68uCSCABAUFyePxWB0DgB/Y7XYVFhYqPj7+vGN8utLgcDjkdruVl5cnp9Ppy0sDsJjL5VJWVhbzG2iCysvLlZqaKofDccFxfrk94XQ6FRcX549LA7DI2VsSzG/g0sVGSHht+vTp6t27t0JCQhQREaHBgwdry5YtVscC0EBut1tZWVnq0qWLgoOD1bVrV02ZMoWvWKMWpQFeW7NmjdLT01VSUqKCggKdOXNGSUlJqq6utjoagAaYOXOmsrOzNWfOHJWXl2vmzJl68cUXNXv2bKujIUDwcCd4bfny5XU+5+bmKiIiQmVlZerfv79FqQA01Pr16zVo0CDdc889kqSYmBi9++67+uKLLyxOhkDBSgMarKqqSpIUFhZmcRIADdG3b1+tXLlSW7dulSR9/fXXWrduXZ3XZePSxkoDGsTj8SgzM1P9+vVTz549rY4DoAEmTZqkI0eOqHv37rLb7XK73Zo6dapGjhxpdTQECEoDGiQ9PV2bNm3SunXrrI4CoIHee+89LVy4UPn5+erRo4c2btyozMxMRUVFKS0tzep4CACUBtRbRkaGPv74Y61du1adOnWyOg6ABpo4caImTZqkBx54QJJ03XXX6fvvv9f06dMpDZBEaUA91NTUaNy4cVqyZIlWr16tLl26WB0JgA8cP35cQUF1t7rZ7XaeAopalAZ4LT09Xfn5+Vq2bJlCQkK0b98+SVJoaKiCg4MtTgegvlJSUjR16lRFR0erR48e+uqrr/Tyyy/roYcesjoaAgSlAV7Lzs6WJCUmJtY5npOTo9GjRzd+IAA+MXv2bGVlZenXv/61KisrFRUVpccee0zPPfec1dEQICgN8BpPhwOappCQEM2aNUuzZs2yOgoCFM9pAAAARvyy0uByuWpfbgOgaSgqKpLE/AaaooqKCqNxthofrjUXFxcrISFBbrfbV5cEEECCgoLYSQ80UXa7XYWFhYqPjz/vGJ+uNDgcDrndbuXl5cnpdPry0gAs5nK5lJWVxfwGmqDy8nKlpqbK4XBccJxfbk84nU7FxcX549IALHL2lgTzG7h0sRESAAAYoTTAa9nZ2br++uvVpk0btWnTRvHx8frkk0+sjgWgHtauXauUlBRFRUXJZrNp6dKldc5/8MEHSkpKUvv27WWz2bRx40ZLciIwUBrgtU6dOmnGjBkqKytTaWmpbr/9dg0aNEh//etfrY4GwEvV1dWKjY3V3Llzz3v+1ltv1cyZMxs5GQIRD3eC11JSUup8njp1qrKzs1VSUqIePXpYlApAfSQnJys5Ofm850eNGiVJ2rFjRyMlQiCjNKBB3G633n//fVVXV1/wazoAgJ8/SgPq5ZtvvlF8fLxOnjyp1q1ba8mSJbr22mutjgUA8CP2NKBeunXrpo0bN+rzzz/X448/rrS0NP3tb3+zOhYAwI9YaUC9tGjRQldddZUkqVevXtqwYYNeeeUVvf766xYnAwD4CysN8AmPx6NTp05ZHQMA4EesNMBrzzzzjJKTkxUdHa2jR48qPz9fq1ev1ooVK6yOBsBLx44d07Zt22o/V1RUaOPGjQoLC1N0dLQOHTqknTt3as+ePZKkLVu2SJIiIyMVGRlpSWZYh9IAr1VWVurBBx/U3r17FRoaquuvv14rVqzQv//7v1sdDYCXSktLNWDAgNrPEyZMkCSlpaUpNzdXH374ocaMGVN7/oEHHpAkPf/885o8eXKjZoX1KA3w2vz5862OAMBHEhMTdaGXHY8ePVqjR49uvEAIaOxpAAAARvyy0uByuWrfiAegaSgqKpLE/AaaooqKCqNxtpoLrUt5qbi4WAkJCXK73b66JIAAEhQUJI/HY3UMAH5gt9tVWFh4waf7+nSlweFwyO12Ky8vT06n05eXBmAxl8ulrKws5jfQBJWXlys1NVUOh+OC4/xye8LpdCouLs4flwZgkbO3JJjfwKWLjZBokBkzZshmsykzM9PqKADqYe3atUpJSVFUVJRsNpuWLl163rG/+tWvZLPZNGvWrEbLh8BCaUC9bdiwQa+//rquv/56q6MAqKfq6mrFxsZq7ty5Fxy3ZMkSlZSUKCoqqpGSIRBRGlAvx44d08iRI/XGG2+oXbt2VscBUE/Jycl64YUXNGTIkPOO2b17t8aNG6eFCxeqefPmjZgOgYbSgHpJT0/XPffco4EDB1odBYAfeTwejRo1ShMnTlSPHj2sjgOL8URIeG3RokX68ssvtWHDBqujAPCzmTNnqlmzZnriiSesjoIAQGmAV/7+97/rySefVEFBgVq2bGl1HAB+VFZWpldeeUVffvmlbDab1XEQALg9Aa+UlZWpsrJScXFxatasmZo1a6Y1a9bo1VdfVbNmzXiwF9CEFBYWqrKyUtHR0bXz/fvvv9dvfvMbxcTEWB0PFmClAV6544479M0339Q5NmbMGHXv3l1PP/207Ha7RckA+NqoUaPO2bd05513atSoUXXefIlLB6UBXgkJCVHPnj3rHGvVqpXat29/znEAge/YsWPatm1b7eeKigpt3LhRYWFhio6OVvv27euMb968uSIjI9WtW7fGjooAQGkAgEtYaWmpBgwYUPt5woQJkqS0tDTl5uZalAqBitKABlu9erXVEQDUU2Jiorx5b+GOHTv8FwYBj42QAADACKUBAAAY8cvtCZfLVftGPABNQ1FRkSTmN9AUVVRUGI2z1XhzM+siiouLlZCQwHf1gSYqKChIHo/H6hgA/MBut6uwsFDx8fHnHePTlQaHwyG32628vDw5nU5fXhqAxVwul7KyspjfQBNUXl6u1NRUORyOC47zy+0Jp9OpuLg4f1wagEXO3pJgfgOXLjZCwmuTJ0+WzWar89O9e3erYwGoh7Vr1yolJUVRUVGy2WxaunRpnfP/f66f/fmv//ovawLDUpQG1EuPHj20d+/e2p9169ZZHQlAPVRXVys2NlZz5879l+f/eZ7v3btXCxYskM1m09ChQxs5KQIBD3dCvTRr1kyRkZFWxwDQQMnJyUpOTj7v+f8/z5ctW6YBAwboyiuv9Hc0BCBWGlAv3377raKionTllVdq5MiR2rlzp9WRAPjZ/v379ac//UkPP/yw1VFgEUoDvNanTx/l5uZq+fLlys7OVkVFhRISEnT06FGrowHwo7feekshISG69957rY4Ci3B7Al7756XM66+/Xn369FHnzp313nvv8S8QoAlbsGCBRo4cqZYtW1odBRahNKDB2rZtq2uuuabO63UBNC2FhYXasmWLFi9ebHUUWIjbE2iwY8eOafv27erYsaPVUQD4yfz589WrVy/FxsZaHQUWojTAa0899ZTWrFmjHTt2aP369RoyZIjsdrtGjBhhdTQAXjp27Jg2btyojRs3SvrHOwg2btxYZ3PzkSNH9P7772vs2LEWpUSg4PYEvLZr1y6NGDFCP/zwg8LDw3XrrbeqpKRE4eHhVkcD4KXS0lINGDCg9vOECRMkSWlpacrNzZUkLVq0SDU1NfzDAJQGeG/RokVWRwDgI4mJibrYewsfffRRPfroo42UCIGM2xMAAMCIX1YaXC5X7cttADQNRUVFkpjfQFNUUVFhNM5Wc7F1KS8UFxcrISFBbrfbV5cEEECCgoLk8XisjgHAD+x2uwoLCxUfH3/eMT5daXA4HHK73crLy5PT6fTlpQFYzOVyKSsri/kNNEHl5eVKTU2Vw+G44Di/3J5wOp2Ki4vzx6UBWOTsLQnmN3DpYiMkAAAwQmmA13bv3q3U1FS1b99ewcHBuu6661RaWmp1LABemj59unr37q2QkBBFRERo8ODB2rJlS50xJ0+eVHp6utq3b6/WrVtr6NCh2r9/v0WJYTVKA7zy448/ql+/fmrevLk++eQT/e1vf9Pvf/97tWvXzupoALy0Zs0apaenq6SkRAUFBTpz5oySkpJUXV1dO2b8+PH66KOP9P7772vNmjXas2cPb7m8hPFwJ3hl5syZuuKKK5STk1N7rEuXLhYmAlBfy5cvr/M5NzdXERERKisrU//+/VVVVaX58+crPz9ft99+uyQpJydHTqdTJSUluuWWW6yIDQux0gCvfPjhh7rppps0bNgwRURE6MYbb9Qbb7xhdSwAPlBVVSVJCgsLkySVlZXpzJkzGjhwYO2Y7t27Kzo6WsXFxZZkhLUoDfDKd999p+zsbF199dVasWKFHn/8cT3xxBN66623rI4GoAE8Ho8yMzPVr18/9ezZU5K0b98+tWjRQm3btq0z9vLLL9e+ffssSAmrcXsCXvF4PLrppps0bdo0SdKNN96oTZs26bXXXlNaWprF6QDUV3p6ujZt2qR169ZZHQUBjJUGeKVjx4669tpr6xxzOp11XqML4OclIyNDH3/8sT777DN16tSp9nhkZKROnz6tw4cP1xm/f/9+RUZGNnJKBAJKA7zSr1+/c76StXXrVnXu3NmiRADqq6amRhkZGVqyZIlWrVp1zqbmXr16qXnz5lq5cmXtsS1btmjnzp0XfNQwmi5uT8Ar48ePV9++fTVt2jTdf//9+uKLL/SHP/xBf/jDH6yOBsBL6enpys/P17JlyxQSElK7TyE0NFTBwcEKDQ3Vww8/rAkTJigsLExt2rTRuHHjFB8fzzcnLlGUBnild+/eWrJkiZ555hn97ne/U5cuXTRr1iyNHDnS6mgAvJSdnS1JSkxMrHM8JydHo0ePliT993//t4KCgjR06FCdOnVKd955p+bNm9fISREoKA3w2i9+8Qv94he/sDoGgAYyeclxy5YtNXfuXM2dO7cREiHQsacBAAAY8ctKg8vlqn0jHoCmoaioSBLzG2iKKioqjMbZakzWpwwVFxcrISFBbrfbV5cEEECCgoLk8XisjgHAD+x2uwoLCy/4zRifrjQ4HA653W7l5eXJ6XT68tIALOZyuZSVlcX8Bpqg8vJypaamyuFwXHCcX25POJ1OxcXF+ePSACxy9pYE8xu4dLEREl6LiYmRzWY75yc9Pd3qaAC8MH36dPXu3VshISGKiIjQ4MGDz3l422OPPaauXbsqODhY4eHhGjRokDZv3mxRYliN0gCvbdiwQXv37q39KSgokCQNGzbM4mQAvLFmzRqlp6erpKREBQUFOnPmjJKSklRdXV07plevXsrJyVF5eblWrFihmpoaJSUlsXftEsVzGuC18PDwOp9nzJihrl276rbbbrMoEYD6WL58eZ3Pubm5ioiIUFlZmfr37y9JevTRR2vPx8TE6IUXXlBsbKx27Nihrl27NmpeWI+VBjTI6dOnlZeXp4ceekg2m83qOAAaoKqqSpIUFhb2L89XV1crJydHXbp00RVXXNGY0RAgKA1okKVLl+rw4cO1j5wF8PPk8XiUmZmpfv36qWfPnnXOzZs3T61bt1br1q31ySefqKCgQC1atLAoKaxEaUCDzJ8/X8nJyYqKirI6CoAGSE9P16ZNm7Ro0aJzzo0cOVJfffWV1qxZo2uuuUb333+/Tp48aUFKWI09Dai377//Xp9++qk++OADq6MAaICMjAx9/PHHWrt2rTp16nTO+dDQUIWGhurqq6/WLbfconbt2mnJkiUaMWKEBWlhJUoD6i0nJ0cRERG65557rI4CoB5qamo0btw4LVmyRKtXr1aXLl2MfqempkanTp1qhIQINJQG1IvH41FOTo7S0tLUrBn/GQE/R+np6crPz9eyZcsUEhKiffv2SfrHykJwcLC+++47LV68WElJSQoPD9euXbs0Y8YMBQcH6+6777Y4PazAngbUy6effqqdO3fqoYcesjoKgHrKzs5WVVWVEhMT1bFjx9qfxYsXS/rHa7ELCwt1991366qrrtLw4cMVEhKi9evXKyIiwuL0sAL/RES9JCUlyYfvOgNggYvN4aioKLlcrkZKg58DVhoAAIARSgMAADDil9sTLper9o14AJqGoqIiScxvoCmqqKgwGmer8eGN6eLiYiUkJPAiE6CJCgoKksfjsToGAD+w2+0qLCxUfHz8ecf4dKXB4XDI7XYrLy9PTqfTl5cGYDGXy6WsrCzmN9AElZeXKzU1VQ6H44Lj/HJ7wul0Ki4uzh+XBmCRs7ckmN/ApYuNkPCK2+1WVlaWunTpouDgYHXt2lVTpkzh65fAz9D06dPVu3dvhYSEKCIiQoMHD9aWLVvOGVdcXKzbb79drVq1Ups2bdS/f3+dOHHCgsSwGqUBXpk5c6ays7M1Z84clZeXa+bMmXrxxRc1e/Zsq6MB8NKaNWuUnp6ukpISFRQU6MyZM0pKSlJ1dXXtmOLiYt11111KSkrSF198oQ0bNigjI0NBQfzfx6WIhzvBK+vXr9egQYNq3zcRExOjd999V1988YXFyQB4a/ny5XU+5+bmKiIiQmVlZerfv78kafz48XriiSc0adKk2nHdunVr1JwIHFRFeKVv375auXKltm7dKkn6+uuvtW7dOiUnJ1ucDEBDVVVVSZLCwsIkSZWVlfr8888VERGhvn376vLLL9dtt92mdevWWRkTFmKlAV6ZNGmSjhw5ou7du8tut8vtdmvq1KkaOXKk1dEANIDH41FmZqb69eunnj17SpK+++47SdLkyZP10ksv6YYbbtDbb7+tO+64Q5s2bdLVV19tZWRYgNIAr7z33ntauHCh8vPz1aNHD23cuFGZmZmKiopSWlqa1fEA1FN6ero2bdpUZxXh7DM5HnvsMY0ZM0aSdOONN2rlypVasGCBpk+fbklWWIfSAK9MnDhRkyZN0gMPPCBJuu666/T9999r+vTplAbgZyojI0Mff/yx1q5dq06dOtUe79ixoyTp2muvrTPe6XRq586djZoRgYE9DfDK8ePHz9k1bbfbeUog8DNUU1OjjIwMLVmyRKtWrVKXLl3qnI+JiVFUVNQ5X8PcunWrOnfu3JhRESBYaYBXUlJSNHXqVEVHR6tHjx766quv9PLLL+uhhx6yOhoAL6Wnpys/P1/Lli1TSEiI9u3bJ0kKDQ1VcHCwbDabJk6cqOeff16xsbG64YYb9NZbb2nz5s364x//aHF6WIHSAK/Mnj1bWVlZ+vWvf63KykpFRUXpscce03PPPWd1NABeys7OliQlJibWOZ6Tk6PRo0dLkjIzM3Xy5EmNHz9ehw4dUmxsrAoKCtS1a9dGTotAQGmAV0JCQjRr1izNmjXL6igAGsj0Sa6TJk2q85wGXLrY0wAAAIz4ZaXB5XLVvtwGQNNQVFQkifkNNEUVFRVG42w1PnzTUHFxsRISEuR2u311SQABJCgoiG/KAE2U3W5XYWGh4uPjzzvGpysNDodDbrdbeXl5cjqdvrw0AIu5XC5lZWUxv4EmqLy8XKmpqXI4HBcc55fbE06nU3Fxcf64NACLnL0lwfwGLl1shAQAAEYoDfDa0aNHlZmZqc6dOys4OFh9+/bVhg0brI4FwEvTp09X7969FRISooiICA0ePPicpz9u375dQ4YMUXh4uNq0aaP7779f+/fvtygxrEZpgNfGjh2rgoICvfPOO/rmm2+UlJSkgQMHavfu3VZHA+CFNWvWKD09XSUlJSooKNCZM2eUlJSk6upqSVJ1dbWSkpJks9m0atUqFRUV6fTp00pJSWFD7CWKhzvBKydOnND//M//aNmyZerfv7+kf7w296OPPlJ2drZeeOEFixMCMLV8+fI6n3NzcxUREaGysjL1799fRUVF2rFjh7766iu1adNGkvTWW2+pXbt2WrVqlQYOHGhFbFiIlQZ45aeffpLb7VbLli3rHA8ODq7zSl0APz9VVVWSpLCwMEnSqVOnZLPZ6uyob9mypYKCgpjvlyhKA7wSEhKi+Ph4TZkyRXv27Kn9im1xcbH27t1rdTwA9eTxeJSZmal+/fqpZ8+ekqRbbrlFrVq10tNPP63jx4+rurpaTz31lNxuN/P9EkVpgNfeeecd1dTU6N/+7d/kcDj06quvasSIEee8MhvAz0d6ero2bdqkRYsW1R4LDw/X+++/r48++kitW7dWaGioDh8+rLi4OOb7JYo9DfBa165dtWbNGlVXV+vIkSPq2LGjhg8friuvvNLqaADqISMjQx9//LHWrl2rTp061TmXlJSk7du36+DBg2rWrJnatm2ryMhI5vsliqqIemvVqpU6duyoH3/8UStWrNCgQYOsjgTACzU1NcrIyNCSJUu0atUqdenS5bxjO3TooLZt22rVqlWqrKzUf/zHfzRiUgQKVhrgtRUrVqimpkbdunXTtm3bNHHiRHXv3l1jxoyxOhoAL6Snpys/P1/Lli1TSEiI9u3bJ0kKDQ1VcHCwJCknJ0dOp1Ph4eEqLi7Wk08+qfHjx6tbt25WRodFKA3wWlVVlZ555hnt2rVLYWFhGjp0qKZOnarmzZtbHQ2AF7KzsyVJiYmJdY7n5ORo9OjRkqQtW7bomWee0aFDhxQTE6Nnn31W48ePb+SkCBSUBnjt/vvv1/333291DAANZPKS4xkzZmjGjBmNkAY/B+xpAAAARvyy0nD2bXgAmo6KigpJzG+gKTKd17Yak/UpQzt37pTT6dTx48d9dUkAAcRut8vtdlsdA4AfXHbZZSovL1d0dPR5x/i0NEj/KA4HDx705SUBBIhTp07VeaQwgKajQ4cOFywMkh9KAwAAaJrYCAkAAIxQGgAAgBFKAwAAMEJpAAAARigNAADACKUBAAAYoTQAAAAjlAYAAGCE0gAAAIxQGgAAgBFKAwAAMEJpAAAARigNAADACKUBAAAYoTQAAAAjlAYAAGCE0gAAAIxQGgAAgBFKAwAAMEJpAAAARigNAADACKUBAAAYoTQAAAAjlAYAAGCE0gAAAIxQGgAAgBFKAwAAMEJpAAAARigNAADACKUBAAAYoTQAAAAjlAYAAGCE0gAAAIxQGgAAgBFKAwAAMEJpAAAARigNAADACKUBAAAYoTQAAAAjlAYAAGCE0gAAAIxQGgAAgBFKAwAAMEJpAAAARigNAADACKUBAAAYoTQAAAAjlAYAAGCE0gAAAIxQGgAAgBFKAwAAMEJpAAAARigNAADACKUBAAAYoTQAAAAjlAYAAGCE0gAAAIxQGgAAgBFKAwAAMEJpAAAARigNAADACKUBAAAYoTQAAAAjlAYAAGCE0gAAAIxQGgAAgBFKAwAAMEJpAAAARigNAADACKUBAAAYoTQAAAAjlAYAAGCE0gAAAIxQGgAAgBFKAwAAMEJpAAAARigNAADACKUBAAAYoTQAAAAjlAYAAGCE0gAAAIxQGgAAgBFKAwAAMEJpAAAARigNAADACKUBAAAYoTQAAAAjlAYAAGCE0gAAAIxQGgAAgBFKAwAAMEJpAAAARigNAADACKUBAAAYoTQAAAAjlAYAAGCE0gAAAIxQGgAAgBFKAwAAMEJpAAAARigNAADACKUBAAAYoTQAAAAjlAYAAGCE0gAAAIxQGgAAgBFKAwAAMEJpAAAARigNAADACKUBAAAYoTQAAAAjlAYAAGCE0gAAAIxQGgAAgBFKAwAAMEJpAAAARigNAADACKUBAAAYoTQAAAAjlAYAAGCE0gAAAIxQGgAAgBFKAwAAMEJpAAAARigNAADACKUBAAAYoTQAAAAjlAYAAGCE0gAAAIxQGgAAgBFKAwAAMEJpAAAARigNAADACKUBAAAYoTQAAAAjlAYAAGCE0gAAAIxQGgAAgBFKAwAAMEJpAAAARigNAADACKUBAAAYoTQAAAAjlAYAAGCE0gAAAIxQGgAAgBFKAwAAMEJpAAAARigNAADACKUBAAAYoTQAAAAjlAYAAGCE0gAAAIxQGgAAgBFKAwAAMEJpAAAARigNAADACKUBAAAYoTQAAAAjlAYAAGCE0gAAAIxQGgAAgBFKAwAAMEJpAAAARigNAADACKUBAAAYoTQAAAAjlAYAAGCE0gAAAIxQGgAAgBFKAwAAMEJpAAAARigNAADACKUBAAAYoTQAAAAjlAYAAGCE0gAAAIxQGgAAgBFKAwAAMEJpAAAARigNAADACKUBAAAYoTQAAAAjlAYAAGCE0gAAAIxQGgAAgJH/BXPsbetOmpM6AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " \n", + "Code test passed\n", + "Go on to the next step\n" + ] + } + ], + "source": [ + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "\n", + "ax = plt.subplot()\n", + "ax.set_axis_off()\n", + "title = \"y = 3x + 2\" # Change this title\n", + "cols = ('x', 'y')\n", + "rows = [[0,0]]\n", + "for a in range(1,10):\n", + " rows.append([a, 3*a+2]) # Change only the function in this line\n", + "\n", + "ax.set_title(title)\n", + "plt.table(cellText=rows, colLabels=cols, cellLoc='center', loc='upper left')\n", + "plt.show()\n", + "\n", + "\n", + "# Only change code above this line\n", + "import math_code_test_b as test\n", + "test.step22(In[-1].split('# Only change code above this line')[0])" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "jpo7oASHGEu7" + }, + "source": [ + "# Step 23 - Projectile Game" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "WHx9faGkGEu7" + }, + "source": [ + "Learn quadratic functions by building a projectile game. Starting at (0,0) you launch a toy rocket that must clear a wall. You can randomize the height and location of the wall. The goal is to determine what initial velocity would get the rocket over the wall. Bonus: make an animation of the path of the rocket.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 222, + "metadata": { + "id": "-yFfSgoeWHN3" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmEAAAGzCAYAAABn68DyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABdF0lEQVR4nO3dd1xV9f8H8NcF4SLKEESGiiIuXJiYhnvgzjS3WeJIK7FcOcuZ5cxtrgzLkeXWMhX3wpGj1K+ZKywUUAhQ5hU+vz/O7568spHLh3t9PR8PH9577rnnvj/3jPvijM/RCCEEiIiIiKhQWcgugIiIiOhlxBBGREREJAFDGBEREZEEDGFEREREEjCEEREREUnAEEZEREQkAUMYERERkQQMYUREREQSMIQRERERSSA9hGk0GkybNs0o0/7rr7+g0Wiwbt06o0w/v+bNm4dKlSrB0tISdevWlV1OrgwYMAAlS5aU8tnr1q2DRqPBX3/9leO4FStWxIABA4xe0/Mym6dPnz7FuHHjUL58eVhYWKBr164AjLvMF6SjR49Co9Fg69atskspNM8vP/rv4OjRowX2GTdv3kTbtm3h4OAAjUaDnTt3Fti086tixYp4/fXXC3SaL7KcazQaDB8+vEDrAZTtWMWKFQt8ugUls21dixYt0KJFC2k1kXHlOoS98cYbsLW1xePHj7Mcp1+/frC2tkZ0dHSBFGcMe/fulfoDeODAAYwbNw6NGzdGcHAwvvjiiyzHvXHjBkaNGoVGjRrBxsYm2yCSnJyMWbNmoUaNGrC1tUXZsmXRs2dPXLt2zUgtIb2s5uk333yDefPmoUePHvj2228xatQoyZVSURAYGIgrV67g888/x/r161G/fv1Mx0tKSsLgwYNRq1YtODg4oGTJkvD19cXixYuh0+kyfc/BgwfRqlUrODg4wM7ODn5+fvjhhx+M2RypTp8+jWnTpiE2NrbQP7tixYrQaDQZ/r3//vuFXsvzZH4vlDfFcjtiv379sGfPHuzYsQP9+/fP8HpiYiJ27dqF9u3bw9nZuUCLzK8KFSogKSkJVlZW6rC9e/di+fLl0oLY4cOHYWFhgbVr18La2jrbcUNDQ7FkyRLUqFEDPj4+uHz5cpbj9uvXD7t378aQIUNQr1493L9/H8uXL4e/vz+uXLmCChUqFHBLSC+reXr48GGULVsWCxcuNBg/KSkJxYrletUjM5KUlITQ0FB88sknOe7pSUpKwrVr19CxY0dUrFgRFhYWOH36NEaNGoWzZ89i06ZNBuMHBwdj8ODBaNOmDb744gtYWlrixo0b+Pvvv43ZpGzrN/Zyfvr0aUyfPh0DBgyAo6NjjuOvWbMG6enpBfb5devWxZgxYwyGVa1atcCmDyh/5OVVXr8XkifXa8gbb7wBOzs7bNq0KdMQtmvXLiQkJKBfv34FWuCL0Gg0sLGxkV2GgaioKBQvXjzHAAYo33lsbCzs7Owwf/78LENYeHg4tm/fjo8//hjz5s1Thzdt2hStWrXC9u3buRfGiLKap1FRUZluAIvaMkmF5+HDhwCQqx9GJycnnDlzxmDY+++/DwcHByxbtgwLFiyAm5sbAOXUi6CgIHz44YdYvHhxgdedH0VxOX/2D/KCULZsWbz99tsFOs3n5ea3gkxXrg9HFi9eHN26dcOhQ4cQFRWV4fVNmzbBzs4Ob7zxBgAgNjYWI0eORPny5aHValG5cmXMmTMnV3+FXLp0CR06dIC9vT1KliyJ1q1bZ9gY6T9j1KhRqFixIrRaLcqVK4f+/fvj0aNHADKeEzZgwAAsX74cAAx2HwshULFiRXTp0iXDZyQnJ8PBwQHvvfdetjU/ffoUn332Gby9vaHValGxYkVMmjQJKSkp6jgajQbBwcFISEhQPzu789WcnJxgZ2eX09elHiJ2dXU1GO7u7g5AmXfZ0el0mD59OqpUqQIbGxs4OzujSZMmCAkJyTBueHg4unbtipIlS8LFxQUff/wx0tLSDMZJSEjAmDFj1HlfrVo1zJ8/H0IIdZzsztfLzbkkQgjMnDkT5cqVg62tLVq2bJmnQ6+bN2+Gn58f7OzsYG9vj9q1axv8eE2bNg0ajSbD+54/ZyOrearRaHDkyBFcu3ZNHa4/ryiz9oWHh2Pw4MHw8PCAVquFl5cXPvjgA6Smpqrj5HedGj16NJydnQ2+/w8//BAajQZLlixRh0VGRkKj0WDFihUG709PT8fnn3+OcuXKwcbGBq1bt8atW7cyfM7Zs2fRvn17ODg4wNbWFs2bN8epU6cMxtF/r7du3VL/SndwcMDAgQORmJiYbTuWLFkCS0tLg0MsX375JTQaDUaPHq0OS0tLg52dHcaPH68Omz9/Pho1agRnZ2cUL14cfn5+BX6uW07brWnTpql7pMeOHQuNRpOv85P073n2e1i5ciXS0tIwY8YMAMCTJ08M5ndunTx5Eg0aNICNjQ0qVaqE7777LsM4uV0OM1vOjx49ivr168PGxgbe3t5YtWpVlusaAOzcuRO1atWCVqtFzZo1sW/fPvW1adOmYezYsQAALy8vdT3L7tzRzM4Jy2lbkJPU1FQkJCTkeny9a9euoVWrVihevDjKlSuHmTNnZrouZ3ZO2NKlS1GzZk3Y2tqiVKlSqF+/vrpnNKfvJTg4GK1atUKZMmWg1WpRo0aNDOs88N95grldJrL7LQaAlJQUTJ06FZUrV4ZWq0X58uUxbtw4g9/IrJw4cQI9e/aEp6en+t5Ro0YhKSlJHWf37t3QaDT4/fff1WHbtm2DRqNBt27dDKbn4+OD3r17q89z850EBgaidOnSmZ4K0LZtW1SrVi3HdmRK5MGBAwcEALF06VKD4dHR0cLKykr0799fCCFEQkKCqFOnjnB2dhaTJk0SK1euFP379xcajUaMGDHC4L0AxNSpU9XnV69eFSVKlBDu7u7is88+E7NnzxZeXl5Cq9WKM2fOqOM9fvxY1KpVS1haWoohQ4aIFStWiM8++0y8+uqr4tKlS0IIIe7evSsAiODgYCGEEKdPnxZt2rQRAMT69evVf0II8cknnwgrKysRHR1tUN+PP/4oAIjjx49n+90EBgYKAKJHjx5i+fLlon///gKA6Nq1qzrO+vXrRdOmTYVWq1U/+/bt2zl+70IIMW/ePAFA3L17N8Nrqampoly5csLNzU3s3r1b/P333+Ls2bOiefPmwsvLS/z777/ZTnvSpElCo9GIIUOGiDVr1ogvv/xS9O3bV8yePdugfTY2NqJmzZpi0KBBYsWKFaJ79+4CgPjqq6/U8dLT00WrVq2ERqMR7777rli2bJno3LmzACBGjhypjvf8vHnW88tEcHBwhrZ/+umnAoDo2LGjWLZsmRg0aJDw8PAQpUuXFoGBgdm2V78ct27dWixfvlwsX75cDB8+XPTs2VMdZ+rUqSKz1eP5WjKbp1evXhXr168X1atXF+XKlVOHR0REZNq+8PBw4eHhIWxtbcXIkSPFypUrxeTJk4WPj4867/KyTj1v+/btAoC4cuWKOszX11dYWFiIHj16qMO2bNkiAIirV68KIYQ4cuSIACBeeeUV4efnJxYuXCimTZsmbG1tRYMGDQw+49ChQ8La2lr4+/uLL7/8UixcuFDUqVNHWFtbi7Nnz2b4Xl955RXRrVs38dVXX4l3331XABDjxo3Lth0XL14UAMSePXvUYV26dBEWFhaifv366rDz588LAOKnn35Sh5UrV04MGzZMLFu2TCxYsEA0aNAgwzhCCFGhQgWD5Uf/HRw5ciTb2nKz3frtt9/EwoULBQDRt29fsX79erFjx45spyuEECkpKeLhw4fi3r17Yvv27cLNzU1UqFBB6HQ6dRw/Pz9Rp04dsWnTJlG2bFkBQJQqVUp8+umnIi0tLcfPqFChgqhWrZpwdXUVkyZNEsuWLRP16tUTGo1GXR6EeLFt+8WLF4VWqxUVK1YUs2fPFp9//rnw8PAQvr6+GdY1AMLX11f9PhctWiQqVaokbG1txaNHj9Tvs2/fvgKAWLhwobqePXnyJMt2BgYGigoVKqjPc7MtyO47K168uLC0tBQARIUKFcSiRYtyfJ8QQjx48EC4uLiIUqVKiWnTpol58+aJKlWqiDp16mTY1jVv3lw0b95cfb569Wr1t2bVqlVi8eLFYvDgweKjjz7K1ffy6quvigEDBoiFCxeKpUuXirZt2woAYtmyZRnal5tlIje/xWlpaaJt27bqNm7VqlVi+PDholixYqJLly45fl8ffvih6Nixo/jiiy/EqlWrxODBg4WlpaXB9is6OlpoNBqDfDJixAhhYWEhXFxc1GFRUVEZ2pub7yQkJCTD9kc/Ly0tLcWMGTNybEdm8hTCnj59Ktzd3YW/v7/B8JUrVwoAYv/+/UIIIT777DNRokQJ8eeffxqMN2HCBGFpaSnu3bv3XwHPrahdu3YV1tbWBuHk/v37ws7OTjRr1kwdNmXKFAFAbN++PUOd6enpQojMf+iDgoIy/XG9ceOGACBWrFhhMPyNN94QFStWVKeZmcuXLwsA4t133zUY/vHHHwsA4vDhw+qwwMBAUaJEiSynlZXsQpgQQpw9e1Z4e3sLAOo/Pz8/8eDBgxyn7evrKzp16pTtOPqQ+fyCpv+B1tu5c6cAIGbOnGkwXo8ePYRGoxG3bt0SQrxYCIuKihLW1taiU6dOBvNl0qRJAkCOIWzEiBHC3t5ePH36NMtxchvChMh6njZv3lzUrFkzx/b1799fWFhYiPPnz2cYV9++vKxTz9NvdPRhOTY2VlhYWIiePXsKV1dXdbyPPvpIODk5qZ+pDyA+Pj4iJSVFHW/x4sUGoS49PV1UqVJFtGvXzmB+JCYmCi8vL9GmTRt1mP57HTRokEGNb775pnB2ds6yDUIoG3J7e3s1rKWnpwtnZ2fRs2dPYWlpKR4/fiyEEGLBggXCwsLC4I+PxMREg2mlpqaKWrVqiVatWhkMz28Iy+12S7/cz5s3L9vpPev77783WK/r168vfv/9d4Nx7O3tRalSpYRWqxWTJ08WW7duFW+99ZYAICZMmJDjZ1SoUCHDH5tRUVFCq9WKMWPGqMNeZNveuXNnYWtrK8LDw9VhN2/eFMWKFcs0hFlbW6vbCyGUcPH8ToCctovPez6E5WZbkJXOnTuLOXPmiJ07d4q1a9eKpk2b5uqPCSGEGDlypABg8AdKVFSUcHBwyDGEdenSJdPtyrOy+16eXxeEEKJdu3aiUqVKBsNyu0zk5rd4/fr1wsLCQpw4ccLgdX12OHXqVLbtyazmWbNmCY1GI8LCwtRhNWvWFL169VKf16tXT/Ts2VMAENevXxdC/PdH6W+//Zbt9J//TtLS0kS5cuVE7969DcZbsGCB0Gg04s6dO9m2ISt56qLC0tISffr0QWhoqMEu302bNsHV1RWtW7cGAGzZsgVNmzZFqVKl8OjRI/VfQEAA0tLScPz48Uynn5aWhgMHDqBr166oVKmSOtzd3R1vvfUWTp48ifj4eADKbkZfX1+8+eabGaaT1a7t7FStWhUNGzbExo0b1WExMTH45Zdf0K9fv2ynuXfvXgAwOCQCQD1h8+eff85zPXlVqlQp1K1bFxMmTMDOnTsxf/58/PXXX+jZsyeSk5Ozfa+joyOuXbuGmzdv5vg5z1/507RpU9y5c0d9vnfvXlhaWuKjjz4yGG/MmDEQQuCXX37JQ6syd/DgQaSmpqqH1PRGjhyZq/c7OjoiISEh08OthS09PR07d+5E586dM71KTt++/K5TAODi4oLq1aur45w6dQqWlpYYO3YsIiMj1fl+4sQJNGnSJMOyPnDgQIPzUpo2bQoA6ny/fPkybt68ibfeegvR0dFqbQkJCWjdujWOHz+e4TBLZstRdHS0un5nxsLCAo0aNVLbcf36dURHR2PChAkQQiA0NFRtR61atQzOu3r2kPy///6LuLg4NG3aFBcvXszy83IrL9ut/GjZsiVCQkKwZcsWvP/++7Cysspw+OvJkyf4999/MX36dMyYMQPdu3fHxo0b0b59eyxevDjbq9r1atSooc5bQFluqlWrZrB+v8i2/eDBg+jatSs8PDzU4ZUrV0aHDh0yfU9AQAC8vb3V53Xq1IG9vb1BPS/qRbYFu3fvxrhx49ClSxcMGjQIx44dQ7t27bBgwQL8888/2b537969eO2119CgQQN1mIuLS67OqXZ0dMQ///yD8+fP57lmwHBdiIuLw6NHj9C8eXPcuXMHcXFxBuPmZpnIzW/xli1b4OPjg+rVqxssN61atQIAHDlyJNc1JyQk4NGjR2jUqBGEELh06ZL6WtOmTXHixAkAymk6v/32G4YOHYrSpUurw0+cOAFHR0fUqlUrT9+JhYWFegHcs+vTxo0b0ahRI3h5eWXbhqzkuZ8w/UKiP/78zz//4MSJE+jTpw8sLS0BKP3g7Nu3Dy4uLgb/AgICACDTc8oA5aTVxMTETI+t+vj4ID09Xb3S5/bt2wZfYkHo378/Tp06hbCwMADKgqPT6fDOO+9k+76wsDBYWFigcuXKBsPd3Nzg6OioTs9Y9D8o/v7+mDVrFrp06YIxY8Zg27ZtOHnyJIKDg7N9/4wZMxAbG4uqVauidu3aGDt2rMFxdT0bGxu4uLgYDCtVqhT+/fdf9XlYWBg8PDwynMvm4+Ojvv6i9NOoUqWKwXAXFxeUKlUqx/cPGzYMVatWRYcOHVCuXDkMGjTI4FyTwvTw4UPEx8fnuCznd53Se3bjdOLECdSvXx/169eHk5MTTpw4gfj4ePz2228GG1w9T09Pg+f671g/3/UhLjAwMEN9X3/9NVJSUjJs3HOaZnbtuHDhApKSknDixAm4u7ujXr168PX1Vdt38uTJDO346aef8Nprr8HGxgZOTk5wcXHBihUrMtSVH3nZbuWHq6srAgIC0KNHD6xYsQKvv/462rRpg4iICHUc/Y9I3759Dd7bt29fJCUlGfxQZeX5eQJkXL/zuxxGRUUhKSkpwzYSQKbDclvPiyrIbYFGo8GoUaPw9OnTHPuVCwsLy7D9ApCr84rGjx+PkiVLokGDBqhSpQqCgoIynHuZnVOnTiEgIAAlSpSAo6MjXFxcMGnSJADIcT0FMs6D3PwW37x5E9euXcuw3OivJM1p+3Xv3j0MGDAATk5O6vnIzZs3z1Bz06ZN8eDBA9y6dQunT5+GRqOBv79/hu1f48aNYWHxX/zJ7XfSv39/JCUlYceOHQCUbqQuXLiQY0bITp6vH/bz80P16tXx/fffY9KkSfj+++8hhDBI8Onp6WjTpg3GjRuX6TQK+hLegtKnTx+MGjUKGzduxKRJk7BhwwbUr18/1yfc5WcPXEHYtm0bIiMj1Ysi9Jo3bw57e3ucOnUKH3zwQZbvb9asGW7fvo1du3bhwIED+Prrr7Fw4UKsXLkS7777rjqePmQXhKy+q+dP8jeGMmXK4PLly9i/fz9++eUX/PLLLwgODkb//v3x7bffSq8vMy+6TjVp0gRr1qzBnTt3cOLECTRt2hQajQZNmjTBiRMn4OHhgfT09ExDWFbzXfz/id/6vVzz5s3LsvPh5zv6zWma2bVDp9MhNDRUbQfwX8j8448/8PDhQ4N2nDhxAm+88QaaNWuGr776Cu7u7rCyskJwcHCGbh5MQY8ePfDJJ59g165d6gVDHh4euHnzZoaLc8qUKQMg53AL5G6eFOa2Pb/LSF7kZluQF+XLlwegHEUxFh8fH9y4cQM//fQT9u3bh23btuGrr77ClClTMH369Gzfe/v2bbRu3RrVq1fHggULUL58eVhbW2Pv3r1YuHBhhj3WBTUP0tPTUbt2bSxYsCDT1/XfW2bS0tLQpk0bxMTEYPz48ahevTpKlCiB8PBwDBgwwKDmJk2aAACOHz+OO3fuoF69eihRogSaNm2KJUuW4MmTJ7h06RI+//xz9T15+U5q1KgBPz8/bNiwAf3798eGDRtgbW2NXr165en7eFa+OnHp168fJk+ejN9//x2bNm1ClSpV8Oqrr6qve3t748mTJ+pfR7nl4uICW1tb3LhxI8Nrf/zxBywsLNSZ5e3tjatXr+a59uyCkpOTEzp16oSNGzeiX79+OHXqFBYtWpTjNCtUqID09HTcvHlT3eMDKFebxcbGGr2PrsjISAAZA4IQAmlpaXj69GmO03BycsLAgQMxcOBAPHnyBM2aNcO0adMMQlhuVKhQAQcPHsTjx48N9ob98ccf6uvAf3s+nu9MMDd7yvTTuHnzpsHhn4cPH+b6r2Rra2t07twZnTt3Rnp6OoYNG4ZVq1Zh8uTJqFy5skF9zx7WKui9mi4uLrC3t89xWc7vOqWnDyUhISE4f/48JkyYAEAJ4CtWrICHhwdKlCgBPz+/PE9bf8jI3t4+3/XlVoMGDWBtbY0TJ07gxIkT6lVgzZo1w5o1a3Do0CH1ud62bdtgY2OD/fv3Q6vVqsNz2kOcW3nZbhUE/RVhz/6F7ufnh5s3byI8PNxgnbh//75aY0HI73JYpkwZ2NjYZHpVbWbDcqsg/vDNaVuQF/rDdDl93xUqVMj09I/MlqHMlChRAr1790bv3r2RmpqKbt264fPPP8fEiRPVjr0zs2fPHqSkpGD37t0Ge7lyOhyYndz8Fnt7e+O3335D69at8zzPrly5gj///BPffvutQfdYmR1C9vT0hKenJ06cOIE7d+6o271mzZph9OjR2LJlC9LS0gy2D3n9Tvr374/Ro0fjwYMH2LRpEzp16pSrIzBZyddti/R7vaZMmYLLly9nOI7dq1cvhIaGYv/+/RneGxsbm2UosLS0RNu2bbFr1y6Dc84iIyOxadMmNGnSBPb29gCA7t2747ffflN3Cz4ru5ReokQJtY7MvPPOO/jf//6HsWPHqufA5aRjx44AkCGw6VN/p06dcpzGi9D/9bl582aD4bt370ZCQgJeeeWVbN///B0OSpYsicqVK+fq0uHndezYEWlpaVi2bJnB8IULF0Kj0ajnf9jb26N06dIZziH56quvcvyMgIAAWFlZYenSpQbzOjeBGcjYXgsLC9SpUwcA1Dbrg8Wz9SUkJOTrr+Ps6G9ntGfPHvz6668ZXte3L7/rlJ6Xl5facaxOp0Pjxo0BKOHs9u3b2Lp1K1577bV8da7p5+cHb29vzJ8/H0+ePMnwur5vrIJgY2ODV199Fd9//z3u3btnsCcsKSkJS5Ysgbe3t9o9C6BsVzQajcEfKX/99VeB3S4oL9utvHj06FGm27Kvv/4aAAzOIdRfbr927Vp1WHp6OoKDg+Hk5JSvcJ2ZF9m2BwQEYOfOnWowBJQA9iLniea0Pc9JbrYFmYmJicnwR69Op8Ps2bNhbW2Nli1bZvu5HTt2xJkzZ3Du3Dl12MOHDw3OSc5tzdbW1qhRowaEEGr3CVl9L/o9W88uV3FxcS/0B0lufot79eqF8PBwrFmzJsM4SUlJ2XbxkVnNQogsuxFp2rQpDh8+jHPnzqnbh7p168LOzg6zZ89Wu6jJbvrZfSd9+/aFRqPBiBEjcOfOHbWfOJ1Ohz/++AMPHjzIsi2ZydeeMC8vLzRq1Ai7du0CgAwhbOzYsdi9ezdef/11DBgwAH5+fkhISMCVK1ewdetW/PXXXyhdunSm0545cyZCQkLQpEkTDBs2DMWKFcOqVauQkpKCuXPnGnzG1q1b0bNnTwwaNAh+fn6IiYnB7t27sXLlSvj6+mY6ff2X/9FHH6Fdu3YZglanTp3g7OyMLVu2oEOHDuru/Oz4+voiMDAQq1evRmxsLJo3b45z587h22+/RdeuXXNcIbMSFxeHpUuXAoB6zH/ZsmVwdHSEo6Oj2uN2586dUbNmTcyYMQNhYWF47bXXcOvWLSxbtgzu7u4YPHhwtp9To0YNtGjRAn5+fnBycsKvv/6KrVu35uvebZ07d0bLli3xySef4K+//oKvry8OHDiAXbt2YeTIkQYn2r777ruYPXs23n33XdSvXx/Hjx/Hn3/+meNn6PsnmzVrFl5//XV07NgRly5dwi+//JLlcvWsd999FzExMWjVqhXKlSuHsLAwLF26FHXr1lX3ZLZt2xaenp4YPHiwGsi/+eYbuLi44N69e3n+XrLzxRdf4MCBA2jevDmGDh0KHx8fPHjwAFu2bMHJkyfh6Oj4QuuUXtOmTbF582bUrl1b/ctNv7v+zz//xFtvvZWv+i0sLPD111+jQ4cOqFmzJgYOHIiyZcsiPDwcR44cgb29Pfbs2ZOvaWfVjtmzZ8PBwQG1a9cGoOxpqVatGm7cuJHh3qGdOnXCggUL0L59e7z11luIiorC8uXLUbly5UzPfcyP3G638mLDhg1YuXKlesL/48ePsX//foSEhKBz587qSc0A0KVLF7Ru3RqzZs3Co0eP4Ovri507d+LkyZNYtWqVwR7AF/Eiy+G0adNw4MABNG7cGB988IH6x1qtWrWyvRtIdvTb808++QR9+vSBlZUVOnfurIaQnORmW5CZ3bt3Y+bMmejRowe8vLwQExODTZs24erVq/jiiy/UTnSzMm7cOKxfvx7t27fHiBEjUKJECaxevRoVKlTIcZls27Yt3Nzc0LhxY7i6uuL69etYtmwZOnXqpB59yOp7adu2rbrn77333sOTJ0+wZs0alClTJs/hQS83v8XvvPMOfvzxR7z//vs4cuQIGjdujLS0NPzxxx/48ccfsX///ixv31W9enV4e3vj448/Rnh4OOzt7bFt27Ysj3o0bdoUGzduVE+3AJSg1ahRI+zfvx8tWrQwuNAor9+Ji4sL2rdvjy1btsDR0VHdyRIeHg4fHx8EBgbm7X7V+bqmUgixfPlyASBDf0F6jx8/FhMnThSVK1cW1tbWonTp0qJRo0Zi/vz5IjU1VR0Pz13GLITSn0y7du1EyZIlha2trWjZsqU4ffp0hs+Ijo4Ww4cPF2XLlhXW1taiXLlyIjAwUO1HJrNuEJ4+fSo+/PBD4eLiIjQaTabdEAwbNkwAEJs2bcr196HT6cT06dOFl5eXsLKyEuXLlxcTJ04UycnJBuPlpYsKff2Z/Xv2MmshhIiJiRGjRo0SVatWFVqtVpQuXVr06dMnV5fNzpw5UzRo0EA4OjqK4sWLi+rVq4vPP//cYD5lVXdmXTk8fvxYjBo1Snh4eAgrKytRpUoVMW/evAzdfCQmJorBgwcLBwcHYWdnJ3r16qV2p5BTP2FpaWli+vTpwt3dXRQvXly0aNFCXL16NUMXA5nZunWraNu2rShTpoywtrYWnp6e4r333svQnceFCxdEw4YN1XEWLFhglC4qhBAiLCxM9O/fX7i4uAitVisqVaokgoKCDLqGyO06lRX9OvvBBx8YDA8ICBAAxKFDhwyG67tn2LJli8HwrLoXuXTpkujWrZtwdnYWWq1WVKhQQfTq1ctguvrl5eHDhwbvzex7zcrPP/8sAIgOHToYDNf3N7Z27doM71m7dq2oUqWK0Gq1onr16iI4ODjTZTe/XVQIkbvtVl66qDh//rzo2bOn8PT0FFqtVpQoUULUq1dPLFiwwKCPML3Hjx+LESNGCDc3N2FtbS1q164tNmzYkOPnCKG0O7Nuap7vHkH/Ofndth86dEi88sorwtraWnh7e4uvv/5ajBkzRtjY2BiMB0AEBQVlWufz6/dnn30mypYtKywsLHJchp7voiK324Ln/frrr6Jz587qb0/JkiVFkyZNxI8//pjt+571+++/i+bNmwsbGxtRtmxZ8dlnn4m1a9fm2EXFqlWrRLNmzdT1zNvbW4wdO1bExcXl6nvZvXu3qFOnjrCxsREVK1YUc+bMEd98802Gz83LMpHTb7EQSrcwc+bMETVr1hRarVaUKlVK+Pn5ienTp2eo/Xn/+9//REBAgChZsqQoXbq0GDJkiNplyfPboWvXrqld6zxr5syZAoCYPHlyhunn9jvR0/cfOnToUHWYft3O6ffneRohCvAsRzMxatQorF27FhEREbC1tZVdDhGR2eratWuuu8ghKgp27dqFrl274vjx45lezJQX+TonzJwlJydjw4YN6N69OwMYEVEBevY2M4Bycc3evXsz3JaHqChbs2YNKlWqpB7ufBHGvcW9CYmKisLBgwexdetWREdHY8SIEbJLIiIyK5UqVcKAAQNQqVIlhIWFYcWKFbC2ts6yywuiomTz5s34/fff8fPPP2Px4sUFcnUuD0f+v6NHj6Jly5YoU6YMJk+enK+T0omIKGsDBw7EkSNHEBERAa1WC39/f3zxxReoV6+e7NKIcqTRaFCyZEn07t0bK1euzNfV5BmmaawQdvz4ccybNw8XLlzAgwcPsGPHDnTt2hWAcinnp59+ir179+LOnTtwcHBAQEAAZs+ebXBLi5iYGHz44YfYs2cPLCws0L17dyxevDhDx49EREREpsZo54QlJCTA19cXy5cvz/BaYmIiLl68iMmTJ+PixYvYvn07bty4kaHH9379+uHatWsICQnBTz/9hOPHj2Po0KHGKpmIiIio0BTK4UiNRmOwJywz58+fR4MGDRAWFgZPT09cv34dNWrUwPnz59X+Q/bt24eOHTvin3/+MdhjRkRERGRqisyJ+XFxcdBoNOotYkJDQ+Ho6GjQgVtAQAAsLCxw9uzZTO/YDii9HD/b03F6ejpiYmLg7Ows7d6ORERElDdCCDx+/BgeHh4GN9w2J0UihCUnJ2P8+PHo27evenuPiIiIDL3VFytWDE5OToiIiMhyWrNmzcrxJqZERERkGv7++2+UK1dOdhlGIT2E6XQ69OrVC0IIrFix4oWnN3HiRIwePVp9HhcXB09PT9y9e9fghtJFVUJCgnqD6tu3b8PBwUFyRQVPp9PhyJEjaNmyJaysrGSXYxTm3ka2z/SZexvZPtMXExODqlWrmsRvd35JDWH6ABYWFobDhw8b3OTWzc0NUVFRBuM/ffoUMTEx2d6XS6vVZnqfNCcnp3zdRLew2djYqI+dnJzUw7PmRKfTwdbWFs7Ozma78TD3NrJ9ps/c28j2mQ9zPpVI2kFWfQC7efMmDh48CGdnZ4PX/f39ERsbiwsXLqjDDh8+jPT0dDRs2LCwyyUiIiIqUEbbE/bkyRPcunVLfX737l1cvnwZTk5OcHd3R48ePXDx4kX89NNPSEtLU8/zcnJygrW1NXx8fNC+fXsMGTIEK1euhE6nw/Dhw9GnTx9eGUlEREQmz2gh7Ndff0XLli3V5/rztAIDAzFt2jTs3r0bAFC3bl2D9x05ckS9j9jGjRsxfPhwtG7dWu2sdcmSJcYqmYiIiKjQGC2EtWjRAtl1QZab7smcnJywadOmgiyLiIiIqEgwz443iIiIiIo4hjAiIiIiCRjCiIiIiCRgCCMiIiKSgCGMiIiISAKGMCIiIiIJGMKIiIiIJGAIIyIiIpKAIYyIiIhIAoYwIiIiIgkYwoiIiIgkYAgjIiIikoAhjIiIiEgChjAiIiIiCRjCiIiIiCRgCCMiIiKSgCGMiIiISAKGMCIiIiIJGMKIiIiIJGAIIyIiIpKAIYyIiIhIAoYwIiIiIgkYwoiIiIgkYAgjIiIikoAhjIiIiEgChjAiIiIiCRjCiIiIiCRgCCMiIiKSgCGMiIiISAKGMCIiIiIJGMKIiIiIJGAIIyIiIpKAIYyIiIhIAoYwIiIiIgkYwoiIiIgkYAgjIiIikoAhjIiIiEgChjAiIiIiCRjCiIiIiCRgCCMiIiKSgCGMiIiISAKGMCIiIiIJjBbCjh8/js6dO8PDwwMajQY7d+40eF0IgSlTpsDd3R3FixdHQEAAbt68aTBOTEwM+vXrB3t7ezg6OmLw4MF48uSJsUomIiIiKjRGC2EJCQnw9fXF8uXLM3197ty5WLJkCVauXImzZ8+iRIkSaNeuHZKTk9Vx+vXrh2vXriEkJAQ//fQTjh8/jqFDhxqrZCIiIqJCU8xYE+7QoQM6dOiQ6WtCCCxatAiffvopunTpAgD47rvv4Orqip07d6JPnz64fv069u3bh/Pnz6N+/foAgKVLl6Jjx46YP38+PDw8Mp12SkoKUlJS1Ofx8fEAAJ1OB51OV5BNNIpnazSVmvNK3yZzbJueubeR7TN95t5Gts/0mXPb9IwWwrJz9+5dREREICAgQB3m4OCAhg0bIjQ0FH369EFoaCgcHR3VAAYAAQEBsLCwwNmzZ/Hmm29mOu1Zs2Zh+vTpGYYfOHAAtra2Bd+YAvbsnsDDhw/DxsZGYjXGFRISIrsEozP3NrJ9ps/c28j2ma7ExETZJRidlBAWEREBAHB1dTUY7urqqr4WERGBMmXKGLxerFgxODk5qeNkZuLEiRg9erT6PD4+HuXLl0fbtm1hb29fUE0wmoSEBPVxq1at4OjoKK8YI9HpdAgJCUGbNm1gZWUluxyjMPc2sn2mz9zbyPaZvujoaNklGJ2UEGZMWq0WWq02w3ArKyuTWFCfrdFUas4vc28fYP5tZPtMn7m3ke0zXebarmdJ6aLCzc0NABAZGWkwPDIyUn3Nzc0NUVFRBq8/ffoUMTEx6jhEREREpkpKCPPy8oKbmxsOHTqkDouPj8fZs2fh7+8PAPD390dsbCwuXLigjnP48GGkp6ejYcOGhV4zERERUUEy2uHIJ0+e4NatW+rzu3fv4vLly3BycoKnpydGjhyJmTNnokqVKvDy8sLkyZPh4eGBrl27AgB8fHzQvn17DBkyBCtXroROp8Pw4cPRp0+fLK+MJCIiIjIVRgthv/76K1q2bKk+158sHxgYiHXr1mHcuHFISEjA0KFDERsbiyZNmmDfvn0GVwNu3LgRw4cPR+vWrWFhYYHu3btjyZIlxiqZiIiIqNAYLYS1aNECQogsX9doNJgxYwZmzJiR5ThOTk7YtGmTMcojIiIikor3jiQiIiKSgCGMiIiISAKGMCIiIiIJGMKIiIiIJGAIIyIiIpKAIYyIiIhIAoYwIiIiIgkYwoiIiIgkYAgjIiIikoAhjIiIiEgChjAiIiIiCRjCiIiIiCRgCCMiIiKSgCGMiIiISAKGMCIiIiIJGMKIiIiIJGAIIyIiIpKAIYyIiIhIAoYwIiIiIgkYwoiIiIgkYAgjIiIikoAhjIiIiEgChjAiIiIiCRjCiIiIiCRgCCMiIiKSgCGMiIiISAKGMCIiIiIJGMKIiIiIJGAIIyIiIpKAIYyIiIhIAoYwIiIiIgkYwoiIiIgkYAgjIiIikoAhjIiIiEgChjAiIiIiCRjCiIiIiCRgCCMiIiKSgCGMiIiISAKGMCIiIiIJGMKIiIiIJGAIIyIiIpJAWghLS0vD5MmT4eXlheLFi8Pb2xufffYZhBDqOEIITJkyBe7u7ihevDgCAgJw8+ZNWSUTERERFRhpIWzOnDlYsWIFli1bhuvXr2POnDmYO3culi5dqo4zd+5cLFmyBCtXrsTZs2dRokQJtGvXDsnJybLKJiIiIioQxWR98OnTp9GlSxd06tQJAFCxYkV8//33OHfuHABlL9iiRYvw6aefokuXLgCA7777Dq6urti5cyf69Okjq3QiIiKiFyYthDVq1AirV6/Gn3/+iapVq+K3337DyZMnsWDBAgDA3bt3ERERgYCAAPU9Dg4OaNiwIUJDQ7MMYSkpKUhJSVGfx8fHAwB0Oh10Op0RW1Qwnq3RVGrOK32bzLFteubeRrbP9Jl7G9k+02fObdOTFsImTJiA+Ph4VK9eHZaWlkhLS8Pnn3+Ofv36AQAiIiIAAK6urgbvc3V1VV/LzKxZszB9+vQMww8cOABbW9sCbIFxPHuo9fDhw7CxsZFYjXGFhITILsHozL2NbJ/pM/c2sn2mKzExUXYJRicthP3444/YuHEjNm3ahJo1a+Ly5csYOXIkPDw8EBgYmO/pTpw4EaNHj1afx8fHo3z58mjbti3s7e0LonSjSkhIUB+3atUKjo6O8ooxEp1Oh5CQELRp0wZWVlayyzEKc28j22f6zL2NbJ/pi46Oll2C0UkLYWPHjsWECRPUw4q1a9dGWFgYZs2ahcDAQLi5uQEAIiMj4e7urr4vMjISdevWzXK6Wq0WWq02w3ArKyuTWFCfrdFUas4vc28fYP5tZPtMn7m3ke0zXebarmdJuzoyMTERFhaGH29paYn09HQAgJeXF9zc3HDo0CH19fj4eJw9exb+/v6FWisRERFRQZO2J6xz5874/PPP4enpiZo1a+LSpUtYsGABBg0aBADQaDQYOXIkZs6ciSpVqsDLywuTJ0+Gh4cHunbtKqtsIiIiogIhLYQtXboUkydPxrBhwxAVFQUPDw+89957mDJlijrOuHHjkJCQgKFDhyI2NhZNmjTBvn37zPpkdSIiIno5SAthdnZ2WLRoERYtWpTlOBqNBjNmzMCMGTMKrzAiIiKiQsB7RxIRERFJwBBGREREJAFDGBEREZEEDGFEREREEjCEEREREUnAEEZEREQkAUMYERERkQQMYUREREQSMIQRERERScAQRkRERCQBQxgRERGRBAxhRERERBIwhBERERFJwBBGREREJAFDGBEREZEEDGFEREREEjCEEREREUnAEEZEREQkAUMYERERkQQMYUREREQSMIQRERERScAQRkRERCQBQxgRERGRBAxhRERERBIwhBERERFJwBBGREREJAFDGBEREZEEDGFEREREEjCEEREREUnAEEZEREQkAUMYERERkQQMYUREREQSMIQRERERScAQRkRERCQBQxgRERGRBAxhRERERBIwhBERERFJwBBGREREJAFDGBEREZEEDGFEREREEjCEEREREUnAEEZEREQkgdQQFh4ejrfffhvOzs4oXrw4ateujV9//VV9XQiBKVOmwN3dHcWLF0dAQABu3rwpsWIiIiKigiEthP37779o3LgxrKys8Msvv+B///sfvvzyS5QqVUodZ+7cuViyZAlWrlyJs2fPokSJEmjXrh2Sk5NllU1ERERUIIrJ+uA5c+agfPnyCA4OVod5eXmpj4UQWLRoET799FN06dIFAPDdd9/B1dUVO3fuRJ8+fQq9ZiIiIqKCIi2E7d69G+3atUPPnj1x7NgxlC1bFsOGDcOQIUMAAHfv3kVERAQCAgLU9zg4OKBhw4YIDQ3NMoSlpKQgJSVFfR4fHw8A0Ol00Ol0RmxRwXi2RlOpOa/0bTLHtumZexvZPtNn7m1k+0yfObdNTyOEEDI+2MbGBgAwevRo9OzZE+fPn8eIESOwcuVKBAYG4vTp02jcuDHu378Pd3d39X29evWCRqPBDz/8kOl0p02bhunTp2cYvmnTJtja2hqnMQUoOTlZDZibN29WvyciIqKXSWJiIt566y3ExcXB3t5edjlGIS2EWVtbo379+jh9+rQ67KOPPsL58+cRGhqa7xCW2Z6w8uXL49GjRyYxExMSEtTz4qKiouDo6Ci3ICPQ6XQICQlBmzZtYGVlJbscozD3NrJ9ps/c28j2mb7o6Gi4u7ubdQiTdjjS3d0dNWrUMBjm4+ODbdu2AQDc3NwAAJGRkQYhLDIyEnXr1s1yulqtFlqtNsNwKysrk1hQn63RVGrOL3NvH2D+bWT7TJ+5t5HtM13m2q5nSbs6snHjxrhx44bBsD///BMVKlQAoJyk7+bmhkOHDqmvx8fH4+zZs/D39y/UWomIiIgKmrQ9YaNGjUKjRo3wxRdfoFevXjh37hxWr16N1atXAwA0Gg1GjhyJmTNnokqVKvDy8sLkyZPh4eGBrl27yiqbiIiIqEBIC2GvvvoqduzYgYkTJ2LGjBnw8vLCokWL0K9fP3WccePGISEhAUOHDkVsbCyaNGmCffv28WR1IiIiMnnSQhgAvP7663j99dezfF2j0WDGjBmYMWNGIVZFREREZHy8dyQRERGRBAxhRERERBIwhBERERFJwBBGREREJAFDGBEREZEEDGFEREREEjCEEREREUnAEEZEREQkAUMYERERkQQMYUREREQSMIQRERERScAQRkRERCQBQxgRERGRBAxhRERERBIwhBERERFJwBBGREREJAFDGBEREZEEDGFEREREEjCEEREREUnAEEZEREQkAUMYERERkQQMYUREREQSMIQRERERScAQRkRERCQBQxgRERGRBAxhRERERBIwhBERERFJwBBGREREJAFDGBEREZEEDGFEREREEjCEEREREUnAEEZEREQkAUMYERERkQQMYUREREQSMIQRERERScAQRkRERCQBQxgRERGRBAxhRERERBIwhBERERFJwBBGREREJAFDGBEREZEEDGFEREREEhSZEDZ79mxoNBqMHDlSHZacnIygoCA4OzujZMmS6N69OyIjI+UVSURERFRAiskuAADOnz+PVatWoU6dOgbDR40ahZ9//hlbtmyBg4MDhg8fjm7duuHUqVOSKiVzp9MBf/0FREQAjx4p/x4/BtLTgbQ0QKMB7OwABwflX9mygJeX8piIiCgvpIewJ0+eoF+/flizZg1mzpypDo+Li8PatWuxadMmtGrVCgAQHBwMHx8fnDlzBq+99pqskslMREcDZ88q/y5cAG7cAO7eVcJWXjk6AtWrA6+8AtSrB9StqwQ3IiKirEgPYUFBQejUqRMCAgIMQtiFCxeg0+kQEBCgDqtevTo8PT0RGhqaZQhLSUlBSkqK+jw+Ph4AoNPpoNPpjNSKgvNsjaZSc17p21TYbUtNBU6d0mD/fg3277fAtWuaTMcrXlygbFmgdGkBZ2fA3h6wtAQsLAAhgPh45d+//2rwzz/Ao0caxMYCZ84o/xRWsLNrj4AADQIC0tCxYzrKli2slhqfrHlYWMy9fYD5t5HtM33m3DY9qSFs8+bNuHjxIs6fP5/htYiICFhbW8PR0dFguKurKyIiIrKc5qxZszB9+vQMww8cOABbW9sXrtnYkpOT1ceHDx+GjY2NxGqMKyQkxOifkZYGXL1aGsePl0NoqAcSEw0XeQ+PJ6ha9V9UqfIvPD0fw939CZyckmGRh7Mlk5IsERVli3v37HH7tgPu3HHEzZuOePxYix07gB07AMASPj7RaNToPho3DoeTU0pOkzUJhTEPZTL39gHm30a2z3QlJibKLsHopIWwv//+GyNGjEBISEiBBo2JEydi9OjR6vP4+HiUL18ebdu2hb29fYF9jrEkJCSoj1u1apUhhJoDnU6HkJAQtGnTBlZWVkb5jPv3gdWrLbBunQXu3/9vj1eZMgJt2wq0a5eOgAABZ2ctALf//1dwEhN1WLkyFAkJryEkpBjOnLHA9evOuH7dGevW1UKnTgJDhqSjTRuRp8BXVBTGPJTJ3NsHmH8b2T7TFx0dLbsEo5MWwi5cuICoqCjUq1dPHZaWlobjx49j2bJl2L9/P1JTUxEbG2sQRCIjI+HmlvUPplarhVarzTDcysrKJBbUZ2s0lZrzyxjtO3MGWLQI2LYNePpUGeboCPTsCfTrBzRtqoGFhQbGvjDY1haoXv1fdOyowYwZFggPV2r64Qfg9GkNdu/WYPduC3h5AWPGAIMGAcWLG7Uko+AyavrMvY1sn+ky13Y9S9rf4K1bt8aVK1dw+fJl9V/9+vXRr18/9bGVlRUOHTqkvufGjRu4d+8e/P39ZZVNRdTJk0CbNoC/vxJ0nj4FmjYFNm9WrnRcvRpo3hzS9jqVLQt89BFw6hRw9ary2NFRuRBg+HCgYkVg1izlXDMiIno5SNsTZmdnh1q1ahkMK1GiBJydndXhgwcPxujRo+Hk5AR7e3t8+OGH8Pf355WRpLpwARg/HtBn9WLFgHfeUUJO3bpSS8tSzZrA4sVK6Fq3Dpg7FwgLAyZNAr78EpgyBXj/fcDaWnalRERkTEX6bJSFCxfi9ddfR/fu3dGsWTO4ublh+/btssuiIuD+fWDAAKB+fSWAFSsGDB0K3LwJfPNN0Q1gz7K1BYYNU2pevx6oVk3pNmPECMDHR9mjJ4TsKomIyFiKVAg7evQoFi1apD63sbHB8uXLERMTg4SEBGzfvj3b88HI/KWmKnuQqlYFvv1WGfb228CtW8CqVcphPVNjZaW04epVpQ1ubsCdO0CfPkBAgNJ/GRERmZ8iFcKIsnPunLLna9IkICEBeO015UT89euBChVkV/fi9Hvzbt0Cpk8HbGyAw4eBOnWUQ5RJSbIrJCKigsQQRkVeYiIwerRy0v2VK0Dp0krwOn0aaNhQdnUZCSHwNCkJIjUVIh/HE0uUUELXtWtAhw7K3r/PPgP8/JRz4IiIyDwwhFGRdumSchughQuV2wD16wdcv64cvtNk3uG9dGlJSdjh74/EadOQ9kznu3lVqRLw88/A1q3KIcrr15W9fzNm/Nf9BhERmS6GMCqS0tOV4PXaa8o5UR4eSiDZsEHZE/ay0GiA7t2V88V69lTC19SpQOPGSvcWRERkuhjCqMh59Ajo2FE5BJmaCnTtCvz+uzLsZeXsrFwtuWED4OCgnB9Xrx6we7fsyoiIKL8YwqhIuXhROfl+/37lxPQVK4Dt25UQ8rLTaJTDsb//ruwhjI0FunQBJkzg4UkiIlPEEEZFxvr1ymG2sDCgcmXg/Hml09Kieu6XLJ6ewLFjSn9iADBnjnK3gJfgNmtERGaFIYykS0sDRo4E+vcHkpOVw47nzwPP3VCBnmFtrdwj88cfgZIlgaNHlb1jf/whuzIiIsothjCSKiEB6NZNuY0PAEyeDOzZo9xXkXLWsycQGqr0k3brlhLEDh6UXRUREeUGQxhJExkJtGypnFyu1Sp7dWbMkHeTbVNVq5Zyon6jRkBcHNC+PbB2reyqiIgoJ/y5IynCw0uiWbNiOH9eOen+0CFlrw7lT5kyynfYr59yePfdd5VzxXjvSSKiooshjArd5cvAxIlNcPeuBpUqKT3fN24suyrTZ2OjXNwwfrzyfMIEYOxYpc81IiIqehjCqFCdOQO0bVsM8fFa1KuXjtBQ5WbcVDA0GmD2bGD+fOX5l18CgwaxCwsioqKIIYwKzdGjQEAAEBurgY9PNPbvT0OZMrKrMk9jxgDr1gGWlsC33yqHKRnEiIiKFoYwKhT79ys3o05IAFq3TsfUqaFwcJBdlXkLDAS2bQOsrJSLHhjEiIiKFoYwMrrDh5VbDyUnA507Azt2pMHGJk12WS+FLl0Mg9hbbwE6neyqiIgIYAgjIzt5UgleycnAG28ogcDGRnZVL5fOnf8LYlu2KEGMe8SIiORjCCOjOXdO6f0+MRFo107ZE2NlJbuql9OzQWzrVqULC141SUQkF0MYGcXly0rwevwYaNFCuQm3Viu7qpdb587KnjD9yfpjxrAfMSIimRjCqMDdvav02h4bq/TivmcPYGsruyoClHPE9L3pL1oEfP651HKIiF5qDGFUoB49UvaARUYCdeoAe/cqN5imoiMwEFi4UHk8eTKwYoXceoiIXlYMYVRgEhKA118Hbt4EPD2BX34Bu6EookaOBD79VHkcFATs2CG1HCKilxJDGBWIp0+BPn2As2eBUqWAffsADw/ZVVF2ZswA3ntPOS+sXz/g/HnZFRERvVwYwuiFCQEMHw789JPS/cSePYCPj+yqKCcaDbBsmXL+XlKScuJ+WJjsqoiIXh4MYfTCli0DVq1SftQ3beLNuE1JsWLADz8o5+9FRgKdOgFxcbKrIiJ6OTCE0Qs5cEA5vwgA5swB3nxTajmUD/b2wM8/K4ePr10DevRgr/pERIWBIYzy7cYNoFcvpdPPwEDg449lV0T5Va6cchi5RAng4EFg7FjZFRERmT+GMMqXmBjlHKK4OKUvMP3hSDJd9eoB69crjxcvBr77Tm49RETmjiGM8iwtTbkSUt8VxY4d7A3fXLz5ptJ3GAAMHQr8+qvceoiIzBlDGOXZtGlASIjSC/7u3UCZMrIrooI0bZrS31tKihLKIiNlV0REZJ4YwihPfv4ZmDlTebxmDeDrK7ceKngWFsCGDUC1asA//wA9e/JEfSIiY2AIo1y7exd4+23l8fDhwFtvya2HjMfBAdi5E7CzA06cACZNkl0REZH5YQijXElKArp3V27K/dprwJdfyq6IjK16deDbb5XH8+crV08SEVHBYQijXPnwQ+DSJaB0aWDLFsDaWnZFVBjefBMYMUJ5HBgI3Lsntx4iInPCEEY52rQJWLtWOVdo82alTyl6ecydC7z6KvDvv0Dv3jw/jIiooDCEUbbu3AHef195PHky0Lq13Hqo8FlbK7c2cnQEzpwBJk6UXRERkXlgCKMs6XRA377A48dAkybAp5/Krohk8fICgoOVx19+Cfz8M3vmJSJ6UQxhlKWpU4Fz55Q9IBs3Kjd7ppdX167/3Sd06FBLxMayh14iohfBEEaZOnQImD1befz110rP+ESzZwO1awMPH2qwbFldCCG7IiIi08UQRhk8egS88w4ghHLrmu7dZVdERYVWq1yoodUK/PqrG1av5iaEiCi/uAUlA0IoJ+I/eAD4+AALF8quiIqaWrWAL75IBwCMG2eBP/6QXBARkYliCCMDmzcD27Yp539t2KDcH5LoeUFB6fD1jUJSkgb9+gGpqbIrIiIyPdJC2KxZs/Dqq6/Czs4OZcqUQdeuXXHjxg2DcZKTkxEUFARnZ2eULFkS3bt3RyTvJmw09+8DQUHK48mTgXr15NZDRZeFBTBixCU4OQlcvAhMny67IiIi0yMthB07dgxBQUE4c+YMQkJCoNPp0LZtWyQkJKjjjBo1Cnv27MGWLVtw7Ngx3L9/H926dZNVslkTAnj3XaVDTj8/9gVFOXNySsZXX6UBAObMAX79VXJBREQmRlqnA/v27TN4vm7dOpQpUwYXLlxAs2bNEBcXh7Vr12LTpk1o1aoVACA4OBg+Pj44c+YMXnvtNRllm621a4FfflFOvP72W8DKSnZFZAq6dRPo00c5jD1woBLEtOy5gogoV4pMz09xcXEAACcnJwDAhQsXoNPpEBAQoI5TvXp1eHp6IjQ0NMsQlpKSgpSUFPV5fHw8AECn00FnAvdbebbGwqr5r7+AUaOKAdBg+vQ0VK2abtRb0+jbZArzIz+ePn2qPtbpdChmhu18dh4uWAAcOlQMV68qy8/06emSq3tx5r6MAubfRrbP9Jlz2/SKRAhLT0/HyJEj0bhxY9SqVQsAEBERAWtrazg6OhqM6+rqioiIiCynNWvWLEzP5ASVAwcOwNYEzjJPTk5WHx8+fBg2NjZG/TwhgClTGuHJExf4+ESjSpWT2LvXqB+pCgkJKZwPKmTimbPUDx8+DI0Z3+1cPw8HDnTH3LkNMGeOBqVLn4K3d5zkygqGuS6jzzL3NrJ9pisxMVF2CUZXJEJYUFAQrl69ipMnT77wtCZOnIjRo0erz+Pj41G+fHm0bdsW9vb2Lzx9Y3v2nLhWrVplCKEF7dtvNbhypRhsbAS2bbNH5codjfp5gPLXTUhICNq0aQMrMzzu+TQpCTumTQOgzMPiJrDc5dXz87BjR+D27XRs22aB4ODmOHPmKUw5e5r7MgqYfxvZPtMXHR0tuwSjkx7Chg8fjp9++gnHjx9HuXLl1OFubm5ITU1FbGysQRCJjIyEm5tbltPTarXQZnJSipWVlUksqM/WaOyaIyKAceOUxzNmaODjU7jfj6nMk7zSPLML3VzbqPds+776Cjh2DLh6VYN586zw/znUpJn7/APMv41sn+ky13Y9S9rVkUIIDB8+HDt27MDhw4fh5eVl8Lqfnx+srKxw6NAhddiNGzdw7949+Pv7F3a5ZmnECOVqyFdeAUaNkl0NmboyZYBly5THn38OXL0qtx4ioqJOWggLCgrChg0bsGnTJtjZ2SEiIgIRERFISkoCADg4OGDw4MEYPXo0jhw5ggsXLmDgwIHw9/fnlZEFYPdu4McfAUtL5d6QvDk3FYRevYAuXYCnT4H33gPSTf8cfSIio5EWwlasWIG4uDi0aNEC7u7u6r8ffvhBHWfhwoV4/fXX0b17dzRr1gxubm7Yvn27rJLNRnw8MGyY8njMGHbKSgVHowGWLgVKlgROn1YCPhERZU7a/g8hRI7j2NjYYPny5Vi+fHkhVPTymDQJCA8HvL2BqVNlV0Pmpnx5YOZMYORIYPx44I03gGxO4yQiemnx3pEvmTNnlBOoAWD1at4bkoxj+HDlzguxsTzfkIgoKwxhL5G0NOCDD5S+wQYMAP7/RgREBc7SEli1SrnH5ObNwHM3yCAiIjCEvVRWrAAuXwYcHYG5c2VXQ+bOzw/46CPl8bBhwEvQ7yIRUZ4whL0kIiOBTz9VHn/xBeDiIrceejnMmAGUKwfcvat0W0FERP9hCHtJjBsHxMUpeyeGDpVdDb0s7OyAJUuUx/PnA7duya2HiKgoYQh7CZw4AXz3ndJ9wFdfKefrEBWWrl2Btm2B1FSepE9E9CyGMDP39CkQFKQ8HjIEaNBAbj308tFogMWLlQ6Bf/oJhXaDeCKioo4hzMwtWwZcuQI4OSnnghHJUL260m8YoNwuKyVFajlEREUCQ5gZi4r6rzPW2bMBZ2e59dDLbfJkpdPWW7eAhQtlV0NEJB9DmBmbMkW5RVG9esDgwbKroZedvf1/XaPMnKnctYGI6GXGEGamfv8dWLNGebxokdJpJpFsb78NNG4MJCQAH38suxoiIrn402yGhABGjwbS04GePYGmTWVXRKTQ3+Bb35P+6dOyKyIikochzAzt2QMcOgRotcCcObKrITL0yivAwIHK4zFjlD8aiIheRgxhZiY1VflhA5S9YV5ecushysxnnwElSig3lP/xR9nVEBHJwRBmZpYtU64+c3UFJk6UXQ1R5tzdgfHjlccTJgDJyXLrISKSgSHMjDx8qNyrD1D6BLOzk1sPUXbGjAHKlgX++ks5T4yI6GXDEGZGpk9X7g/5yitAYKDsaoiyZ2v73029Z85U/oggInqZMISZiZs3gVWrlMdffsn7Q5JpeOcd5Y+G+HjljwgiopcJQ5iZ+PRT5T6RHToALVvKroYodywslD8aAGDlSuCPP+TWQ0RUmBjCzMD588oVZhqNcnsiIlPSsiXQuTOQlqacpE9E9LJgCDNxQvx3ldk77wB16sithyg/5sxR9ort2qV0W0FE9DJgCDNxBw4AR44A1tb/XRlJZGp8fIABA5THEyawA1ciejkwhJmw9PT/9oINHw5UqCC3HqIXMXWqcpeHY8eUPy6IiMwdQ5gJ27QJ+O03wMEBmDRJdjVEL8bTEwgKUh5PnKj8kUFEZM4YwkxUSopyRSSgHL5xdpZbD1FBmDhR6WT40iVgyxbZ1RARGRdDmIlatQoICwM8PICPPpJdDVHBKF0aGDtWeTx5MqDTya2HiMiYGMJMUGKiclsiAJgyRel5nMhcjBwJuLgoHRAHB8uuhojIeBjCTNBXXwGRkUDFisDAgbKrISpYdnb/HWqfPl35o4OIyBwxhJmYx4+VPpUAZS+YtbXceoiM4b33lKt9799X/uggIjJHDGEmZulS4NEjoEoVpXNWInOk1Sp/ZADA3LlAQoLceoiIjIEhzITExgLz5imPp00DihWTWQ2Rcb3zDlCpEvDwIbB8uexqiIgKHkOYCVm4UAliNWoAvXvLrobIuKyslCskAeWPjydP5NZDRFTQGMJMRHS0EsIA5WRlS0u59RAVhrffBipXVg7BL1smuxoiooLFEGYi5s9XTsr39QW6dZNdDVHhKFbMcG/Y48dy6yEiKkgMYSbg4UPlhHxAuUm3BecavUTeeku5ECUm5r/1gIjIHPDn3AR8+aVydVj9+kDnzrKrISpcxYr9d6Xk/PlAfLzceoiICgpDWBEXE/PflWFTpgAajdx6iGTo2xeoVg34919gyRLZ1RARFQyGsCJu8WLlqjBfX+D112VXQySHpeV/e8O+/BKIi5NbDxFRQWAIK8Li4v77q//TT7kXjF5uvXsD1asr3bSw3zAiMgcMYUXY119rERsL+PjwikgiS0vgk0+UxwsXshd9IjJ9DGFFli2++koLQPnh4RWRRECfPkov+o8eAWtWpgFHjwLff6/8n5YmuzwiojzhjW+KrPcRE2MBb2/2jk+kV6wYMGEC8MvQ7eg1bgSQ/s9/L5Yrp5xEyd3GRGQiTGL/yvLly1GxYkXY2NigYcOGOHfunOySjMwGwMcAgEmTeI9IomcNsN+OregBt2cDGACEhwM9egDbt8spjIgoj4r8z/sPP/yA0aNHY+XKlWjYsCEWLVqEdu3a4caNGyhTpkyup5OQkABLE7jXT0JCAoDBANxRtuxTvPlmitmd+6LT6ZCcnIyEhARYWVnJLqfAPU1KUh8nJCQg3QSWu7ySNg/T0lB8zEfQQCDDdSpCQGg0ECNGICkg4IXu7WXuyyhg/m1k+0xfgrn9+GVCI4QQsovITsOGDfHqq69i2f/fOC49PR3ly5fHhx9+iAkTJmQYPyUlBSkpKerz+Ph4lC9fvtDqfXFWAG4DKA/gAwAr5ZZDeabVaPCNjw8AYND160gp2quYSWkO4GguxmsB4JhRKyGiwhIXFwd7e3vZZRhFkT4cmZqaigsXLiAgIEAdZmFhgYCAAISGhmb6nlmzZsHBwUH9Z1oBDAD6Qwlg4QCCJddCVLS4F/B4REQyFenDkY8ePUJaWhpcXV0Nhru6uuKPP/7I9D0TJ07E6NGj1ef6PWFhYWEmkaT/+ScRtWtPAxCOu3f/gKOjo+SKCp5Op8Phw4fRqlUrs9yNLoRAyuPHOHrsGO61awdra2vZJRU4WfOw2MmTubp315o9e7CiSZN8f465L6OA+beR7TN9MTEx8Pb2ll2GURXpEJYfWq0WWq02w3BHR0eTCGHKyjQdAODoOM9sQ5iNjQ0cHR3NduOhK1kSxe3tUapUKbNso7R52KGDchVkeDiQ2WFejQYoVw4lO3R44XPCzH4ZNfM2sn2mL+0l6HamSB+OLF26NCwtLREZGWkwPDIyEm5ubpKqIiJpLC2VbiiAjLeQ0D9ftOiFAhgRUWEp0iHM2toafn5+OHTokDosPT0dhw4dgr+/v8TKiEiabt2ArVuBsmUNh5crpwxnP2FEZCKK/OHI0aNHIzAwEPXr10eDBg2waNEiJCQkYODAgbJLIyJZunUDunQBTpwAHjwA3N2Bpk25B4yITEqRD2G9e/fGw4cPMWXKFERERKBu3brYt29fhpP1ieglY2kJtGghuwoionwr8iEMAIYPH47hw4fLLoOIiIiowBTpc8KIiIiIzBVDGBEREZEEDGFEREREEjCEEREREUnAEEZEREQkAUMYERERkQQMYUREREQSMIQRERERScAQRkRERCQBQxgRERGRBAxhRERERBIwhBERERFJwBBGREREJAFDGBEREZEEDGFEREREEjCEEREREUnAEEZEREQkAUMYERERkQQMYUREREQSMIQRERERScAQRkRERCQBQxgRERGRBAxhRERERBIwhBERERFJwBBGREREJAFDGBEREZEEDGFEREREEjCEEREREUnAEEZEREQkAUMYERERkQQMYUREREQSMIQRERERScAQRkRERCQBQxgRERGRBAxhRERERBIwhBERERFJwBBGREREJAFDGBEREZEEDGFEREREEjCEEREREUnAEEZEREQkgZQQ9tdff2Hw4MHw8vJC8eLF4e3tjalTpyI1NdVgvN9//x1NmzaFjY0Nypcvj7lz58ool4iIiKjAFZPxoX/88QfS09OxatUqVK5cGVevXsWQIUOQkJCA+fPnAwDi4+PRtm1bBAQEYOXKlbhy5QoGDRoER0dHDB06VEbZRERERAVGSghr37492rdvrz6vVKkSbty4gRUrVqghbOPGjUhNTcU333wDa2tr1KxZE5cvX8aCBQsYwoiIiMjkSQlhmYmLi4OTk5P6PDQ0FM2aNYO1tbU6rF27dpgzZw7+/fdflCpVKtPppKSkICUlxWC6ABATEwOdTmek6gtOQkKC+jgmJgZpaWkSqzEOnU6HxMREREdHw8rKSnY5RmHubWT7TJ+5t5HtM30xMTEAACGE5EqMp0iEsFu3bmHp0qXqXjAAiIiIgJeXl8F4rq6u6mtZhbBZs2Zh+vTpGYY/Py1T4O3tLbsEIiIiqaKjo+Hg4CC7DKMo0BA2YcIEzJkzJ9txrl+/jurVq6vPw8PD0b59e/Ts2RNDhgx54RomTpyI0aNHq8/T09MRExMDZ2dnaDSaF55+YYiPj0f58uXx999/w97eXnY5Bc7c2weYfxvZPtNn7m1k+0xfXFwcPD09DY6SmZsCDWFjxozBgAEDsh2nUqVK6uP79++jZcuWaNSoEVavXm0wnpubGyIjIw2G6Z+7ubllOX2tVgutVmswzNHRMRfVFz329vZmu3IB5t8+wPzbyPaZPnNvI9tn+iwszLc3rQINYS4uLnBxccnVuOHh4WjZsiX8/PwQHByc4Uv29/fHJ598Ap1Opx7vDgkJQbVq1bI8FElERERkKqTEy/DwcLRo0QKenp6YP38+Hj58iIiICERERKjjvPXWW7C2tsbgwYNx7do1/PDDD1i8eLHBoUYiIiIiUyXlxPyQkBDcunULt27dQrly5Qxe018F4eDggAMHDiAoKAh+fn4oXbo0pkyZ8lJ0T6HVajF16tQMh1XNhbm3DzD/NrJ9ps/c28j2mb6XoY0aYc7XfhIREREVUeZ7thsRERFREcYQRkRERCQBQxgRERGRBAxhRERERBIwhBERERFJwBAmyfLly1GxYkXY2NigYcOGOHfuXLbjb9myBdWrV4eNjQ1q166NvXv3FlKleTNr1iy8+uqrsLOzQ5kyZdC1a1fcuHEj2/esW7cOGo3G4J+NjU0hVZx306ZNy1Dvs7fiyoypzD8AqFixYob2aTQaBAUFZTp+UZ9/x48fR+fOneHh4QGNRoOdO3cavC6EwJQpU+Du7o7ixYsjICAAN2/ezHG6eV2HjSm7Nup0OowfPx61a9dGiRIl4OHhgf79++P+/fvZTjM/y7mx5DQPBwwYkKHW9u3b5zhdU5mHADJdJzUaDebNm5flNIvKPMzN70JycjKCgoLg7OyMkiVLonv37hnumvO8/K67RQlDmAQ//PADRo8ejalTp+LixYvw9fVFu3btEBUVlen4p0+fRt++fTF48GBcunQJXbt2RdeuXXH16tVCrjxnx44dQ1BQEM6cOYOQkBDodDq0bdsWCQkJ2b7P3t4eDx48UP+FhYUVUsX5U7NmTYN6T548meW4pjT/AOD8+fMGbQsJCQEA9OzZM8v3FOX5l5CQAF9fXyxfvjzT1+fOnYslS5Zg5cqVOHv2LEqUKIF27dohOTk5y2nmdR02tuzamJiYiIsXL2Ly5Mm4ePEitm/fjhs3buCNN97Icbp5Wc6NKad5CADt27c3qPX777/PdpqmNA8BGLTtwYMH+Oabb6DRaNC9e/dsp1sU5mFufhdGjRqFPXv2YMuWLTh27Bju37+Pbt26ZTvd/Ky7RY6gQtegQQMRFBSkPk9LSxMeHh5i1qxZmY7fq1cv0alTJ4NhDRs2FO+9955R6ywIUVFRAoA4duxYluMEBwcLBweHwivqBU2dOlX4+vrmenxTnn9CCDFixAjh7e0t0tPTM33dlOYfALFjxw71eXp6unBzcxPz5s1Th8XGxgqtViu+//77LKeT13W4MD3fxsycO3dOABBhYWFZjpPX5bywZNa+wMBA0aVLlzxNx9TnYZcuXUSrVq2yHaeozsPnfxdiY2OFlZWV2LJlizrO9evXBQARGhqa6TTyu+4WNdwTVshSU1Nx4cIFBAQEqMMsLCwQEBCA0NDQTN8TGhpqMD4AtGvXLsvxi5K4uDgAgJOTU7bjPXnyBBUqVED58uXRpUsXXLt2rTDKy7ebN2/Cw8MDlSpVQr9+/XDv3r0sxzXl+ZeamooNGzZg0KBB0Gg0WY5navNP7+7du4iIiDCYPw4ODmjYsGGW8yc/63BRExcXB41GA0dHx2zHy8tyLtvRo0dRpkwZVKtWDR988AGio6OzHNfU52FkZCR+/vlnDB48OMdxi+I8fP534cKFC9DpdAbzo3r16vD09MxyfuRn3S2KGMIK2aNHj5CWlgZXV1eD4a6urgb3znxWREREnsYvKtLT0zFy5Eg0btwYtWrVynK8atWq4ZtvvsGuXbuwYcMGpKeno1GjRvjnn38Ksdrca9iwIdatW4d9+/ZhxYoVuHv3Lpo2bYrHjx9nOr6pzj8A2LlzJ2JjYzFgwIAsxzG1+fcs/TzIy/zJzzpclCQnJ2P8+PHo27cv7O3tsxwvr8u5TO3bt8d3332HQ4cOYc6cOTh27Bg6dOiAtLS0TMc39Xn47bffws7OLsfDdUVxHmb2uxAREQFra+sMfxTk9LuoHye37ymKpNw7kl4OQUFBuHr1ao7nIPj7+8Pf31993qhRI/j4+GDVqlX47LPPjF1mnnXo0EF9XKdOHTRs2BAVKlTAjz/+mKu/TE3J2rVr0aFDB3h4eGQ5jqnNv5eZTqdDr169IITAihUrsh3XlJbzPn36qI9r166NOnXqwNvbG0ePHkXr1q0lVmYc33zzDfr165fjBTBFcR7m9nfhZcE9YYWsdOnSsLS0zHDVR2RkJNzc3DJ9j5ubW57GLwqGDx+On376CUeOHMlwk/acWFlZ4ZVXXsGtW7eMVF3BcnR0RNWqVbOs1xTnHwCEhYXh4MGDePfdd/P0PlOaf/p5kJf5k591uCjQB7CwsDCEhIRkuxcsMzkt50VJpUqVULp06SxrNdV5CAAnTpzAjRs38rxeAvLnYVa/C25ubkhNTUVsbKzB+Dn9LurHye17iiKGsEJmbW0NPz8/HDp0SB2Wnp6OQ4cOGexNeJa/v7/B+AAQEhKS5fgyCSEwfPhw7NixA4cPH4aXl1eep5GWloYrV67A3d3dCBUWvCdPnuD27dtZ1mtK8+9ZwcHBKFOmDDp16pSn95nS/PPy8oKbm5vB/ImPj8fZs2eznD/5WYdl0wewmzdv4uDBg3B2ds7zNHJazouSf/75B9HR0VnWaorzUG/t2rXw8/ODr69vnt8rax7m9Lvg5+cHKysrg/lx48YN3Lt3L8v5kZ91t0iSfGHAS2nz5s1Cq9WKdevWif/9739i6NChwtHRUURERAghhHjnnXfEhAkT1PFPnTolihUrJubPny+uX78upk6dKqysrMSVK1dkNSFLH3zwgXBwcBBHjx4VDx48UP8lJiaq4zzfvunTp4v9+/eL27dviwsXLog+ffoIGxsbce3aNRlNyNGYMWPE0aNHxd27d8WpU6dEQECAKF26tIiKihJCmPb800tLSxOenp5i/PjxGV4ztfn3+PFjcenSJXHp0iUBQCxYsEBcunRJvTJw9uzZwtHRUezatUv8/vvvokuXLsLLy0skJSWp02jVqpVYunSp+jyndbiwZdfG1NRU8cYbb4hy5cqJy5cvG6yXKSkp6jSeb2NOy3lRad/jx4/Fxx9/LEJDQ8Xdu3fFwYMHRb169USVKlVEcnJylu0zpXmoFxcXJ2xtbcWKFSsynUZRnYe5+V14//33haenpzh8+LD49ddfhb+/v/D39zeYTrVq1cT27dvV57lZd4s6hjBJli5dKjw9PYW1tbVo0KCBOHPmjPpa8+bNRWBgoMH4P/74o6hataqwtrYWNWvWFD///HMhV5w7ADL9FxwcrI7zfPtGjhypfheurq6iY8eO4uLFi4VffC717t1buLu7C2tra1G2bFnRu3dvcevWLfV1U55/evv37xcAxI0bNzK8Zmrz78iRI5kuk/o2pKeni8mTJwtXV1eh1WpF69atM7S7QoUKYurUqQbDsluHC1t2bbx7926W6+WRI0fUaTzfxpyW88KUXfsSExNF27ZthYuLi7CyshIVKlQQQ4YMyRCmTHke6q1atUoUL15cxMbGZjqNojoPc/O7kJSUJIYNGyZKlSolbG1txZtvvikePHiQYTrPvic3625RpxFCCOPsYyMiIiKirPCcMCIiIiIJGMKIiIiIJGAIIyIiIpKAIYyIiIhIAoYwIiIiIgkYwoiIiIgkYAgjIiIikoAhjIiIiEgChjAiIiIiCRjCiIiIiCRgCCMiIiKS4P8A0DG0peN/b4oAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Write your code here\n", + "fix = plt.subplot()\n", + "xlo = -2\n", + "xhi = 20\n", + "ylo = -20\n", + "yhi = 120\n", + "plt.axis([xlo, xhi, ylo, yhi])\n", + "plt.plot([0, 0], [ylo, yhi], \"black\")\n", + "plt.plot([xlo, xhi], [0, 0], \"black\")\n", + "wall_distance = random.randint(2, xhi-2)\n", + "wall_height = random.randint(2, yhi-20)\n", + "plt.plot([wall_distance, wall_distance], [0, wall_height], \"brown\")\n", + "plt.grid()\n", + "display.display(plt.gcf())\n", + "\n", + "x = np.linspace(0, xhi, xhi*1000)\n", + "# a = -4.9\n", + "a = -2\n", + "c = 0\n", + "# b = float(input(\"We are standing at origin (0, 0), guess velocity at which we need to throw ball to cross the wall: \"))\n", + "b = 1\n", + "while a*wall_distance**2 + b*wall_distance + c < wall_height:\n", + " b += 1\n", + "plt.title(f\"Velocity of {b} should suffice when wall of {wall_height} height is {wall_distance} distance away.\")\n", + "y = a*x**2 + b*x + c\n", + "x2 = []\n", + "y2 = []\n", + "for i in range(len(y)):\n", + " if y[i] < 0:\n", + " break\n", + " x2.append(x[i])\n", + " y2.append(y[i])\n", + "\n", + "time.sleep(0.5)\n", + "display.clear_output(wait=True)\n", + "plt.plot(x2, y2, \"b\")\n", + "\n", + "ball = plt.plot([x2[0]], [y2[0]], 'ro')[0]\n", + "\n", + "for i in range(1, len(x2)):\n", + " if i%1000 != 0 and i < len(x2) - 2:\n", + " continue\n", + " display.display(plt.gcf())\n", + " time.sleep(0.5)\n", + " display.clear_output(wait=True)\n", + " ball.remove()\n", + " ball = plt.plot([x2[i]], [y2[i]], 'ro')[0]\n", + "\n", + "display.display(plt.gcf())\n", + "time.sleep(0.5)\n", + "display.clear_output(wait=True)\n", + "# This step does not have a test" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "pE5o0-VMaIy3" + }, + "source": [ + "# Step 24 - Define Graphing Functions" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "c5tXoITnag_P" + }, + "source": [ + "Building on what you have already done, create a menu with the following options:
\n", + "
    \n", + "
  • Display the graph and a table of values for any \"y=\" equation input
  • \n", + "
  • Solve a system of two equations without graphing
  • \n", + "
  • Graph two equations and plot the point of intersection
  • \n", + "
  • Given a, b and c in a quadratic equation, plot the roots and vertex
  • \n", + "
\n", + "Then think about how you will define a function for each item." + ] + }, + { + "cell_type": "code", + "execution_count": 195, + "metadata": { + "id": "lvuStaKYalPo" + }, + "outputs": [], + "source": [ + "# Write your code here\n", + "from sympy.parsing.sympy_parser import parse_expr\n", + "def table_and_graph():\n", + " x, y = symbols(\"x y\")\n", + " eq = input(\"y = \")\n", + " expr = parse_expr(eq)\n", + " xlo = -10\n", + " xhi = 10\n", + " density = 5\n", + " points = (xhi-xlo) * density\n", + " x_inputs = np.linspace(xlo, xhi, points)\n", + " y_outputs = []\n", + " for n in x_inputs:\n", + " y_outputs.append(expr.evalf(subs={x: n}))\n", + " \n", + " ax = plt.subplot()\n", + " ax.set_axis_off()\n", + " title = f\"y = {eq}\"\n", + " cols = ('x', 'y')\n", + " rows = []\n", + " for i in range(xlo, xhi + 1):\n", + " rows.append([f\"{i:.2f}\", f\"{round(float(expr.evalf(subs={x: i})), 2):.2f}\"])\n", + " \n", + " ax.set_title(title)\n", + " plt.table(cellText=rows, colLabels=cols, cellLoc='center', loc='upper left')\n", + " plt.show()\n", + " \n", + " fig, axis = plt.subplots()\n", + " fig_min = float(min(min(x_inputs), min(y_outputs)))\n", + " fig_max = float(max(max(x_inputs), max(y_outputs)))\n", + " plt.axis([fig_min, fig_max, fig_min, fig_max])\n", + " plt.plot([fig_min, fig_max], [0, 0], \"black\")\n", + " plt.plot([0, 0], [fig_min, fig_max], \"black\")\n", + " plt.plot(x_inputs, y_outputs, \"b\")\n", + " plt.show()\n", + "\n", + "def solve_system_of_equations():\n", + " x, y = symbols(\"x y\")\n", + " eq1 = input(\"First euqation: 0 = \")\n", + " eq2 = input(\"Second equation: 0 = \")\n", + " solutions = solve([eq1, eq2], [x, y])\n", + " if len(solutions):\n", + " print(\"Euqations intercept at:\")\n", + " for solution in solutions:\n", + " # WARNING: this will raise error for complex numbers\n", + " print(f\"({float(solution[0])}, {float(solution[1])})\")\n", + " else:\n", + " print(\"Give equations do not intercept\")\n", + "\n", + "def equations_intercept():\n", + " x, y = symbols(\"x y\")\n", + " eq1 = input(\"First euqation: 0 = \")\n", + " eq2 = input(\"Second equation: 0 = \")\n", + " solutions = solve([eq1, eq2], [x, y])\n", + " if len(solutions) == 0:\n", + " print(\"Equations do not intercept\")\n", + " return\n", + " x_intercept_1 = float(solutions[0][0])\n", + " y_intercept_1 = float(solutions[0][1])\n", + " xlo = x_intercept_1 - 20\n", + " xhi = x_intercept_1 + 20\n", + " ylo = y_intercept_1 - 20\n", + " yhi = y_intercept_1 + 20\n", + " density = 5\n", + " x_inputs = [i for i in np.arange(xlo, xhi+0.2, 0.2)]\n", + " y_solver1 = solve(eq1, y)[0]\n", + " y_solver2 = solve(eq2, y)[0]\n", + " y_ouputs_1 = [float(y_solver1.evalf(subs={x: i})) for i in x_inputs]\n", + " y_ouputs_2 = [float(y_solver2.evalf(subs={x: i})) for i in x_inputs]\n", + " fig, axis = plt.subplots()\n", + " plt.axis([xlo, xhi, ylo, yhi])\n", + " plt.plot([xlo, xhi], [0, 0], \"black\")\n", + " plt.plot([0, 0], [ylo, yhi], \"black\")\n", + " plt.plot(x_inputs, y_ouputs_1, \"blue\")\n", + " plt.plot(x_inputs, y_ouputs_2, \"orange\")\n", + " for solution in solutions:\n", + " plt.plot([solution[0]], [solution[1]], \"ro\")\n", + " plt.show()\n", + "\n", + "def quadratic_eq_roots_and_vertex():\n", + " a = float(input(\"a = \"))\n", + " b = float(input(\"b = \"))\n", + " c = float(input(\"c = \"))\n", + " vertex_x = -b/(2*a)\n", + " vertex_y = a*vertex_x**2 + b*vertex_x + c\n", + " root_1 = 0\n", + " root_2 = 0\n", + " has_roots = b**2 - 4*a*c >= 0\n", + " if has_roots:\n", + " root_1 = vertex_x + (math.sqrt(b**2 - 4*a*c)/(2*a))\n", + " root_2 = vertex_x - (math.sqrt(b**2 - 4*a*c)/(2*a))\n", + " else:\n", + " print(\"Given quadratic equation has no roots i.e. do not intercept x-axis at all\")\n", + " \n", + " xlo = root_1 - 20 if has_roots else vertex_x - 20\n", + " xhi = root_2 + 20 if has_roots else vertex_x + 20\n", + " ylo = -20 - abs(root_2-root_1) if has_roots else vertex_y - 20\n", + " yhi = 20 + abs(root_2-root_1) if has_roots else vertex_y + 20\n", + " fig, axis = plt.subplots()\n", + " plt.axis([xlo, xhi, ylo, yhi])\n", + " plt.plot([xlo, xhi], [0, 0], \"black\")\n", + " plt.plot([0, 0], [ylo, yhi], \"black\")\n", + " density = 5\n", + " x = [x_i for x_i in np.arange(xlo, xhi+ 1/density, 1/density)]\n", + " y = [a*x_i**2 + b*x_i + c for x_i in x]\n", + " plt.plot(x, y, \"blue\")\n", + " plt.plot([vertex_x], [vertex_y], \"ro\")\n", + " if has_roots:\n", + " plt.plot([root_1], [0], \"go\")\n", + " plt.plot([root_2], [0], \"go\")\n", + " plt.grid()\n", + " plt.show()\n", + "# This step does not have a test" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "D7ASvHg3b2Ph" + }, + "source": [ + "# Step 25 - Certification Project 2" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "KBcTUf08cRy1" + }, + "source": [ + "Build a graphing calculator that performs the functions mentioned in the previous step:\n", + "
    \n", + "
  • Display the graph and a table of values for any \"y=\" equation input
  • \n", + "
  • Solve a system of two equations without graphing
  • \n", + "
  • Graph two equations and plot the point of intersection
  • \n", + "
  • Given a, b and c in a quadratic equation, plot the roots and vertex
  • \n", + "
\n", + "Define each of the functions, and make each option call a function." + ] + }, + { + "cell_type": "code", + "execution_count": 204, + "metadata": { + "id": "bmuz1zCecVCX" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "What would you like to do?\n", + "1: Display the graph and a table of values for any \"y=\" equation input\n", + "2: Solve a system of two equations without graphing\n", + "3: Graph two equations and plot the point of intersection\n", + "4: Given a, b and c in a quadratic equation, plot the roots and vertex\n" + ] + }, + { + "name": "stdin", + "output_type": "stream", + "text": [ + " 3\n", + "First euqation: 0 = 2*x + y + 5\n", + "Second equation: 0 = 2*x**2 + 3*y - 7\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAGdCAYAAAA8F1jjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABIJUlEQVR4nO3dd3hUZcL+8e8kpEBCEkogRCJVUFAhsoKgKChL0de6omsHEWmCNJEiICBdRUQEUSm+62tZXd0frp3FjlhjQWFBYENL6BkSSIDk/P54mEA0CSkz88xk7s91zTVPkpMz9xAht+d5zjkux3EcRERERAJQmO0AIiIiIiVRUREREZGApaIiIiIiAUtFRURERAKWioqIiIgELBUVERERCVgqKiIiIhKwVFREREQkYFWzHaCyCgoK2LlzJzVr1sTlctmOIyIiImXgOA6HDh0iOTmZsLCSj5sEfVHZuXMnKSkptmOIiIhIBWzbto2GDRuW+PWgLyo1a9YEzBuNi4uznEZ8LT0dOnaE7GyYPh3uu892IqkKcnJySE5OBsz//MTExFhOJFL1ud1uUlJSCn+Pl8QV7Pf6cbvdxMfHk5WVpaISIp57Dvr3h+ho+P57OPts24kk2OXk5BAbGwtAdna2ioqIH5T197cW00rQ6dcPevSA3Fzo0wfy820nEhERX1FRkaDjcpmjKnFxsHYtPPaY7UQiIuIrKioSlBo2hCeeMONJk+CXX6zGERERH1FRkaDVpw9ceSXk5Znx8eO2E4mIiLepqEjQcrlgyRJISICvv4a5c20nEhERb1NRkaB2xhkwf74ZT54MP/9sN4+IiHiXiooEvTvugKuvhmPHzBTQsWO2E4mIiLeoqEjQc7ngmWegVi349luYPdt2IhER8RYVFakSGjSAp54y46lT4Ycf7OYRERHvUFGRKuOWW+D6609OAR09ajuRiIhUloqKVBkuFyxaBHXqQFoazJhhO5GIiFSWiopUKfXrw8KFZjx9urkXkIiIBC8VFalybroJbrzRXADurrs0BSQiEsxUVKTKcbng6achMRF++gmmTbOdSEREKkpFRaqkxERTVgBmzoRvvrGbR0REKkZFRaqsG2+Em2+G/HxzFlBenu1EIiJSXioqUqU99RTUqwfr1sGUKbbTiIhIeamoSJVWty4sXmzGs2fDV1/ZzSMiIuWjoiJV3vXXw223QUGBOQsoN9d2IhERKSsVFQkJTz4JSUmwfj1MmmQ7jYiIlJWKioSE2rXNjQsBHnsM1qyxm0dERMpGRUVCxjXXwJ13mimgPn3gyBHbiURE5HRUVCSkPPEEJCfDf/4DDz1kO42IiJyOioqElFq14NlnzXjePPjsM7t5RESkdCoqEnKuvBL69gXHMc+HD9tOJCIiJVFRkZD0+OPQsCFs2gTjx9tOIyIiJVFRkZCUkADPPWfG8+fDxx9bjSMiIiVQUZGQ1aMH9O9vxnffDdnZdvOIiMgfqahISHv0UTjzTNi8GcaOtZ1GRER+T0VFQlpcHDz/vBkvXAirV9vNIyIiRamoSMjr1g0GDjTju++GQ4fs5hERkZNUVESAOXOgcWPYuhXGjLGdRkREPHxaVD755BOuvvpqkpOTcblcvPnmm0W+3qdPH1wuV5FHz549fRlJpFg1a8LSpWa8eDF8+KHdPCIiYvi0qOTk5NCmTRsWLlxY4jY9e/Zk165dhY+XXnrJl5FEStS1KwwZYsb9+oHbbTePiIhANV/uvFevXvTq1avUbaKiokhKSvJlDJEymzUL3nnHnAU0ejQsWWI7kYhIaLO+RuWjjz6iXr16tGzZkkGDBrFv375St8/Ly8Ptdhd5iHhLbCwsW2bGzz4L771nN4+ISKizWlR69uzJCy+8wKpVq5g9ezYff/wxvXr1Ij8/v8TvmTlzJvHx8YWPlJQUPyaWUHDppXD//Wbcrx8cPGg1johISHM5juP45YVcLt544w2uu+66ErfZvHkzzZo148MPP+SKK64odpu8vDzy8vIKP3a73aSkpJCVlUVcXJy3Y0uIOnwY2rQx9wLq2/fkQlupmnJycoiNjQUgOzubmJgYy4lEqj632018fPxpf39bn/o5VdOmTalbty6bNm0qcZuoqCji4uKKPES8rUYNMwXkcpnnt9+2nUhEJDQFVFHZvn07+/bto0GDBrajiHDJJTBihBn37w8HDtjNIyISinxaVLKzs0lLSyMtLQ2ALVu2kJaWRnp6OtnZ2TzwwAN8+eWXbN26lVWrVnHttdfSvHlzevTo4ctYImX2yCPQogXs3AnDh9tOIyISenxaVL755htSU1NJTU0FYOTIkaSmpjJp0iTCw8P58ccfueaaa2jRogX9+vWjXbt2fPrpp0RFRfkylkiZVa8Oy5dDWBi88AKsXGk7kYhIaPHbYlpfKetiHJHKGDMG5s6FpCRYtw5q17adSLxJi2lF/C8oF9OKBKqpU+HssyEjA4YNs51GRCR0qKiIlEF0NKxYYaaAXnwR3njDdiIRkdCgoiJSRu3bn7yz8sCBsHev3TwiIqFARUWkHB5+GFq3ht27YehQ22lERKo+FRWRcoiKMmcBhYfDyy/Da6/ZTiQiUrWpqIiU05/+BOPGmfGgQeboioiI+IaKikgFTJwI559v1qkMHgzBfZK/iEjgUlERqYDISDMFVK0avP46vPqq7UQiIlWTiopIBaWmwoQJZjxkCGRm2s0jIlIVqaiIVML48dC2LezbZ9araApIRMS7VFREKsEzBRQRYS4C99JLthOJiFQtKioildSmjVlcC3DffbBrl908IiJViYqKiBeMHQsXXAAHDsCAAZoCEhHxFhUVES+IiDD3AoqIgJUr4W9/s51IRKRqUFER8ZJzz4UpU8x42DDYscNuHhGRqkBFRcSLHngALrwQDh6Ee+/VFJCISGWpqIh4UbVq5iygyEh4+20zFhGRilNREfGyVq1g2jQzHj4ctm+3GkdEJKipqIj4wKhRcNFF4HbDPfdoCkhEpKJUVER8IDzcTPtER8N778Hzz9tOJCISnFRURHykZUt45BEzHjkS0tPt5hERCUYqKiI+NHw4dOoEhw5Bv36aAhIRKS8VFREfCg+HZcugenX48ENYssR2IhGR4KKiIuJjLVrAzJlmPGoUbNliN4+ISDBRURHxg6FDoXNnyMkxU0AFBbYTiYgEBxUVET8ICzNTQDVqwOrVsGiR7UQiIsFBRUXET5o1g9mzzXjMGNi82W4eEZFgoKIi4keDB0OXLnD4MPTtqykgEZHTUVER8aOwMFi6FGJi4JNP4KmnbCcSEQlsKioiftakCcyda8Zjx8LGjXbziIgEMhUVEQsGDIArroAjR8wUUH6+7UQiIoFJRUXEgrAwc/+f2Fj4/HN48knbiUREApOKiogljRrB44+b8fjxsGGD3TwiIoFIRUXEonvuge7dITcX+vTRFJCIyO+pqIhY5HLBc89BXBx8+eXJIywiImL4tKh88sknXH311SQnJ+NyuXjzzTeLfN1xHCZNmkSDBg2oXr063bp1Y6NOgZAQk5IC8+aZ8cSJ8OuvdvOIiAQSnxaVnJwc2rRpw8KFC4v9+pw5c3jyySdZvHgxa9euJSYmhh49epCbm+vLWCIBp29f6NUL8vLMFNDx47YTiYgEBpfjOI5fXsjl4o033uC6664DzNGU5ORkRo0axejRowHIysqifv36LF++nL/+9a9l2q/b7SY+Pp6srCzi4uJ8FV/E53bsgNatISvL3G157FjbiUJHTk4OsbGxAGRnZxMTE2M5kUjVV9bf39bWqGzZsoWMjAy6detW+Ln4+Hg6dOjAmjVrSvy+vLw83G53kYdIVXDGGTB/vhlPngw//2w3j4hIILBWVDIyMgCoX79+kc/Xr1+/8GvFmTlzJvHx8YWPlJQUn+YU8ac774T/+R84etRMAR07ZjuRiIhdQXfWz7hx48jKyip8bNu2zXYkEa9xueCZZ6BWLfj2W5gzx3YiERG7rBWVpKQkADIzM4t8PjMzs/BrxYmKiiIuLq7IQ6QqSU6GBQvMeMoU+PFHu3lERGyyVlSaNGlCUlISq1atKvyc2+1m7dq1dOzY0VYskYBw661w7bVm6kdTQCISynxaVLKzs0lLSyMtLQ0wC2jT0tJIT0/H5XIxfPhwHnnkEf7f//t//PTTT9x5550kJycXnhkkEqpcLli8GGrXhu+/N2cBiYiEIp8WlW+++YbU1FRSU1MBGDlyJKmpqUyaNAmAMWPGMHToUO69914uvPBCsrOzeffdd4mOjvZlLJGgkJQEnksQTZsGJ/q+iEhI8dt1VHxF11GRqsxxoHdveP11OP98+PpriIy0narq0XVURPwv4K+jIiKn53LB009D3bpmUe0jj9hOJCLiXyoqIgGuXj1TVgBmzDCnLYuIhAoVFZEg0Ls33HQT5Oebs4Dy8mwnEhHxDxUVkSCxcKE5uvLzzzB1qu00IiL+oaIiEiTq1jWnLAPMmmUW1oqIVHUqKiJB5Prr4ZZboKAA7roLcnNtJxIR8S0VFZEgs2AB1K8Pv/4KDz9sO42IiG+pqIgEmTp1zI0LAebOhS+/tJtHRMSXVFREgtC118Idd5gpoD594MgR24lERHxDRUUkSM2fDw0awIYNMHGi7TQiIr6hoiISpGrVgmefNePHH4fPP7ebR0TEF1RURILYVVeZqR/Hgb594fBh24lERLxLRUUkyM2bB2ecARs3woQJttOIiHiXiopIkEtIgOeeM+P58+GTT6zGERHxKhUVkSqgZ0/o1+/kFFBOju1EIiLeoaIiUkU89hikpMDmzTBunO00IiLeoaIiUkXEx8Pzz5vxggXw0UdW44iIeIWKikgV8uc/w4ABZty3L2Rn280jIlJZKioiVczcudCoEWzdCmPG2E4jIlI5KioiVUzNmrB0qRkvWgSrVtnNIyJSGSoqIlXQ5ZfD4MFmfPfd4HbbzSMiUlEqKiJV1OzZ0KQJpKfDAw/YTiMiUjEqKiJVVGwsLFtmxkuWwPvv280jIlIRKioiVdhll8HQoWbcrx9kZdnNIyJSXioqIlXczJnQrBls3w6jRtlOIyJSPioqIlVcTIyZAnK5zAXh3nnHdiIRkbJTUREJAZ07w/DhZnzPPXDggNU4IiJlpqIiEiIeeQRatICdO2HECNtpRETKRkVFJETUqHFyCmjFCli50nYiEZHTU1ERCSGdOp1cUDtgAOzfbzePiMjpqKiIhJipU+Hss2HXLrj/fttpRERKp6IiEmKqV4flyyEsDP72N3jzTduJRERKpqIiEoI6dDh5Wf2BA2HfPrt5RERKoqIiEqIefhhatYLMzJNXrxURCTQqKiIhKjraTAGFh8NLL8Hrr9tOJCLyR9aLysMPP4zL5SryOPvss23HEgkJF14IY8ea8aBBsGeP3TwiIr9nvagAtG7dml27dhU+PvvsM9uRRELGxIlw7rmmpAwZYjuNiEhRAVFUqlWrRlJSUuGjbt26tiOJhIyoKHMBuPBw+Pvf4dVXbScSETkpIIrKxo0bSU5OpmnTptx2222kp6fbjiQSUi64ACZMMOPBg80CWxGRQGC9qHTo0IHly5fz7rvvsmjRIrZs2ULnzp05dOhQsdvn5eXhdruLPESk8iZMgDZtzKnKgwaB49hOJCISAEWlV69e9O7dm/PPP58ePXrw9ttvc/DgQV4t4fjzzJkziY+PL3ykpKT4ObFI1RQZaaaAqlWDN96Al1+2nUhEJACKyu8lJCTQokULNm3aVOzXx40bR1ZWVuFj27Ztfk4oUnW1aWMW1wLcdx9kZNjNIyIScEUlOzub3377jQYNGhT79aioKOLi4oo8RMR7xo2D1FRzw8KBAzUFJCJ2WS8qo0eP5uOPP2br1q188cUXXH/99YSHh3PLLbfYjiYSkiIizBRQRAT885/w4ou2E4lIKLNeVLZv384tt9xCy5Ytuemmm6hTpw5ffvkliYmJtqOJhKzzzjOX2Adzef2dO63GEZEQ5nKc4D6w63a7iY+PJysrS9NAIl50/Dh07AjffANXXQUrV4LLZTuVb+Tk5BAbGwuY6eeYmBjLiUSqvrL+/rZ+REVEAlO1auZeQJGR8K9/wQsv2E4kIqFIRUVEStS6NUydasb33w/bt9vNIyKhR0VFREo1ahR06ABZWdC/v84CEhH/UlERkVJ5poCiouDdd2HpUtuJRCSUqKiIyGmdfTY88ogZjxgBuh2XiPiLioqIlMmIEeYsoEOH4J57NAUkIv6hoiIiZRIebqaAoqPhgw/g2WdtJxKRUKCiIiJl1qIFzJxpxqNGwdatVuOISAhQURGRchk2DC65BLKzoV8/KCiwnUhEqjIVFREpl7AwWLYMqleHf/8bnnnGdiIRqcpUVESk3Jo3h9mzzfiBB2DzZrt5RKTqUlERkQoZMgQuuwxycuDuuzUFJCK+oaIiIhUSFmYu/hYTAx9/DAsX2k4kIlWRioqIVFjTpjBnjhk/+CBs2mQ3j4hUPSoqIlIpAwfC5ZfDkSPQt6+mgETEu1RURKRSwsLg+echNhY++wyefNJ2IhGpSlRURKTSGjeGxx4z43Hj4D//sRpHRKqQarYDiEjV0L8/vPaaubx+nz7w6afmsvsByXHg0CbY8ynsXUNUTgbvjTXTVpE/joI650NSN4hrYTupSMhzOU5w31rM7XYTHx9PVlYWcXFxtuOIhLT0dDj3XHPjwkcfNZfZDyj5ubD1JdjwBBz88fTb1/4TNLkLmt8D4dE+jycSSsr6+1tFRUS86vnnzd2Vo6IgLQ3OPtt2IswRlPRX4dvhkJthPhcWCXU6QOIl5EU0oN+AYURVg0VzhhOZvQ4y/w1Ovtm2xpnQdiY0+iu4NGMu4g0qKiJihePAlVfCu+9C+/bw+edQzeYk8+Ht8NVA2Pkv83GNFGgx1BwliawFQE5ODrGxsQBkZ2cTExMDuXvgvy/Dr3PMPgDqXw6dXoTqSTbeiUiVUtbf3/pfAxHxKpcLnn0W4uPhq69OLrK1Ys8aeLedKSlhkXDew3D1Rmj1QGFJKVF0IrQcCv+zAdpMh/Aa5ijLO6mQudov8UVERUVEfKBhQ3jiCTOeNAnWrbMQYsvfYFUXyN0NCedDrzQ4bzKER5VvP9VqQOvx0PMbiG9tpo7+3Q22/K8vUovI76ioiIhP3HUXXHUVHD1qzgI6ftyPL77xGVhzBxQchYbXwZ8/h/hzKrfP+HOgx1podCs4BbDmLvM6IuJTKioi4hMuFyxZAgkJ8M03Jy+173ObV8DXA8245Qjo/DpExHpn39VioNP/Qov7AMe8zoanvLNvESmWioqI+ExyMixYYMYPPww//eTjF0x/DdbebcYthsEFj3n/LB1XGLR7Elo9aD7+dhhse9O7ryEihVRURMSnbrsNrrkGjh0z00HHjvnohfZ/a6Z7nAJofi+0e8Ic1vEFlwvazITmAwEHvrgV9n7lm9cSCXEqKiLiUy4XPPMM1K4N338Ps2b54EWOZMIn15kLuiVfCX962nclxcPlgj8tMK+XfwQ+uRoO7/Dta4qEIBUVEfG5pCR46sRSjqlTzYXgvKbgGHx2o7nWSVxL6PR/EOana/eHVYOLX4GENubsoi9uhQJ/rhoWqfpUVETEL/76V7jhBnP2T58+5mwgr/j5EdjzGUTEwaX/hMh4L+24jCJi4ZK/Q7VY2P0J/DzNv68vUsWpqIiIX7hc8PTTUKcO/PADTJ/uhZ3u/RLWndjRhc+YIyo2xJ0F7ZeY8c/TdEE4ES9SURERv6lf35QVgBkz4LvvKrGzY9nwxe3mfjyNboXGf/VKxgprfAs06wc48GVfk09EKk1FRUT86qaboHfvk1NAeXkV3FHag5D9G9RoCBcu9GbEirvgCYhpBDn/hR8fsp1GpEpQURERv1u4EBITzXVVplVkScfer2DjIjO+aBlEJngzXsVFxJ6cAtrwpLnXkIhUioqKiPhdYiIsOtEzZs2Cr78uxzcX5MPXgwAHGt8GSd18EbHiGnSHJncCDnx1D+R7a9WwSGhSURERK/7yF3MmUH6+mQLKzS3jN258Gg58BxHxkGrz1syluOBxiK4HWb/AxgCZlhIJUgFRVBYuXEjjxo2Jjo6mQ4cOfPWVrvAoEgqeesossP3lF5gypQzfkLv75NqPtjOhen2f5quwqDrQZoYZ/zQFcvfazSMSxKwXlVdeeYWRI0cyefJkvvvuO9q0aUOPHj3YvXu37Wgi4mN16pir1oK5aeHataf5hp+nwTE31G4Hze71eb5KadIHarWFY1nw0yTbaUSClstxHMdmgA4dOnDhhRfy1InLVhYUFJCSksLQoUMZO3bsab/f7XYTHx/Pzp07iYuL83VcEfGBe+6J4uWXq9GiRQGff36E6tX/uI0reyPV/30hLuc4Rzr9i4LEy7z2+jk5OdSvb47OZGZmEhMT45X9hu39hOqfX4lDGEe6rsGJa+2V/YpUBW63m+TkZLKyskr//e1YlJeX54SHhztvvPFGkc/feeedzjXXXFPs9+Tm5jpZWVmFj23btjmAHnroEdSPWg7sdMBxYE6x2/z9fhznRZyVo21nLd/jtRO53wqy3Hro4a9HVlZWqV3B6tTP3r17yc/PL/w/GY/69euTkZFR7PfMnDmT+Pj4wkdKSoo/ooqITx0APFM5o4CORb56UXO4sT3kF8DYl/2drXLGvgzH8+GqVPM+RKR8qtkOUF7jxo1j5MiRhR+73W5SUlI09SNSBQwYcIwXX4ygefPP+OLTbGK//xxXRgYRe+dDwQ8UNL6Tteuf9vrr+mrqx8P5fjCkv8BnT3clt9NKr+5bJFh5pn5Ox2pRqVu3LuHh4WRmZhb5fGZmJklJScV+T1RUFFFRUX/4fExMjNf/cRER/3rqKVi9Gs7b9CYRZ91P9eztJ79YGyIWdCLiEt/+PffJvyVtp8D2lwjfs5qY7G+g/mXe3b9IEMrPzy/TdlanfiIjI2nXrh2rVq0q/FxBQQGrVq2iY8eOpXyniFRFCQmwsu8/eI0biTu1pADsB24fBP/4h41olRPbGJrdY8Y/PgR2z2EQCSrWT08eOXIkzz77LCtWrODXX39l0KBB5OTk0LdvX9vRRMTf8vO5YMX9uHBK/sdp+HBzlbhg03oChEXBns9g9ye204gEDetrVG6++Wb27NnDpEmTyMjIoG3btrz77rt/WGArIiHg009h+3ZcJX3dcWDbNrNdly5+DOYFNc6Apn1h02L4Zbamf0TKyPoRFYD77ruP//73v+Tl5bF27Vo6dOhgO5KI2LBrl3e3CzTnjAZXGOx6Bw78aDuNSFAIiKIiIgJAgwbe3S7Q1GwGKb3N+JfZdrOIBAkVFREJHJ07Q8OG4Cph8sflgpQUs12wavWgeU5/BbK3Wo0iEgxUVEQkcISHw/z5mAtWFlWAy5ws88QTZrtgVTsVkv4MTj6sn2c7jUjAU1ERkcBydXcYWQNqF/30dhoyMPE1Dv35Bju5vOmc0eZ58zI4dshuFpEAZ/2sHxGRIjYvgwsOwyXNIf4ZyMjkSEIDug7qzOb/huN6ABYvth2ykpK6QVxLcG+AzSug5X22E4kELB1REZHA4TiwcaEZtxoOXS+HW26heq8uPL/cTPc88wy8/769iF7hCoOzTpSTjU+BU2A3j0gAU1ERkcCRudocZagWC03uLPKlLl3gvhO/2++5B7Ky/B/Pq5reBdVqmveb8aHtNCIBS0VFRALHxhM3HGxyB0TU/MOXZ82Cpk3NNd9Gj/ZzNm+LqAlN+5jxhgVWo4gEMhUVEQkMh3fC9jfN+KxBxW4SEwPLl5uzlJ97Dt5912/pfKPFiUNEO/+lU5VFSqCiIiKB4bdnzSm7iZdAwnklbta5M9x/vxnfcw8cPOifeD4R1wLqXwE4sHmp7TQiAUlFRUTsKzgOm54147MGn3bz6dPhrLNgxw4YMcLH2XyteX/z/NtSKAjCmy2K+JiKiojYt+s9OLIDoupCyumvk1KjBixbZqaAli+Hf/3L9xF9puF1EFXHvP9dwT6XJeJ9KioiYp9n2qPx7RAeVaZvufhiGDnSjPv3hwMHfJTN18KjoPGJM5x+e9ZuFpEApKIiInbl7oEdK8242d3l+tZp06BlS3MzZc+6laDkmf7Z8RYcCdI7Q4v4iIqKiNi19UUoOAa125W6iLY41aubqZ+wMPjf/4V//tM3EX0u/hxIvNgsJt68wnYakYCioiIi9jinnO3StHxHUzwuuujkNVUGDIB9+7yUzd8873/LC+bPRUQAFRURsenAd3DwJwiLgsa3VHg3U6bAOedAZiYMG+bFfP505o0QHg3uX82fi4gAKioiYpNnmqPhdRBZq8K7iY6GFSsgPBz+7//gH//wTjy/iogzfw4Am1+wGkUkkKioiIgdBcch/RUz/t19fSriwgvhwQfNeOBA2LOn0rv0v8Z3mOf/vmTW7YiIioqIWJLxIeTuNtdOafBnr+xy0iQ491xTUjw3MAwqDbpDdD3I2wO7gv0W0SLeoaIiInZs/T/zfOZNEBbhlV1GRZmzgMLD4dVX4e9/98pu/SesGjS61Yy3aPpHBFRURMSG44dh+xtm3Pg2r+66XTsYP96MBw+G3bu9unvfa3Ji+mf7P+GY224WkQCgoiIi/rf9/8HxbIhpAnU7en33Dz0E558Pe/eashJUZ/vWSoW4llCQZ/6cREKcioqI+N/WF81z41vNDXu8LDLSnAVUrRq8/jq88orXX8J3XC4482Yz/m8wBRfxDRUVEfGvowcg4z0zbnyrz16mbVtzZAVgyBDIyPDZS3lfoxNFJeM98+clEsJUVETEv7b/05x6G38uxLfy6UuNH28Ky/795pTloJkCim9l/nwKjsG2N22nEbFKRUVE/Cv9xKk4Z/b2+UtFRJgpoIgIcx+g//s/n7+k93iOqvz3Zbs5RCxTURER/zl6EDI+MGM/FBUwi2onTzbjoUNh506/vGzledapZK4yd5gWCVEqKiLiP9v/34lpn9bmjsF+8uCD5rTlAwfMjQuDYgoo7ixzBpCTD9uC8Z4AIt6hoiIi/uPHaZ9TVatmLgQXGQlvvQX/+79+ffmKO/Mm86yiIiFMRUVE/ONoFmScuCy8n4sKmEvrT5lixsOGwY4dfo9Qfik3mOfMf5tpM5EQpKIiIv6xYyUUHIW4c3x+tk9JRo+G9u0hKwv69w+CKaC4FubPyjkOO96ynUbEChUVEfEPzyXzz7zRWgTPFFBUFLzzDixbZi1K2TU8cVTF8+cnEmJUVETE944fgV0nLvLW8DqrUc45B6ZNM+MRI2DbNqtxTs8z/bPzHXOPJJEQo6IiIr6XuQqO50CNFHMmi2UjR8JFF4HbDffcE+BTQLXaQkwjyD8Cu963nUbE76wWlcaNG+NyuYo8Zs2aZTOSiPjC9n+a54bX+uTePuUVHm6mgKKj4f33YfnyarYjlczlOjn9o7N/JARZP6IydepUdu3aVfgYOnSo7Ugi4k0F+bDjxF2AG15rN8spWraEGTPMeNy4SOBMq3lKlXK9ed6x0lyHRiSEWC8qNWvWJCkpqfARExNjO5KIeNO+LyF3N0TEQ73LbKcpYtgwuPhiyM52Ac/bjlOyup0gqi4cOwh7PredRsSvrBeVWbNmUadOHVJTU5k7dy7Hjx8vdfu8vDzcbneRh4gEMM+0T/JVEBZhN8vvhIebM3+qV3eAbsAA25GKFxYOyVeasU5TlhBjtagMGzaMl19+mdWrVzNgwABmzJjBmDFjSv2emTNnEh8fX/hISUnxU1oRqZDtb5rnlOtspijRWWfBlClHT3z0KFu32l9DU6wzrjbPO1bazSHiZy7H8e5697FjxzJ79uxSt/n11185++yz//D5pUuXMmDAALKzs4mKiir2e/Py8sjLyyv82O12k5KSQlZWFnFxcZULLyLe5f4PvNXSHEn5y16ICMy/o4cO5RAX9w1wGZ075/PRR+GEWT/e/DvH3PB6XbNG5X82mIvBiQQxt9tNfHz8aX9/e32p+6hRo+jTp0+p2zRt2rTYz3fo0IHjx4+zdetWWrZsWew2UVFRJZYYEQkwO/9lnhMvDdiSApwoJX2Bn/j00xiefhruu89yqN+LiDNrfDI+NEdV4kbZTiTiF14vKomJiSQmJlboe9PS0ggLC6NevXpeTiUiVuw4UVTOuMpujjLZAowBFvLgg9CrFzRrZjvT75xx9cmico6KioQGawc316xZwxNPPMEPP/zA5s2befHFFxkxYgS33347tWrVshVLRLzl2CHY84kZJwdDUQFYxKWX5nP4MPTtCwUFtvP8zhn/Y573fAZHD9jNIuIn1opKVFQUL7/8MpdddhmtW7dm+vTpjBgxgiVLltiKJCLelPGhWU8R2zyI1lM4LFqUR2wsfPopLFhgO8/vxDY9cZPCfNj5ru00In5h7XKMF1xwAV9++aWtlxcRX9sZTNM+JzVq5PDoozBwIIwbZ6aAWgRSz0q+CrJ+Mff+aXyL7TQiPhdo69pFpCpwHNj5thl7rv8RRO69F7p1gyNHzBRQfr7tRKdI7mWed70LTqDNTYl4n4qKiHjfge/hyC6oFhNwV6MtC5cLnnsOataEL76A+fNtJzpF3YuhWizk7TF/ziJVnIqKiHif52hKUjcID87LCTRqBI8/bsYTJsD69XbzFAqPhKQrzFjrVCQEqKiIiPftet88N+hpN0cl9esHPXpAbi706RNAU0CeP9dd79jNIeIHKioi4l3H3LB3jRk36GE3SyV5poDi4mDtWnjsMduJTvAUlb1rdJqyVHkqKiLiXRn/Buc41DwLYpvYTlNpDRvCE0+Y8aRJ8MsvVuMYsY0h7myzmDbjQ9tpRHxKRUVEvGvXe+Y5yI+mnKpPH7jySsjLM+PT3OTdPzxHVbRORao4FRUR8R7HOVlUkrrbzeJFLhcsWQIJCfD11zB3ru1E/O40Za/eW1YkoKioiIj3HNoEOVvM3ZLrd7WdxqvOOAOefNKMJ0+Gn36ym4fEzhAeDUd2gvtXy2FEfEdFRUS8J+PE2T51L4aIWLtZfOD22+Hqq+HYMTMFdOyYxTDVqkPiJWasdSpShamoiIj3VMH1KadyueCZZ6BWLfjuO5g923KgpD+b510f2M0h4kMqKiLiHQXHIHO1GTeoOutTfq9BA3jqKTOeOhV++MFimKRu5nn3R+bPX6QKUlEREe/Y9xUcz4aoOlCrre00PnXLLXD99SengI4etRSkVlvz5308G/autRRCxLdUVETEOzJWmef6l4Orav/T4nLBokVQpw6kpcGMGbaChEH9E5fT1zoVqaKq9r8mIuI/mZ6icoXdHH5Svz4sXGjG06fD97buD+hZp5KhdSpSNamoiEjlHc85edn8pNAoKgA33QQ33mguAHfXXZamgDzrVPatNbcvEKliVFREpPJ2f2YWc9Y4E2Kb2U7jNy4XPP00JCaa66pMm2YhRGxjiG0OTj5kfmQhgIhvqaiISOV5pn2SrjC/vUNIYqIpKwAzZ8I331gI4TmKlflvCy8u4lsqKiJSeRmhtT7l9268EW6+GfLzzVlAeXl+DlD/cvPsOT1cpApRURGRysnbDwdOrCRNutxuFoueegrq1YN162DKFD+/eP0u5vngj5C7188vLuJbKioiUjm7PwIciG8F1RvYTmNN3bqweLEZz54NX33lxxePrgfxrc1498d+fGER31NREZHK8Uw31A/doyke118Pt90GBQXmLKDcXD++uOcmkJr+kSpGRUVEKsfzf/D1uliNESiefBKSkmD9epg0yY8v7Ckqu1VUpGpRURGRisvdCwd/MuN6l9rNEiBq1zY3LgR47DFYs8ZPL1zvMsAFWb/AkUw/vaiI76moiEjF7fnEPMefC9GJdrMEkGuugTvvNFNAffrAkSN+eNGoOpBwvhnv/sgPLyjiHyoqIlJxnguMec46kUJPPAHJyfCf/8BDD/npRQvXqeh6KlJ1qKiISMV5/s+93mVWYwSiWrXg2WfNeN48+OwzP7yoFtRKFaSiIiIVk7dP61NO48oroW9fcBzzfPiwj1+wXmfABYc2wpEMH7+YiH+oqIhIxez2rE9pba7jIcV6/HFo2BA2bYLx4338YpG1Tq5T2fOpj19MxD9UVESkYjzrU3RacqkSEuC558x4/nz42NfXY/Mc3fIUSZEgp6IiIhXjWZ+ihbSn1aMH9O9vxnffDdnZPnwxFRWpYlRURKT8jh48uT4l8RKrUYLFo4/CmWfC5s0wdqwPXyixs3k++JO5D5NIkFNREZHy2/sl4EBsc6ieZDtNUIiLg+efN+OFC2G1r07MqV4f4loCDuz53EcvIuI/KioiUn57Tpxrm3ix3RxBpls3GDjQjO++Gw4d8tELJZ6Y/tmj6R8JfioqIlJ+nv9TV1EptzlzoHFj2LoVxozx0YtonYpUIT4rKtOnT6dTp07UqFGDhISEYrdJT0/nqquuokaNGtSrV48HHniA48eP+yqSiHhDwTHYt9aMtT6l3GrWhKVLzXjxYvjwQx+8iKeo7P8Wjvly5a6I7/msqBw9epTevXszaNCgYr+en5/PVVddxdGjR/niiy9YsWIFy5cvZ5JfbzcqIuW2/3vIPwKRtU+shZDy6toVhgwx4379wO328gvEnAkxjcDJh71feHnnIv7ls6IyZcoURowYwXnnnVfs199//31++eUX/va3v9G2bVt69erFtGnTWLhwIUePHvVVLBGprL0npn3qdgKXZo8ratYsaNoU0tNh9GgfvIDnaNceFRUJbtb+lVmzZg3nnXce9evXL/xcjx49cLvdrFu3rsTvy8vLw+12F3mIiB95FtLW07RPZcTGwrJlZvzss/Dee15+gbqdzLOOqEiQs1ZUMjIyipQUoPDjjIyS71Exc+ZM4uPjCx8pKSk+zSkip3BOOeW1rhbSVtall8L995txv35w8KAXd57oKSpfQkG+F3cs4l/lKipjx47F5XKV+li/fr2vsgIwbtw4srKyCh/btm3z6euJyCmyN0NuJoRFQp0/2U5TJcyYAc2bw44dMHKkF3ccfy5Ui4Xjh8D9ixd3LOJf1cqz8ahRo+jTp0+p2zRt2rRM+0pKSuKrr74q8rnMzMzCr5UkKiqKqKioMr2GiHiZZ9qn9p8gPNpuliqiRg0zBXTppeb5xhvNXZcrLawa1OkAmavMOpWE4tcLigS6chWVxMREEhMTvfLCHTt2ZPr06ezevZt69cydVz/44APi4uJo1aqVV15DRLxM10/xiUsugREjzJ2W+/eHn3+GWrW8sOPETqao7P0CzhrghR2K+J/P1qikp6eTlpZGeno6+fn5pKWlkZaWRvaJu3F1796dVq1acccdd/DDDz/w3nvv8dBDDzFkyBAdMREJVHtVVHzlkUegRQvYuROGD/fSTut2NM8680eCmM+KyqRJk0hNTWXy5MlkZ2eTmppKamoq33zzDQDh4eG89dZbhIeH07FjR26//XbuvPNOpk6d6qtIIlIZefsh68RaB88ZJeI11avD8uUQFgYvvAArV3php3UvMs/ZmyB3jxd2KOJ/LsdxHNshKsPtdhMfH09WVhZxcXG244hUXTvego+vNhd5+x/fLpr3t5ycHGJjYwHIzs4mJibGWpYxY2DuXEhKgnXroHbtSu7wX61Nwbz0n9DwGq9kFPGGsv7+1tWaRKRsPAtpdVqyT02dCmefDRkZMGyYF3ao66lIkFNREZGyKVxIqwu9+VJ0NKxYYaaAXnwR3nijkjv0rFPZu6bS2URsUFERkdPLz4N9X5uxFtL6XPv28OCDZjxwIOzdW4mdeY6o7PvK3FBSJMioqIjI6e3/FgryICoRap5lO01ImDwZWreG3bvhvvsqsaO4FuYGkvm5cCDNW/FE/EZFRURO79Trp7hcdrOEiKgocxZQeDi88gq89loFd+QK02nKEtRUVETk9HT9FCv+9CcYN86MBw0yR1cqpPC+P1qnIsFHRUVESuc4J3/B6fopfjdxIpx/vlmnMniw+XGUW+GCWh1RkeCjoiIipcv5L+TuBlc1qH2B7TQhJzLSTAFVqwavvw6vvlqBndS+EFzhcHgb5OhGrhJcVFREpHT7Ttw8tFYb3YjQktRUmDDBjIcMgRP3by27iFhIaGPGmv6RIKOiIiKl8xSVOh3s5ghx48dD27awb59Zr1LuKSCtU5EgpaIiIqXbt9Y812lvN0eI80wBRUSYi8C99FI5d6B1KhKkVFREpGQFx801VEBFJQC0aWMW14K5tsquXeX4Zs9C6P3fwfEjXs8m4isqKiJSsqx1kH8EIuLMzQjFurFj4YIL4MABGDCgHFNAMY2gegNwjsP+b3yaUcSbVFREpGSeaZ/aF5oLh4l1ERHmXkAREbByJfztb2X8RpcL6lxkxp51RyJBQP/yiEjJChfSatonkJx7LkyZYsbDhsGOHWX8xjoXmmfPfZtEgoCKioiUbO+JIyp1dcZPoHngAbjwQjh4EO69t4xTQIVFRUdUJHioqIhI8Y4dMmtUQEdUAlC1auYsoMhIePttMz6t2n8yzzlbILcyt2QW8R8VFREp3v7vAAdqNDSLMCXgtGoF06aZ8fDhsH37ab4hMuHk3a+1oFaChIqKiBSv8PopmvYJZKNGwUUXgdsN99xThimg2lqnIsFFRUVEiqeFtEEhPNxM+0RHw3vvwfPPn+YbPOtU9quoSHBQURGR4unS+UGjZUt45BEzHjkS0tNL2fjUM38qdCtmEf9SURGRPzqyy9xp1xUGtdvZTiNlMHw4dOoEhw5Bv36ldJBaqeZOyrkZcKSs5zWL2KOiIiJ/5DmaEtfK3HlXAl54OCxbBtWrw4cfwpIlJWxYrQbEtzZjrVORIKCiIiJ/pOunBKUWLWDmTDMeNQq2bClhQ134TYKIioqI/JEW0gatoUOhc2fIyTFTQAUFxWzk+blqQa0EARUVESnKKTj5C0xFJeiEhZkpoBo1YPVqWLSomI0KT1H+RgtqJeCpqIhIUe4NcMwN4dUh/lzbaaQCmjWD2bPNeMwY2Lz5dxsknAvh0XDsIBza5O94IuWioiIiRXmmfWq3g7BqdrNIhQ0eDF26wOHD0Lfv76aAwiIgoa0Za/pHApyKiogUpfUpVUJYGCxdCjEx8Mkn8NRTv9tAC2olSKioiEhRKipVRpMmMHeuGY8dCxs3nvJFXaFWgoSKioicVHAMDv5oxp477UpQGzAArrgCjhwxU0D5+Se+4FlQu/87KDhuLZ/I6aioiMhJWb9AwVGIiIfYprbTiBeEhZn7/8TGwuefw5NPnvhCXAuIiIP8I+bnLhKgVFRE5KT935rn2heAy2U3i3hNo0bw+ONmPH48bNhA0dsjaPpHApiKioictP8781zrArs5xOvuuQe6d4fcXOjT58QUUG0tqJXAp6IiIicdOFFUaquoVDUuFzz3HMTFwZdfnjjCojN/JAj4rKhMnz6dTp06UaNGDRISEordxuVy/eHx8ssv+yqSiJSmIB8OpJmxjqhUSSkpMG+eGU+cCBsPnCgqB3+E/Fx7wURK4bOicvToUXr37s2gQYNK3W7ZsmXs2rWr8HHdddf5KpKIlObQBrOwsloM1DzLdhrxkb59oVcvyMuD2+89EycqEZzjcOAH29FEiuWzy05OmTIFgOXLl5e6XUJCAklJSb6KISJlVbg+pS2EhVuNIr7jcsGzz0Lr1vDVVy42729Hs/++C5nPQOoRc0fDcP38JXBYX6MyZMgQ6tatS/v27Vm6dCnOaW6QlZeXh9vtLvIQES/QQtqQccYZMH8+XM8/SLz/c5gOjFwGXbtC48bwj3/YjihSyGpRmTp1Kq+++ioffPABf/nLXxg8eDALFiwo9XtmzpxJfHx84SMlJcVPaUWqOC2kDSl3xv6D17mRmkcOFf3Cjh1w440qKxIwylVUxo4dW+wC2FMf69evL/P+Jk6cyMUXX0xqaioPPvggY8aMYa7nes8lGDduHFlZWYWPbdu2lectiEhxnAI48L0Ze66tIVVXfj6u4fcDDn+4Wo7nqPbw4adcxlbEnnKtURk1ahR9+vQpdZumTSt+NcsOHTowbdo08vLyiIqKKnabqKioEr8mIhWUvRmOuSE8GuLOsZ1GfO3TT2H79j+WFA/HgW3bzHZduvgxmMgflauoJCYmkpiY6KsspKWlUatWLRUREX/zXJE24XwI89kaewkUu3Z5dzsRH/LZv0jp6ens37+f9PR08vPzSUtLA6B58+bExsaycuVKMjMzueiii4iOjuaDDz5gxowZjB492leRRKQkWkgbWho08O52Ij7ks6IyadIkVqxYUfhxamoqAKtXr6ZLly5ERESwcOFCRowYgeM4NG/enMcff5z+/fv7KpKIlEQLaUNL587QsKFZOFvMmZaOy4WrYUOznYhlLud05wMHOLfbTXx8PFlZWcTFxdmOIxJ8HAderwtH90PPb0JyMW1OTg6xsbEAZGdnExMTYzmRH/zjH+bsHihSVgpOrFzJf+U1Im66wUYyCRFl/f1t/ToqImLZ4XRTUsIiIP5c22nEX264AV57zVxU5RS7qyVxI68x7WeVFAkMKioioc6zPiX+XAjXQvaQcsMNsHUrrF4NYxrDBNj8wjze4AZmzIBvv7UdUERFRUT2a31KSAsPN6cg33AFtIJOrX7kppvMJVT69DH3BBKxSUVFJNQd0Bk/AtQyJzyw/3sWLoR69eDnn2HqVLuxRFRUREKdjqgInCwqB76nbl1YvNh8OGsWfP21vVgiKioioezILsjNAFeYudibhK6E8wGX+e/hSAbXXw+33AIFBXDXXZCbazughCoVFZFQ5rkibdw5UK2G3SxiV0QsxLUw4xP3fVqwAOrXh19/hYcfthdNQpuKikgo0xVp5VSnTP8A1KkDzzxjPjV3Lnz5paVcEtJUVERCma5IK6c6ZUGtx7XXwh13mCmgPn3gyBE70SR0qaiIhLIDP5hnzy8oCW2/O6LiMX++ue3Phg0wcaKFXBLSVFREQtXRLMjZasa1tJBWOFlUsn8z/314Pl0Lnn3WjB9/HD7/3EI2CVkqKiKh6uBP5rlGCkTWsptFAkN0XajR0IwP/lDkS1ddZaZ+HAf69oXDh/0fT0KTiopIqPL8IkpoYzeHBJZi1ql4zJtnbg20cSNMmODnXBKyVFREQlXh+hRN+8gpSlinApCQAM89Z8bz58Mnn/gvloQuFRWRUHXwR/OsIypyqlKKCkDPntCv38kpoJwcP2aTkKSiIhKKCvJPrlHRFWnlVLVPFJWsXyC/+DsSPvYYpKTA5s0wbpwfs0lIUlERCUXZmyH/MIRHQ82zbKeRQFLjTLO42jkOWT8Xu0l8PDz/vBkvWAAffeS/eBJ6VFREQpFnIW38uRAWbjeLBBaXC2q1NeMDP5a42Z//DAMGmHHfvpCd7ftoEppUVERCkWd9Si2tT5FixJ9nnj3TgyWYOxcaNYKtW2HMGN/HktCkoiISijxn/Gh9ihTHcybYwZKPqADUrAlLl5rxokWwapWPc0lIUlERCUU640dK4zmiklX6ERWAyy+HwYPN+O67we32YS4JSSoqIqFGl86X00loDbggdzccyTzt5rNnQ5MmkJ4ODzzg+3gSWlRUREKNLp0vp1MtBmo2N+MyHFWJjYVly8x4yRJ4/30fZpOQo6IiEmoOan2KlEHCiemfUs78OdVll8HQoWbcrx9kZZW+vUhZqaiIhBqd8SNl4SmyZTii4jFzJjRrBtu3w6hRPsolIUdFRSTU6IwfKYtyHlEBiIkxU0Aul7kg3Dvv+CibhBQVFZFQ4hSccul8HVGRUniKrPsXKDhe5m/r3BmGDzfje+6BAwe8H01Ci4qKSCg59Nspl85vbjuNBLLYphBeA/Jz4dCmcn3rI49AixawcyeMGOGjfBIyVFREQkmRS+dXs5tFApsrDBLONeNyrFMBqFHj5BTQihWwcqUP8knIUFERCSWFF3rT+hQpgwqsU/Ho1OnkgtoBA2D/fi/mkpCioiISSjwLaXXGj5RFBc78OdXUqXD22bBrF9x/vxdzSUhRUREJJTqiIuVRiSMqANWrw/LlEBYGf/sbvPmm15JJCFFREQkVp146X0VFysJzz5+cLXDsUIV20aHDycvqDxwI+/Z5KZuEDBUVkVBReOn8hhBV224WCQ7RdaF6AzM++HOFd/Pww9CqFWRmnrx6rUhZqaiIhIrCS+drfYqUQyXXqQBER5spoPBweOkleP1170ST0OCzorJ161b69etHkyZNqF69Os2aNWPy5MkcPXq0yHY//vgjnTt3Jjo6mpSUFObMmeOrSCKhTetTpCIquU7F48ILYexYMx40CPbsqWQuCRk+Kyrr16+noKCAZ555hnXr1jFv3jwWL17M+PHjC7dxu910796dRo0a8e233zJ37lwefvhhlixZ4qtYIqGr8Iq0KipSDl44ouIxcSKcd54pKUOGVHp3EiJ8dsWnnj170rNnz8KPmzZtyoYNG1i0aBGPPvooAC+++CJHjx5l6dKlREZG0rp1a9LS0nj88ce59957fRVNJPQ4DmStM2PPRbxEyuLUIyqOY67iVkFRUWYKqH17+Pvf4dVX4aabvBNTqi6/rlHJysqidu2Ti/jWrFnDpZdeSmRkZOHnevTowYYNGzigG0SIeM/h7XDMDa5qULOF7TQSTOLOAVc4HDsIR3ZUencXXAATJpjx4MFmga1IafxWVDZt2sSCBQsYMGBA4ecyMjKoX79+ke08H2dkZBS7n7y8PNxud5GHiJyG52hKzbMgPLL0bUVOFR4FcS3NuJLrVDwmTIA2bcypyoMGmQM1IiUpd1EZO3YsLper1Mf69euLfM+OHTvo2bMnvXv3pn///pUKPHPmTOLj4wsfKSkpldqfSEjIOnFqqaZ9pCK8uE4FIDLS3AOoWjV44w14+WWv7FaqqHIXlVGjRvHrr7+W+mjatGnh9jt37qRr16506tTpD4tkk5KSyPzdcT/Px0lJScW+/rhx48jKyip8bNu2rbxvQST0eI6oxLe2m0OCk5fO/DlVmzZmcS3AffdBCQfRRcq/mDYxMZHExMQybbtjxw66du1Ku3btWLZsGWFhRXtRx44dmTBhAseOHSMiIgKADz74gJYtW1KrVq1i9xkVFUVUVFR5Y4uEtoMqKlIJXj6i4jFunLms/vffm6vWvvFGpdbqShXlszUqO3bsoEuXLpx55pk8+uij7Nmzh4yMjCJrT2699VYiIyPp168f69at45VXXmH+/PmMHDnSV7FEQo9TcMoRFU39SAV4jqhk/Qr5R0vfthwiIswUUEQE/POf8OKLXtu1VCE+KyoffPABmzZtYtWqVTRs2JAGDRoUPjzi4+N5//332bJlC+3atWPUqFFMmjRJpyaLeFPOfyH/MIRFQs3mttNIMKpxJkTEgXMc3OtPv305nHeeucQ+mMvr79zp1d1LFeBynOBeb52VlUVCQgLbtm0jLi7OdhyRwLPzXfjsZkhoBd3X2E4TkHJyckhOTgbMurqYmBjLiQLQqj/Dvq+gw3PQqLdXd338OHTrZqaAunc311fRFFDV53a7SUlJ4eDBg8THx5e4XdAXle3bt+vMHxERkSC1bds2GjZsWOLXg76oFBQUsHPnTmrWrInLxxXc0/5C7eiN3rfedyjQ+9b7DgWB9L4dx+HQoUMkJyf/4WSbU/nsEvr+EhYWVmoT84W4uDjrP2Ab9L5Di953aNH7Di2B8r5Lm/Lx8Osl9EVERETKQ0VFREREApaKSjlERUUxefLkkLvgnN633nco0PvW+w4Fwfi+g34xrYiIiFRdOqIiIiIiAUtFRURERAKWioqIiIgELBUVERERCVgqKqexdetW+vXrR5MmTahevTrNmjVj8uTJHD1a9A6iP/74I507dyY6OpqUlBTmzJljKbH3TJ8+nU6dOlGjRg0SEhKK3cblcv3h8fLLL/s3qJeV5X2np6dz1VVXUaNGDerVq8cDDzzA8ePH/RvUDxo3bvyHn++sWbNsx/K6hQsX0rhxY6Kjo+nQoQNfffWV7Ug+9fDDD//h53r22WfbjuV1n3zyCVdffTXJycm4XC7efPPNIl93HIdJkybRoEEDqlevTrdu3di4caOdsF50uvfdp0+fP/z8e/bsaSdsGaionMb69espKCjgmWeeYd26dcybN4/Fixczfvz4wm3cbjfdu3enUaNGfPvtt8ydO5eHH36YJUuWWExeeUePHqV3794MGjSo1O2WLVvGrl27Ch/XXXedfwL6yOned35+PldddRVHjx7liy++YMWKFSxfvpxJkyb5Oal/TJ06tcjPd+jQobYjedUrr7zCyJEjmTx5Mt999x1t2rShR48e7N6923Y0n2rdunWRn+tnn31mO5LX5eTk0KZNGxYuXFjs1+fMmcOTTz7J4sWLWbt2LTExMfTo0YPc3Fw/J/Wu071vgJ49exb5+b/00kt+TFhOjpTbnDlznCZNmhR+/PTTTzu1atVy8vLyCj/34IMPOi1btrQRz+uWLVvmxMfHF/s1wHnjjTf8msdfSnrfb7/9thMWFuZkZGQUfm7RokVOXFxckf8GqoJGjRo58+bNsx3Dp9q3b+8MGTKk8OP8/HwnOTnZmTlzpsVUvjV58mSnTZs2tmP41e//rSooKHCSkpKcuXPnFn7u4MGDTlRUlPPSSy9ZSOgbxf0bfddddznXXnutlTwVoSMqFZCVlUXt2rULP16zZg2XXnopkZGRhZ/r0aMHGzZs4MCBAzYi+tWQIUOoW7cu7du3Z+nSpThV/NI8a9as4bzzzqN+/fqFn+vRowdut5t169ZZTOYbs2bNok6dOqSmpjJ37twqNcV19OhRvv32W7p161b4ubCwMLp168aaNWssJvO9jRs3kpycTNOmTbnttttIT0+3HcmvtmzZQkZGRpGffXx8PB06dKjyP3uAjz76iHr16tGyZUsGDRrEvn37bEcqUdDflNDfNm3axIIFC3j00UcLP5eRkUGTJk2KbOf5JZaRkUGtWrX8mtGfpk6dyuWXX06NGjV4//33GTx4MNnZ2QwbNsx2NJ/JyMgoUlKg6M+7Khk2bBgXXHABtWvX5osvvmDcuHHs2rWLxx9/3HY0r9i7dy/5+fnF/jzXr19vKZXvdejQgeXLl9OyZUt27drFlClT6Ny5Mz///DM1a9a0Hc8vPH9Xi/vZV7W/x7/Xs2dPbrjhBpo0acJvv/3G+PHj6dWrF2vWrCE8PNx2vD8I2SMqY8eOLXYh6KmP3/9DtWPHDnr27Env3r3p37+/peSVU5H3XZqJEydy8cUXk5qayoMPPsiYMWOYO3euD99BxXj7fQez8vxZjBw5ki5dunD++eczcOBAHnvsMRYsWEBeXp7ldyGV0atXL3r37s35559Pjx49ePvttzl48CCvvvqq7WjiB3/961+55pprOO+887juuut46623+Prrr/noo49sRytWyB5RGTVqFH369Cl1m6ZNmxaOd+7cSdeuXenUqdMfFskmJSWRmZlZ5HOej5OSkrwT2EvK+77Lq0OHDkybNo28vLyAupeEN993UlLSH84KCdSfd3Eq82fRoUMHjh8/ztatW2nZsqUP0vlX3bp1CQ8PL/bvbzD8LL0lISGBFi1asGnTJttR/Mbz883MzKRBgwaFn8/MzKRt27aWUtnRtGlT6taty6ZNm7jiiitsx/mDkC0qiYmJJCYmlmnbHTt20LVrV9q1a8eyZcsICyt6IKpjx45MmDCBY8eOERERAcAHH3xAy5YtA27apzzvuyLS0tKoVatWQJUU8O777tixI9OnT2f37t3Uq1cPMD/vuLg4WrVq5ZXX8KXK/FmkpaURFhZW+L6DXWRkJO3atWPVqlWFZ6sVFBSwatUq7rvvPrvh/Cg7O5vffvuNO+64w3YUv2nSpAlJSUmsWrWqsJi43W7Wrl172jMdq5rt27ezb9++IoUtkIRsUSmrHTt20KVLFxo1asSjjz7Knj17Cr/maeS33norU6ZMoV+/fjz44IP8/PPPzJ8/n3nz5tmK7RXp6ens37+f9PR08vPzSUtLA6B58+bExsaycuVKMjMzueiii4iOjuaDDz5gxowZjB492m7wSjrd++7evTutWrXijjvuYM6cOWRkZPDQQw8xZMiQgCtolbFmzRrWrl1L165dqVmzJmvWrGHEiBHcfvvtAVfAK2PkyJHcdddd/OlPf6J9+/Y88cQT5OTk0LdvX9vRfGb06NFcffXVNGrUiJ07dzJ58mTCw8O55ZZbbEfzquzs7CJHibZs2UJaWhq1a9fmzDPPZPjw4TzyyCOcddZZNGnShIkTJ5KcnBz0l1go7X3Xrl2bKVOm8Je//IWkpCR+++03xowZQ/PmzenRo4fF1KWwfdpRoFu2bJkDFPs41Q8//OBccsklTlRUlHPGGWc4s2bNspTYe+66665i3/fq1asdx3Gcd955x2nbtq0TGxvrxMTEOG3atHEWL17s5Ofn2w1eSad7347jOFu3bnV69erlVK9e3albt64zatQo59ixY/ZC+8C3337rdOjQwYmPj3eio6Odc845x5kxY4aTm5trO5rXLViwwDnzzDOdyMhIp3379s6XX35pO5JP3XzzzU6DBg2cyMhI54wzznBuvvlmZ9OmTbZjed3q1auL/bt81113OY5jTlGeOHGiU79+fScqKsq54oornA0bNtgN7QWlve/Dhw873bt3dxITE52IiAinUaNGTv/+/YtcbiHQuBynip9LKiIiIkErZM/6ERERkcCnoiIiIiIBS0VFREREApaKioiIiAQsFRUREREJWCoqIiIiErBUVERERCRgqaiIiIhIwFJRERERkYCloiIiIiIBS0VFREREApaKioiIiASs/w/Vv1vw/u2AXAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Write your code here\n", + "options = [\n", + " (table_and_graph, \"Display the graph and a table of values for any \\\"y=\\\" equation input\"),\n", + "(solve_system_of_equations, \"Solve a system of two equations without graphing\"),\n", + "(equations_intercept, \"Graph two equations and plot the point of intersection\"),\n", + "(quadratic_eq_roots_and_vertex, \"Given a, b and c in a quadratic equation, plot the roots and vertex\")]\n", + "\n", + "print(\"What would you like to do?\")\n", + "for i in range(len(options)):\n", + " print(f\"{i+1}: {options[i][1]}\")\n", + "\n", + "selection = int(input())\n", + "if selection >= 1 and selection <= len(options):\n", + " options[selection-1][0]()\n", + "# This step does not have a test" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "colab": { + "collapsed_sections": [ + "szp5flp1fA8-", + "iNcDJ45bGtYk", + "i1mBd8gGFvBV", + "MYQL57cD2ejS", + "jIHKROStFMcR", + "wLDO_IRrFw7z", + "ExVB2joZF0rk", + "3MqIpFTOF1m9", + "NKq_qwCsF3Dj", + "wvdngkOTF4Hi", + "Q19Wm90DF5zf", + "YSY2k7S3F6d7", + "ykj42UNeF7K5", + "QSKeBTgXHRAv", + "0epVLhL0F88U", + "8FCFQaq1Hizh", + "BhKPZQJZF9w0", + "I0mklEluF-jI", + "eFehWNexGASC", + "WbqugasGGCKJ", + "hN_fvENUGBAm", + "vteEy9QFGD5I", + "VXxx7RCVSs4j", + "jpo7oASHGEu7" + ], + "provenance": [], + "toc_visible": true + }, + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.10" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/Graphing Calculator.md b/Graphing Calculator.md new file mode 100644 index 0000000..51b7555 --- /dev/null +++ b/Graphing Calculator.md @@ -0,0 +1,1333 @@ +[![freeCodeCamp](https://cdn.freecodecamp.org/testable-projects-fcc/images/fcc_secondary.svg)](https://freecodecamp.org/) + +**Learn Foundational Math 2 by Building Cartesian Graphs**
+Each of these steps will lead you toward the Certification Project. Once you complete a step, click to expand the next step. + +# ↓ **Do this first** ↓ +Copy this notebook to your own account by clicking the `File` button at the top, and then click `Save a copy in Drive`. You will need to be logged in to Google. The file will be in a folder called "Colab Notebooks" in your Google Drive. + +# Step 0 - Acquire the testing library + +Please run this code to get the library file from FreeCodeCamp. Each step will use this library to test your code. You do not need to edit anything; just run this code cell and wait a few seconds until it tells you to go on to the next step. + + +```python +# You may need to run this cell at the beginning of each new session + +!pip install requests + +# This will just take a few seconds + +import requests + +# Get the library from GitHub +url = 'https://raw.githubusercontent.com/edatfreecodecamp/python-math/main/math-code-test-b.py' +r = requests.get(url) + +# Save the library in a local working directory +with open('math_code_test_b.py', 'w') as f: + f.write(r.text) + +# Now you can import the library +import math_code_test_b as test + +# This will tell you if the code works +test.step01() +``` + + Requirement already satisfied: requests in /usr/local/lib/python3.8/dist-packages (2.31.0) + Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.8/dist-packages (from requests) (3.2.0) + Requirement already satisfied: idna<4,>=2.5 in /usr/lib/python3/dist-packages (from requests) (2.8) + Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/lib/python3/dist-packages (from requests) (1.25.8) + Requirement already satisfied: certifi>=2017.4.17 in /usr/lib/python3/dist-packages (from requests) (2019.11.28) + WARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv +  + [notice] A new release of pip is available: 23.1.2 -> 23.2.1 + [notice] To update, run: python3 -m pip install --upgrade pip + Code test Passed + Go on to the next step + + +# Step 1 - Cartesian Coordinates + +Learn Cartesian coordinates by building a scatterplot game. The Cartesian plane is the classic x-y coordinate grid (invented by Ren$\acute{e}$ DesCartes) where "x" is the horizontal axis and "y" is the vertical axis. Each (x,y) coordinate pair is a point on the graph. The point (0,0) is the "origin." The x value tells how much to move right (positive) or left (negative) from the origin. The y value tells you how much you move up (positive) or down (negative) from the origin. Notice that you are importing `matplotlib` to create the graph. The following code just displays one quadrant of the Cartesian graph. Just run this code to see how Python displays a graph. + + + +```python +import matplotlib.pyplot as plt + +fig, ax = plt.subplots() +plt.show() + +# Just run this code to see a blank graph +import math_code_test_b as test +test.step01() +``` + + + +![png](output_8_0.png) + + + + Code test Passed + Go on to the next step + + +# Step 2 - Cartesian Coordinates (Part 2) + +Here you will create a standard window but still not highlight each axis. Run this code once, then change the window size to 20 in each direction and run it again. + + +```python +import matplotlib.pyplot as plt + +fig, ax = plt.subplots() + +# Only change the numbers in the next line: +plt.axis([-20,20,-20,20]) + +plt.show() + + +# Only change code above this line +import math_code_test_b as test +test.step02(In[-1].split('# Only change code above this line')[0]) +``` + + + +![png](output_11_0.png) + + + + + Code test passed + Go on to the next step + + +# Step 3 - Graph Dimensions + +When you look at this code, you can see how Python sets up window dimensions. You will also notice that it is easier and more organized to define the dimensions as variables. Run the code, then change just the `xmax` value to 20 and run it again to see the difference. + + +```python +import matplotlib.pyplot as plt + +xmin = -10 +xmax = 20 +ymin = -10 +ymax = 10 + +fig, ax = plt.subplots() +plt.axis([xmin,xmax,ymin,ymax]) # window size +plt.show() + +# Only change code above this line +import math_code_test_b as test +test.step03(In[-1].split('# Only change code above this line')[0]) +``` + + + +![png](output_14_0.png) + + + + + Code test passed + Go on to the next step + + +# Step 4 - Displaying Axis Lines + +Notice the code to `plot` a line for the x axis and a line for the y axis. The `'b'` makes the line blue. Run the code, then change each 'b' to 'g' to make the lines green. + + +```python +import matplotlib.pyplot as plt + +xmin = -10 +xmax = 10 +ymin = -10 +ymax = 10 + +fig, ax = plt.subplots() +plt.axis([xmin,xmax,ymin,ymax]) # window size +plt.plot([xmin,xmax],[0,0],'g') # blue x axis +plt.plot([0,0],[ymin,ymax], 'g') # blue y axis + +plt.show() + +# Only change code above this line +import math_code_test_b as test +test.step04(In[-1].split('# Only change code above this line')[0]) +``` + + + +![png](output_17_0.png) + + + + + Code test passed + Go on to the next step + + +# Step 5 - Plotting a Point + +Now you will plot a point on the graph. Notice the `'ro'` makes the point a red dot. Run the code, then change the location of the point to (-5,1) and run it again. Keep the window size the same. Notice the difference between plotting a point and plotting a line. + + +```python +import matplotlib.pyplot as plt + +xmin = -10 +xmax = 10 +ymin = -10 +ymax = 10 + +fig, ax = plt.subplots() +plt.axis([xmin,xmax,ymin,ymax]) # window size +plt.plot([xmin,xmax],[0,0],'b') # blue x axis +plt.plot([0,0],[ymin,ymax], 'b') # blue y axis + +# Change only the numbers in the following line: +plt.plot([-5],[1], 'ro') + +plt.show() + + +# Only change code above this line +import math_code_test_b as test +test.step05(In[-1].split('# Only change code above this line')[0]) +``` + + + +![png](output_20_0.png) + + + + + Code test passed + Go on to the next step + + +# Step 6 - Plotting Several Points + +You have actually been using arrays to plot each singular point so far. In this step, you will see an array of x values and an array of y values defined before the plot statement. Notice that these two short arrays create one point: (4,2). Add two numbers to each array so that it also plots points (1,1) and (2,5). + + +```python +import matplotlib.pyplot as plt + +# only change the next two lines: +x = [4, 1, 2] +y = [2, 1, 5] + +# Only change code above this line + +xmin = -10 +xmax = 10 +ymin = -10 +ymax = 10 + +fig, ax = plt.subplots() +plt.axis([xmin,xmax,ymin,ymax]) # window size +plt.plot([xmin,xmax],[0,0],'b') # blue x axis +plt.plot([0,0],[ymin,ymax],'b') # blue y axis + +plt.plot(x, y, 'ro') # red points +plt.show() + + +# Only change code above this line +import math_code_test_b as test +test.step06(In[-1].split('# Only change code above this line')[0]) +``` + + + +![png](output_23_0.png) + + + + + Code test passed + Go on to the next step + + +# Step 7 - Plotting Points and Lines + +Notice the subtle difference between plotting points and lines. Each `plot()` statement takes an array of x values, an array of y values, and a third argument to tell what you are plotting. The default plot is a line. The letters `'r'` and `'b'` (and `'g'` and a few others) indicate common colors. The "o" in `'ro'` indicates a dot, where `'rs'` would indicate a red square and `'r^'` would indicate a red triangle. Plot a red line and two green squares. + + +```python +import matplotlib.pyplot as plt + +# Use these numbers: +linex = [2,4] +liney = [1,5] +pointx = [1,6] +pointy = [6,3] + +# Keep these lines: +xmin = -10 +xmax = 10 +ymin = -10 +ymax = 10 + +fig, ax = plt.subplots() +plt.axis([xmin,xmax,ymin,ymax]) # window size +plt.plot([xmin,xmax],[0,0],'b') # blue x axis +plt.plot([0,0],[ymin,ymax], 'b') # blue y axis + +# Change the next two lines: +plt.plot(linex, liney, 'r') +plt.plot(pointx, pointy, 'gs') + +plt.show() + + +# Only change code above this line +import math_code_test_b as test +test.step07(In[-1].split('# Only change code above this line')[0]) +``` + + + +![png](output_26_0.png) + + + + + Code test passed + Go on to the next step + + +# Step 8 - Making a Scatterplot Game + +To make the game, you can make a loop that plots a random point and asks the user to input the (x,y) coordinates. Notice the `for` loop that runs three rounds of the game. Run the code, play the game, then you can go on to the next step. + + +```python +import matplotlib.pyplot as plt +import random + +score = 0 + +xmin = -8 +xmax = 8 +ymin = -8 +ymax = 8 + +fig, ax = plt.subplots() + +for i in range(0,3): + xpoint = random.randint(xmin, xmax) + ypoint = random.randint(ymin, ymax) + x = [xpoint] + y = [ypoint] + plt.axis([xmin,xmax,ymin,ymax]) # window size + plt.plot([xmin,xmax],[0,0],'b') # blue x axis + plt.plot([0,0],[ymin,ymax], 'b') # blue y axis + plt.plot(x, y, 'ro') + print(" ") + plt.grid() # displays grid lines on graph + plt.show() + guess = input("Enter the coordinates of the red point point: \n") + guess_array = guess.split(",") + xguess = int(guess_array[0]) + yguess = int(guess_array[1]) + if xguess == xpoint and yguess == ypoint: + score = score + 1 + +print("Your score: ", score) # notice this is not in the loop + + +# Only change code above this line +import math_code_test_b as test +test.step08(score) +``` + + + + + + +![png](output_29_1.png) + + + + Enter the coordinates of the red point point: + -3, 0 + + + + + + + +![png](output_29_4.png) + + + + Enter the coordinates of the red point point: + -7, 0 + + + + + + + +![png](output_29_7.png) + + + + Enter the coordinates of the red point point: + 2, 7 + + + Your score: 3 + You scored 3 out of 3. Good job! + You can go on to the next step + + +# Step 9 - Graphing Linear Equations + +Besides graphing points, you can graph linear equations (or functions). The graph will be a straight line, and the equation will not have any exponents. For these graphs, you will import `numpy` and use the `linspace()` function to define the x values. That function takes three arguments: starting number, ending number, and number of steps. Notice the `plot()` function only has two arguments: the x values and a function (y = 2x - 3) for the y values. Run this code, then use the same x values to graph `y = -x + 3`. + + +```python +import matplotlib.pyplot as plt +import numpy as np + +xmin = -10 +xmax = 10 +ymin = -10 +ymax = 10 + +fig, ax = plt.subplots() +plt.axis([xmin,xmax,ymin,ymax]) # window size +plt.plot([xmin,xmax],[0,0],'b') # blue x axis +plt.plot([0,0],[ymin,ymax], 'b') # blue y axis + +x = np.linspace(-9,9,36) + +# Only change the next line to graph y = -x + 3 +plt.plot(x, -x + 3) + + + +plt.show() + + +# Only change code above this line +import math_code_test_b as test +test.step09(In[-1].split('# Only change code above this line')[0]) +``` + + + +![png](output_32_0.png) + + + + + Code test passed + Go on to the next step + + +# Step 10 - Creating Interactive Graphs + +Like the previous graphs, you will graph a line. This time, you will create two sliders to change the slope and the y intecept. Notice the additional imports and other changes: You define a function with two arguments. All of the graphing happens within that `f(m,b)` function. The `interactive()` function calls your defined function and sets the boundaries for the sliders. Run this code then adjust the sliders and notice how they affect the graph. + + +```python +%matplotlib inline +from ipywidgets import interactive +import matplotlib.pyplot as plt +import numpy as np + +# Define the graphing function +def f(m, b): + xmin = -10 + xmax = 10 + ymin = -10 + ymax = 10 + plt.axis([xmin,xmax,ymin,ymax]) # window size + plt.plot([xmin,xmax],[0,0],'black') # black x axis + plt.plot([0,0],[ymin,ymax], 'black') # black y axis + plt.title('y = mx + b') + x = np.linspace(-10, 10, 1000) + plt.plot(x, m*x+b) + plt.show() + +# Set up the sliders +interactive_plot = interactive(f, m=(-9, 9), b=(-9, 9)) +interactive_plot + + +# Just run this code and use the sliders +import math_code_test_b as test +test.step01() +interactive_plot +``` + + Code test Passed + Go on to the next step + + + + + + interactive(children=(IntSlider(value=0, description='m', max=9, min=-9), IntSlider(value=0, description='b', … + + + +# Step 11 - Graphing Systems + +When you graph two equations on the same coordinate plane, they are a system of equations. Notice how the `points` variable defines the number of points and the `linspace()` function uses that variable. Run this code to see the graph, then change `y2` so that it graphs y = -x - 3. + + +```python +import matplotlib.pyplot as plt +import numpy as np + + +xmin = -10 +xmax = 10 +ymin = -10 +ymax = 10 +points = 2*(xmax-xmin) + +# Define the x values once +x = np.linspace(xmin,xmax,points) + +fig, ax = plt.subplots() +plt.axis([xmin,xmax,ymin,ymax]) # window size +plt.plot([xmin,xmax],[0,0],'b') # blue x axis +plt.plot([0,0],[ymin,ymax], 'b') # blue y axis + +# line 1 +y1 = 2*x +plt.plot(x, y1) + +# line 2 +y2 = -x - 3 +plt.plot(x, y2) + +plt.show() + + +# Only change code above this line +import math_code_test_b as test +test.step11(In[-1].split('# Only change code above this line')[0]) +``` + + + +![png](output_38_0.png) + + + + + Code test passed + Go on to the next step + + +# Step 12 - Systems of Equations - Algebra + +In a system of equations, the solution is the point where the two equations intersect, the (x,y) values that work in each equation. To work with algabraic expressions, you will import `sympy` and define x and y as symbols. If you have two equations and two variables, set each equation equal to zero. The `linsolve()` function takes the non-zero side of each equation and the variables used. Notice the syntax. Run the code, then change the two equations to solve 2x + y - 15 = 0 and 3x - y = 0. + + +```python +from sympy import * +x,y = symbols('x y') + + +# Change the equations in the following line: +print(linsolve([2*x + y - 15, 3*x - y], (x, y))) + + +# Only change code above this line +import math_code_test_b as test +test.step12(In[-1].split('# Only change code above this line')[0]) +``` + + {(3, 9)} + + Code test passed + Go on to the next step + + +# Step 13 - Solutions as Coordinates + +The `linsolve()` function returns a finite set, and you can convert that "finite set" into (x,y) coordinates. Notice how the code parses the `solution` variable into two separate variables. Just run the code to see how this works. + + +```python +from sympy import * +x,y = symbols('x y') + +# Use variables for each equation +first = x + y +second = x - y + +# parse finite set answer as coordinate pair +solution = linsolve([first, second], (x, y)) +x_solution = solution.args[0][0] +y_solution = solution.args[0][1] + +print("x = ", x_solution) +print("y = ", y_solution) +print(" ") +print("Solution: (",x_solution,",",y_solution,")") + + +# Just run this code +import math_code_test_b as test +test.step01() +``` + + x = 0 + y = 0 + + Solution: ( 0 , 0 ) + Code test Passed + Go on to the next step + + +# Step 14 - Systems from User Input + +For more flexibility, you can get each equation as user input (instead of defining them in the code). Run this code and try it out - to solve any system of two equations. + + +```python +from sympy import * + +x,y = symbols('x y') +print("Remember to use Python syntax with x and y as variables") +print("Notice how each equation is already set equal to zero") +first = input("Enter the first equation: 0 = ") +second = input("Enter the second equation: 0 = ") +solution = linsolve([first, second], (x, y)) +x_solution = solution.args[0][0] +y_solution = solution.args[0][1] + +print("x = ", x_solution) +print("y = ", y_solution) + + +# Just run this code and test it with different equations +import math_code_test_b as test +test.step14() +``` + + Remember to use Python syntax with x and y as variables + Notice how each equation is already set equal to zero + + + Enter the first equation: 0 = 1.5*x-6 + Enter the second equation: 0 = -2*x +3*y +9 + + + x = 4.00000000000000 + y = -0.333333333333333 + + If you didn't get a syntax error, code test passed + + +# Step 15 - Solve and graph a system + +Now you can put it all together: solve a system of equations, graph the system, and plot a point where the two lines intersect. Notice how this code is not like the previous solving equations code or the graphing code or the user input code. Python uses `sympy` to get the (x,y) solution and `numpy` to get the values to graph, so the user inputs nummerical values and the code uses them in two different ways. Think about how you would do this if the user input values for ax + by = c. + + +```python +from sympy import * +import matplotlib.pyplot as plt +import numpy as np + +print("First equation: y = mx + b") +mb_1 = input("Enter m and b, separated by a comma: ") +mb_in1 = mb_1.split(",") +m1 = float(mb_in1[0]) +b1 = float(mb_in1[1]) + +print("Second equation: y = mx + b") +mb_2 = input("Enter m and b, separated by a comma: ") +mb_in2 = mb_2.split(",") +m2 = float(mb_in2[0]) +b2 = float(mb_in2[1]) + +# Solve the system of equations +x,y = symbols('x y') +first = m1*x + b1 - y +second = m2*x + b2 - y +solution = linsolve([first, second], (x, y)) +x_solution = round(float(solution.args[0][0]),3) +y_solution = round(float(solution.args[0][1]),3) + +# Make sure the window includes the solution +xmin = int(x_solution) - 20 +xmax = int(x_solution) + 20 +ymin = int(y_solution) - 20 +ymax = int(y_solution) + 20 +points = 2*(xmax-xmin) + +# Define the x values once for the graph +graph_x = np.linspace(xmin,xmax,points) + +# Define the y values for the graph +y1 = m1*graph_x + b1 +y2 = m2*graph_x + b2 + +fig, ax = plt.subplots() +plt.axis([xmin,xmax,ymin,ymax]) # window size +plt.plot([xmin,xmax],[0,0],'b') # blue x axis +plt.plot([0,0],[ymin,ymax], 'b') # blue y axis + +# line 1 +plt.plot(graph_x, y1) + +# line 2 +plt.plot(graph_x, y2) + +# point +plt.plot([x_solution],[y_solution],'ro') + +plt.show() +print(" ") +print("Solution: (", x_solution, ",", y_solution, ")") + + +# Run this code and test it with different equations + +``` + + First equation: y = mx + b + + + Enter m and b, separated by a comma: 3, -4 + + + Second equation: y = mx + b + + + Enter m and b, separated by a comma: -2, 7 + + + + +![png](output_50_4.png) + + + + + Solution: ( 2.2 , 2.6 ) + + +# Step 16 - Quadratic Functions + +Any function that involves x2 is a "quadratic" function because "x squared" could be the area of a square. The graph is a parabola. The formula is y = ax2 + bx + c, where `b` and `c` can be zero but `a` has to be a number. Here is a graph of the simplest parabola. + + +```python +import matplotlib.pyplot as plt +import numpy as np + +xmin = -10 +xmax = 10 +ymin = -10 +ymax = 10 +points = 2*(xmax-xmin) +x = np.linspace(xmin,xmax,points) + +fig, ax = plt.subplots() +plt.axis([xmin,xmax,ymin,ymax]) # window size +plt.plot([xmin,xmax],[0,0],'b') # blue x axis +plt.plot([0,0],[ymin,ymax], 'b') # blue y axis + +y = x**2 + +plt.plot(x,y) +plt.show() + +# Just run this code. The next step will transform the graph +import math_code_test_b as test +test.step01() +``` + + + +![png](output_53_0.png) + + + + Code test Passed + Go on to the next step + + +# Step 17 - Quadratic Function ABC's + +Using the parabola formula y = ax2 + bx + c, you will change the values of `a`, `b`, and `c` to see how they affect the graph. Run the code and use the sliders to change the values of `a` and `b`. Then change the code in the three places indicated to add a slider for `c`. You may remember this type of interactive graph from an earlier step. Move each slider to see how it affects the graph. + + +```python +%matplotlib inline +from ipywidgets import interactive +import matplotlib.pyplot as plt +import numpy as np + +# Change the next line to include c: +def f(a,b, c): + plt.axis([-10,10,-10,10]) # window size + plt.plot([-10,10],[0,0],'k') # blue x axis + plt.plot([0,0],[-10,10], 'k') # blue y axis + x = np.linspace(-10, 10, 1000) + + # Change the next line to add c to the end of the function: + plt.plot(x, a*x**2 + b*x + c) + plt.show() + +# Change the next line to add a slider to change the c value +interactive_plot = interactive(f, a=(-9, 9), b=(-9,9), c=(-9, 9)) +interactive_plot + + +# Run the code once, then change the code and run it again + +# Only change code above this line +import math_code_test_b as test +test.step17(In[-1].split('# Only change code above this line')[0]) +interactive_plot +``` + + Code test passed + Go on to the next step + + + + + + + interactive(children=(IntSlider(value=0, description='a', max=9, min=-9), IntSlider(value=0, description='b', … + + + +# Step 18 - Quadratic Functions - Vertex + +The vertex is the point where the parabola turns around. The x value of the vertex is $\frac{-b}{2a}$ (and then you would calculate the y value to get the point). Write the code to find the vertex, given `a`, `b`, and `c` as inputs. Remember the parabola forumula is y = ax2 + bx + c + + +```python +import matplotlib.pyplot as plt +import numpy as np + +# \u00b2 prints 2 as an exponent +print("y = ax\u00b2 + bx + c") + +a = float(input("a = ")) +b = float(input("b = ")) +c = float(input("c = ")) + +# Write your code here, changing vx and vy +vx = -b/(2*a) +vy = a*vx**2 + b*vx + c + + +# Only change the code above this line + +print(" (", vx, " , ", vy, ")") +print(" ") + +xmin = int(vx)-10 +xmax = int(vx)+10 +ymin = int(vy)-10 +ymax = int(vy)+10 +points = 2*(xmax-xmin) +x = np.linspace(xmin,xmax,points) + +fig, ax = plt.subplots() +plt.axis([xmin,xmax,ymin,ymax]) # window size +plt.plot([xmin,xmax],[0,0],'b') # blue x axis +plt.plot([0,0],[ymin,ymax], 'b') # blue y axis + +plt.plot([vx],[vy],'ro') # vertex + +x = np.linspace(vx-10,vx+10,100) +y = a*x**2 + b*x + c +plt.plot(x,y) + +plt.show() + + +# Only change code above this line +import math_code_test_b as test +test.step18(In[-1].split('# Only change code above this line')[0]) +``` + + y = ax² + bx + c + + + a = 2 + b = 1.89 + c = 4.28 + + + ( -0.4725 , 3.8334875000000004 ) + + + + + +![png](output_59_3.png) + + + + + Code test passed + Go on to the next step + + +# Step 19 - Projectile Motion + +The path of every projectile is a parabola. For something thrown or launched upward, the `a` value is -4.9 (meters per second squared); the `b` value is the initial velocity (in meters per second); the `c` value is the initial height (in meters); the `x` value is time (in seconds); and the `y` value is the height at that time. In this code, change `vx` and `vy` to represent the vertex. Plotting that (x,y) vertex point is already in the code. + + +```python +import matplotlib.pyplot as plt +import numpy as np + +a = -4.9 +b = float(input("Initial velocity = ")) +c = float(input("Initial height = ")) + +# Change vx and vy to represent the vertex +vx = -b/(2*a) +vy = a*vx**2 + b*vx + c + + +# Also change the following dimensions to display the vertex +xmin = -10 +xmax = 10 +ymin = -10 +ymax = 10 + +# You do not need to change anything below this line +points = 2*(xmax-xmin) +x = np.linspace(xmin,xmax,points) +y = a*x**2 + b*x + c + +fig, ax = plt.subplots() +plt.axis([xmin,xmax,ymin,ymax]) # window size +plt.plot([xmin,xmax],[0,0],'b') # blue x axis +plt.plot([0,0],[ymin,ymax], 'b') # blue y axis + +plt.plot(x,y) # plot the line for the equation +plt.plot([vx],[vy],'ro') # plot the vertex point + +print(" (", vx, ",", vy, ")") +print(" ") +plt.show() + + +# Only change code above this line +import math_code_test_b as test +test.step19(In[-1].split('# Only change code above this line')[0]) +``` + + Initial velocity = 10 + Initial height = 3 + + + ( 1.0204081632653061 , 8.102040816326529 ) + + + + + +![png](output_62_2.png) + + + + + Code test passed + Go on to the next step + + +# Step 20 - Quadratic Functions - C + +Like many other functions, the `c` value (also called the "constant" because it is not a variable) affects the vertical shift of the graph. Run the following code to see how changing the `c` value changes the graph. + + +```python +import matplotlib.pyplot as plt +import numpy as np +import time +from IPython import display + +x = np.linspace(-4,4,16) +fig, ax = plt.subplots() +cvalue = "c = " + +for c in range(10): + y = -x**2+c + plt.plot(x,y) + cvalue = "c = ", c + ax.set_title(cvalue) + display.display(plt.gcf()) + time.sleep(0.5) + display.clear_output(wait=True) + +# Just run this code +import math_code_test_b as test +test.step01() +``` + + Code test Passed + Go on to the next step + + + + +![png](output_65_1.png) + + + +# Step 21 - The Quadratic Formula + +For a projectile, you also need to find the point when it hits the ground. On a graph, you would call these points the "roots" or "x intercepts" or "zeros" (because y = 0 at these points). The quadratic formula gives you the x value when y = 0. Given `a`,`b` and `c`, here is the quadratic formula:
x = $\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ Notice it's the vertex plus or minus something: $\frac{-b}{2a} + \frac{\sqrt{b^2 - 4ac}}{2a}$ and $\frac{-b}{2a} - \frac{\sqrt{b^2 - 4ac}}{2a}$
+Write the code to output two x values, given a, b, and c as input. Use `math.sqrt()` for the square root. + + +```python +import math + +# \u00b2 prints 2 as an exponent +print("0 = ax\u00b2 + bx + c") +a = float(input("a = ")) +b = float(input("b = ")) +c = float(input("c = ")) +x1 = 0 +x2 = 0 + +# Check for non-real answers: +if b**2-4*a*c < 0: + print("No real roots") +else: + # Write your code here, changing x1 and x2 + x1 = (-b + math.sqrt(b**2 - 4*a*c))/(2*a) + x2 = (-b - math.sqrt(b**2 - 4*a*c))/(2*a) + print("The roots are ", x1, " and ", x2) + + + +# Only change code above this line +import math_code_test_b as test +test.step21(In[-1].split('# Only change code above this line')[0]) +``` + + 0 = ax² + bx + c + + + a = -2 + b = 26 + c = 20 + + + The roots are -0.7284161474004804 and 13.72841614740048 + + Code test passed + Go on to the next step + + +# Step 22 - Table of Values + +In addition to graphing a function, you may need a table of values. This code shows how to make a simple table of (x,y) values. Run the code, then change the title to "y = 3x + 2" and change the function in the table. + + +```python +import numpy as np +import matplotlib.pyplot as plt + +ax = plt.subplot() +ax.set_axis_off() +title = "y = 3x + 2" # Change this title +cols = ('x', 'y') +rows = [[0,0]] +for a in range(1,10): + rows.append([a, 3*a+2]) # Change only the function in this line + +ax.set_title(title) +plt.table(cellText=rows, colLabels=cols, cellLoc='center', loc='upper left') +plt.show() + + +# Only change code above this line +import math_code_test_b as test +test.step22(In[-1].split('# Only change code above this line')[0]) +``` + + + +![png](output_71_0.png) + + + + + Code test passed + Go on to the next step + + +# Step 23 - Projectile Game + +Learn quadratic functions by building a projectile game. Starting at (0,0) you launch a toy rocket that must clear a wall. You can randomize the height and location of the wall. The goal is to determine what initial velocity would get the rocket over the wall. Bonus: make an animation of the path of the rocket. + + + +```python +# Write your code here +fix = plt.subplot() +xlo = -2 +xhi = 20 +ylo = -20 +yhi = 120 +plt.axis([xlo, xhi, ylo, yhi]) +plt.plot([0, 0], [ylo, yhi], "black") +plt.plot([xlo, xhi], [0, 0], "black") +wall_distance = random.randint(2, xhi-2) +wall_height = random.randint(2, yhi-20) +plt.plot([wall_distance, wall_distance], [0, wall_height], "brown") +plt.grid() +display.display(plt.gcf()) + +x = np.linspace(0, xhi, xhi*1000) +# a = -4.9 +a = -2 +c = 0 +# b = float(input("We are standing at origin (0, 0), guess velocity at which we need to throw ball to cross the wall: ")) +b = 1 +while a*wall_distance**2 + b*wall_distance + c < wall_height: + b += 1 +plt.title(f"Velocity of {b} should suffice when wall of {wall_height} height is {wall_distance} distance away.") +y = a*x**2 + b*x + c +x2 = [] +y2 = [] +for i in range(len(y)): + if y[i] < 0: + break + x2.append(x[i]) + y2.append(y[i]) + +time.sleep(0.5) +display.clear_output(wait=True) +plt.plot(x2, y2, "b") + +ball = plt.plot([x2[0]], [y2[0]], 'ro')[0] + +for i in range(1, len(x2)): + if i%1000 != 0 and i < len(x2) - 2: + continue + display.display(plt.gcf()) + time.sleep(0.5) + display.clear_output(wait=True) + ball.remove() + ball = plt.plot([x2[i]], [y2[i]], 'ro')[0] + +display.display(plt.gcf()) +time.sleep(0.5) +display.clear_output(wait=True) +# This step does not have a test +``` + + + +![png](output_74_0.png) + + + +# Step 24 - Define Graphing Functions + +Building on what you have already done, create a menu with the following options:
+
    +
  • Display the graph and a table of values for any "y=" equation input
  • +
  • Solve a system of two equations without graphing
  • +
  • Graph two equations and plot the point of intersection
  • +
  • Given a, b and c in a quadratic equation, plot the roots and vertex
  • +
+Then think about how you will define a function for each item. + + +```python +# Write your code here +from sympy.parsing.sympy_parser import parse_expr +def table_and_graph(): + x, y = symbols("x y") + eq = input("y = ") + expr = parse_expr(eq) + xlo = -10 + xhi = 10 + density = 5 + points = (xhi-xlo) * density + x_inputs = np.linspace(xlo, xhi, points) + y_outputs = [] + for n in x_inputs: + y_outputs.append(expr.evalf(subs={x: n})) + + ax = plt.subplot() + ax.set_axis_off() + title = f"y = {eq}" + cols = ('x', 'y') + rows = [] + for i in range(xlo, xhi + 1): + rows.append([f"{i:.2f}", f"{round(float(expr.evalf(subs={x: i})), 2):.2f}"]) + + ax.set_title(title) + plt.table(cellText=rows, colLabels=cols, cellLoc='center', loc='upper left') + plt.show() + + fig, axis = plt.subplots() + fig_min = float(min(min(x_inputs), min(y_outputs))) + fig_max = float(max(max(x_inputs), max(y_outputs))) + plt.axis([fig_min, fig_max, fig_min, fig_max]) + plt.plot([fig_min, fig_max], [0, 0], "black") + plt.plot([0, 0], [fig_min, fig_max], "black") + plt.plot(x_inputs, y_outputs, "b") + plt.show() + +def solve_system_of_equations(): + x, y = symbols("x y") + eq1 = input("First euqation: 0 = ") + eq2 = input("Second equation: 0 = ") + solutions = solve([eq1, eq2], [x, y]) + if len(solutions): + print("Euqations intercept at:") + for solution in solutions: + # WARNING: this will raise error for complex numbers + print(f"({float(solution[0])}, {float(solution[1])})") + else: + print("Give equations do not intercept") + +def equations_intercept(): + x, y = symbols("x y") + eq1 = input("First euqation: 0 = ") + eq2 = input("Second equation: 0 = ") + solutions = solve([eq1, eq2], [x, y]) + if len(solutions) == 0: + print("Equations do not intercept") + return + x_intercept_1 = float(solutions[0][0]) + y_intercept_1 = float(solutions[0][1]) + xlo = x_intercept_1 - 20 + xhi = x_intercept_1 + 20 + ylo = y_intercept_1 - 20 + yhi = y_intercept_1 + 20 + density = 5 + x_inputs = [i for i in np.arange(xlo, xhi+0.2, 0.2)] + y_solver1 = solve(eq1, y)[0] + y_solver2 = solve(eq2, y)[0] + y_ouputs_1 = [float(y_solver1.evalf(subs={x: i})) for i in x_inputs] + y_ouputs_2 = [float(y_solver2.evalf(subs={x: i})) for i in x_inputs] + fig, axis = plt.subplots() + plt.axis([xlo, xhi, ylo, yhi]) + plt.plot([xlo, xhi], [0, 0], "black") + plt.plot([0, 0], [ylo, yhi], "black") + plt.plot(x_inputs, y_ouputs_1, "blue") + plt.plot(x_inputs, y_ouputs_2, "orange") + for solution in solutions: + plt.plot([solution[0]], [solution[1]], "ro") + plt.show() + +def quadratic_eq_roots_and_vertex(): + a = float(input("a = ")) + b = float(input("b = ")) + c = float(input("c = ")) + vertex_x = -b/(2*a) + vertex_y = a*vertex_x**2 + b*vertex_x + c + root_1 = 0 + root_2 = 0 + has_roots = b**2 - 4*a*c >= 0 + if has_roots: + root_1 = vertex_x + (math.sqrt(b**2 - 4*a*c)/(2*a)) + root_2 = vertex_x - (math.sqrt(b**2 - 4*a*c)/(2*a)) + else: + print("Given quadratic equation has no roots i.e. do not intercept x-axis at all") + + xlo = root_1 - 20 if has_roots else vertex_x - 20 + xhi = root_2 + 20 if has_roots else vertex_x + 20 + ylo = -20 - abs(root_2-root_1) if has_roots else vertex_y - 20 + yhi = 20 + abs(root_2-root_1) if has_roots else vertex_y + 20 + fig, axis = plt.subplots() + plt.axis([xlo, xhi, ylo, yhi]) + plt.plot([xlo, xhi], [0, 0], "black") + plt.plot([0, 0], [ylo, yhi], "black") + density = 5 + x = [x_i for x_i in np.arange(xlo, xhi+ 1/density, 1/density)] + y = [a*x_i**2 + b*x_i + c for x_i in x] + plt.plot(x, y, "blue") + plt.plot([vertex_x], [vertex_y], "ro") + if has_roots: + plt.plot([root_1], [0], "go") + plt.plot([root_2], [0], "go") + plt.grid() + plt.show() +# This step does not have a test +``` + +# Step 25 - Certification Project 2 + +Build a graphing calculator that performs the functions mentioned in the previous step: +
    +
  • Display the graph and a table of values for any "y=" equation input
  • +
  • Solve a system of two equations without graphing
  • +
  • Graph two equations and plot the point of intersection
  • +
  • Given a, b and c in a quadratic equation, plot the roots and vertex
  • +
+Define each of the functions, and make each option call a function. + + +```python +# Write your code here +options = [ + (table_and_graph, "Display the graph and a table of values for any \"y=\" equation input"), +(solve_system_of_equations, "Solve a system of two equations without graphing"), +(equations_intercept, "Graph two equations and plot the point of intersection"), +(quadratic_eq_roots_and_vertex, "Given a, b and c in a quadratic equation, plot the roots and vertex")] + +print("What would you like to do?") +for i in range(len(options)): + print(f"{i+1}: {options[i][1]}") + +selection = int(input()) +if selection >= 1 and selection <= len(options): + options[selection-1][0]() +# This step does not have a test +``` + + What would you like to do? + 1: Display the graph and a table of values for any "y=" equation input + 2: Solve a system of two equations without graphing + 3: Graph two equations and plot the point of intersection + 4: Given a, b and c in a quadratic equation, plot the roots and vertex + + + 3 + First euqation: 0 = 2*x + y + 5 + Second equation: 0 = 2*x**2 + 3*y - 7 + + + + +![png](output_80_2.png) + + + + +```python + +``` diff --git a/output_11_0.png b/output_11_0.png new file mode 100644 index 0000000000000000000000000000000000000000..3dcdf9e3c2d69eb92bd6f9dd82b7b4599c6d341e GIT binary patch literal 8905 zcmdUUcT`j9x_2DA2n?d2h@gTnh`=BnDHa4Hy-Rf@5_*v;p{b}?K$I3jReDDT5UJ6T zrUXI@k&cFr5PIm`XX~7E&t3PP`gb~Moh?JI1nzf*Y%2tI|{{m1NqyQshnYlLYuBJ)xixEi*Xw1A)?Leo_Dp%Uy1F}z>}L-=fB5Exg>H1_#p@9pNceAUovWi@FpPg>mH`O}{0o`Wjqw*R7Ut4vg0m%Ei} zZf}EI6(Xy-9Uv35ZTf@RMhIn6pAKVopisYM8ELV?&9xk^*^ffK<`UnILglKG;7AS| zl;NHI|903^1(Tkdsv^^WJLT)wuaWWbxvwq-+mALUoN&-ekWWiaKIu8#YjRB9qviFD z4+e&YhdvgfQ0JKrw8ofJc;!8L@}&62hh2H5C08@FlR5|A2YJp7eH@J4%PugM;N9P9 z=2Deb;y|5fd3C9LZMuR_jsu0Vy^tI`$EnGqh%@;3@uMkR#kpcidc{xa)TvYBp)&m~ z^uR4&blbCI=R6iE#yORh<}!UA`ud@;mS-sGLN27yd33nE=LA2xyVx#5D@iG@x3_mN z7OwY;qT)upIQyO*2lwo_x8~{Txw_QjLMd~%xeTvmsLgrV!x)eCDh)kbyYeY zH^udhjWcFx^^+rUE=J@;#Zzd@0%LJ;@vB#^>@kT84?kHzHKQ*^Mn>A!g&cXo!-+yk z-rZPZOwKimxpa6+nvf12I%GH5nYTI=q0Qx~sGqK(d+XLM*MZS_Aw@-tH3r?-&(9B2 z56h(aj?NGk5z&N?L#y)z9uvedbz^wAsw`bX5w4a)R6pb^b`3?eMh_ z#jA_rCv$1Dv$Mz|M(?dRQ#rY6Cx8ioyGc1DY&1p-Q#MjnRc#pdUt2Qt@F@QD>C?S> zuj$^bPoJ(14-KifNkU^>R9PSpU@5C+>yF~qrb-WSa&r3dhV)DsRd`Jec~wZc4PAj_ zIr?EEQXGJzZcUk#OZW7MfC9mY2BFr}6*l#(%DN|Ig0m zfbK7KPMCg6V}VvWefsoOVdMP$WtFdA>*(t0o-hjt2;f)y3562TP{E80eTZ(nmo-LM-hyowvFb;~`u%|wEfL+3AY zawhQNQp6R*OnCJ#-aUUlfT(;ErW`M-h7nL!zFt7wEQf`cv}xwfv#2oIxpQZBUY_D8 z8QQjC%4>INadELg{9$Na8Qr?W?ffza52Zox*p9Wl8a1D%7+)WMBAnl%#_OMYA!rw+ zLg42;zx=#s2V*0E*w)rIG{16?mzQ_Ca2x9Uj^&MjvcBop3IXRf&$g4TvDnk%;<^>y zbfr-)d}G@3^73w3Qa*)e^*s6{-_P890e$>b!g{H?Dl4Mk^s8PkTB zFF$}8P6dpygI4B}c8pQr30wNsl_HpU`(j^(x3Q(AC4W6q!z)n3d9pI~-QDd$Yqhnt z;i+tVs ztp-p?RdxP1F#JDjsDBi#f85~TX}{jXDOvg%+3I*vduo1yo4Y$8Z~m2M06nHLkLpMt zBLpcq#$qDoZ(sK}0>J0sEph0loMN4Ip+_mz{=UP*!{Z%U`Y*VdP^jYLPA7eap^r}g z@=GS;EGER#Z}zg{#zK4feDk?eXr$lt^z@3|hOhSd(yLx@!>Skm{H)3bOYg6m!&QB1 zYGUSbuju>K+-&6IvmzHL`tzO!IwRN-g&J%dzDBxTWr^0idi83F=;F}6OXgxzi!-m=H>}>evtuk{! zEY>anmbAvgn2!w&&+BQrFfKDO19U1p82}lr;~IQ?mTg0_{V}^>F?8SHW`C8hp|0*L zXg>s|Y4u^$t&M@L@lV192CAwL6MaUGAT0$0@@F~NLJ4H$E%WWWS@ur@c&dl1h8%u% zNHM;5K+o%q<@U6|K+VQL!drtZi&2+qIQFas2R1d+RYHO)>)pw{8`tYsRIERWDzx!Y%4qS|&c@ zmixM3i_{$Wi#CMn>gp;7DYIBg+|Ud+00CEAEE#(2oKb|JwvvPY@t<{$|GZ~1?il>;R^3INj(NQeHnteMV*2);|t z>PRvJektAErfI3E_qnyv=oi$&}$BLXM+>WFvi9v#%lH~ZOT*AL5^vH2Z z^p$(+8yFZgNc%213L=s#+K#q>lCWv+$ka`_w+339MGMB*k#?I@Q(Ft#N>&jX;dLa9 zP9P}yzLEEy&IKxP=&$sVcON17PtJc`+v`ezB=npkYQm6cVqd^NDj z;?v2lVBJUrTU=}a zZpu!2M8$;`x$d{ZkjQ_UI<*L@lpygY8iD%^=_TPnv3G2#jfX%w`T~05ai># z#4ezr12d`52Vlb_#{m$((E5=1XneU3JoiP}O+_%7sL%^YTm1uu^Ix--ei&u8rv#HC zY*ygb=9AD+!;2R$Ryn|6O5JSuxwfwEH0ba!<;}Ov@p9~0FAx*lA)se$uCJf+Mu6~nLgf$ zsQ~{j?{vy^eT+;f}!4<#i!8cHmNBul->-}5{y9R-0 zvtPfSsdP9iAt5$V4#Hgtq~UW6K->Gq=34MD!)_KGPC!=C1sB94A|q4b^}5$pOY0f7 zDK?Ey?HS@}!i()Gr)%r$Cu1G*_cne%Tg-~LDL*&2qjVr32mC9gvokw6`C@oSm9Mww zSj&Z=-K?EbRP&VGJh#ugk2Xh9Cn-Q4d0=c4eV{ivMd0hAXU=rArKywUt8t6=%!hwH zAHJ|iz3#9u)@oXW4ec&vX9 z3=3rGzesVP>ouo&#BtSZTw0iUzIePj1`#XFT60d|p%}r(N2P6Q2 zQ)_Be03fvss+M9y#78Z7_v{#AtX+~upl#Eg&#mGR(impOnQam�Yu&zFX!G|fn8ggnrKZ?a}E3$eu_&upfWorN9^_n z1Qmu5NC58!HcS1dc#MjU7DyszfDdI#0>j`M{};aZ4oV~tWN#%yfgS;OI!>AngFM1@M(8>Fhj?~3RI^`m;ZAIvkW z07KZ_pP%iSr4yj`w)_80Md1I~rm)cM4KMhjUc7kaHP!t+ktnunH_+E-|J}JUTBLlj z(~JU&5hR`6bZ^-UF2Jnf^G+u{YY{TEut>1<89wAm@3$~3b*2FKd&~`?6}Q&s!}*B= z1@D7)3(LqDBW4%Usx0M=ac#)=T0XEUb7!@Fk29@9#5FxJ^CL~|$(NrlKqP_==MXVX z%}B&u{gDTTr-I9K82%L14P048W&4xDm6Ei_$H%*gfkf~Xe1WjcFI&OsL2d$uLZq~( zFLM%U|HauAzX>qcu0-JA(mpS*#0KbKZ+f_{`mGB1nu@I=pci$cN-~2ZNPI zA#;7*kC|7=JViCsemPQ^=2kZ3R@N*(?NuR`wY4|k0531u=lVrix;oRSzg?LDxdI~8 zK#nZ99K&w-psT`T zceiW*;g<^w9>_Aw;}$Y2Eek3wU0j=ZH)nR&*3{SzHN5D4;}qBLH?O&|SP;nUqfL77 z)?8FGPCBn2pJ;lvIc~oCplg3TBkj(-^SY1Px0Eixx7JIniUxFRW#UH>vp1QUnOBnh zmk0;g*`>U`UDJ$}6guz&HPJ*H5R%7xm;X+vX>wHJpX+EAO>U*X2i28!yP1og%F%%n znU9=RDJ(3!s-@Kl(QiITP06X3Y@K;#rA5;{T}3wM6pcPZ#G``L^GahAZ*$T>J;SVM;+u5(RxVevlK@Ko2yI6U05$_FdELO%PFRW_-q$d1JpLXa{gIAZc+q^ zX@gmgwL$*h_xk8rk%rzfcTJdU*R5gvb!kWiB=4R-e%rAv6)hkv-1vC*4|x8Lw|&z% zv51>Sxz}1#=Ov@u6BrP_*_f8tTSMQ^dzC7TJ=iy6UU7WOm zeVTh~B_$;SQc@HE4p~{lAsB~?N>c{dD7kz?1{ z-2x#YtDB)b;#T*|Ao@E-$jIWBbE~;>7NSL|y7k)ws%mO+rTsYJw+K_Kh6AV($0kdb z2!z#Tzv|}$)h3pf`901Rny{tv9s`x@E_2VQUYkBAsOqQ(LD5wW4Fkm1b~_Y2@H4rg zZUCo4Vj{X6M@{3Uy8w1O^}LajHCb*-R5VLC=WPT5qm)a3CC8$ksitPAv{QE~vinnL zlxHdg2oD)1i&m#35J*}_hXLf%6Ps&vV{7ZQc0Q>rpxjTOfqS={OU)obz}IXLu}xg3 z1OfTA;ew{=ySALuN9-BXeWtH} zyPFuexiTnTK+OpW33=|Rtk~jH)z7i9mV|AN&+2g@TELjDLM*sAmJ&8m^O&7W#yP${ z<#Gshl6mhDp@mInA&4h4l>ApSK@=cf0n&tIB)bCg*9zm{81S19wRdostP=D7_W4VT zfhOO%b7lZgx<*FPh^;sxfgS5KbD_ZO!zhj}+}8Y>LCjg~+Y%Y4-}0ZEpZ8?+c?*Mo z^IiJZ8lkO}b?@F!QFwfg=VYf=7}XZG#}GZ`T)l!tEM;35!&^gxWI_*e9NXyo269Qk z$F0i6a${wwF|dW@zp#Uw?Off8)TqA_Sz$ip`vs=^%pwFd+t{@gUir+AT%OqnB zn#VOassmHEZTqgV)yV=XUzkENaeY_}Dc(Ag{c~6$oq%K>U(%n1Xtm+~l!V5&L3~d z4Ir4vl6z>g@r#e~Be=jVJ@WB-pakY6Tnrj$)6bj2NL zPAA7G@7}0mMNG`$#icOQJW4FK#6|AZqZq!soOORQ@5<(U+Xgc-m3!ux zRQr`Z4h@wmsGNHe6d}`3y&mW!?b7dvCB@v3_Za&Pd5`=(<5hMJ5g!@Y+ALkESKho) zy*{U2TRt-J9aKc&ZCm$k$ z$$+3uOk$P4!A2h`QPGzKVU9Mq+M7InGZ!+{m~w_2@kjBE*3oB7tTq|MEkZDFz-NAb z{`-D*;y7>F4)ArFL%`B8hy0}5cLbsC%*3U#lZR|;5v>jU0G!^fxW`^5of zG?JA3Nx-spu&*(^Fh=YK>J06fl6L6K-Rl#-30N59z~eK-7Ll0fthBj|nO_-Aii?lu zj);h8f7w$gjlHU_9-4|POLP$(e0GzJ1v*9Rd^1+lZhh+q#ZjuI|kt|X~)ll3s=~@ z$%>2^5GXOwrS4tUc!KYAS^c;Es-E$}Kb+yF7B?*rrV<~i53^C8CrN-*sRbgFfT=5T zAJwu6W(k^4U@!&(U4WDw!^6Whzd_0_;|#gM1K> zmhS8Y_&K4iVIGpX6^H=^YGm(~gavD6yXXJgfvp9ar}71Bd~tjZ*F&K%YpLX4{O#U< E0Ja|Y-v9sr literal 0 HcmV?d00001 diff --git a/output_14_0.png b/output_14_0.png new file mode 100644 index 0000000000000000000000000000000000000000..9e8bcbf46513fa801d7a6299c4052ada3e3d3b1c GIT binary patch literal 9713 zcmds7cT`jBmJiraE?`APiVYEImrIp?Z5WUu9i*s$^bVmDY;Y|UsY(l?bRp6LBoq|| z1eFd-h=6oLf|L*-1ZGFqd+)yW=FPnMYvv7Wu?SfwC+B?MZ|`5(=bpZOvS*?#1A?Mx2G*qz13ir$-J%CZh_%h!5&QBSg6 zt6hsfjH8=#-T8E47vZ$jTu!#}jlJlHW8Al21#HiJTFtxlw>#{^n(~L`3BrP@u_08R zde?eR&&&S0;(zPo@%PO|-P`^K(by+(~@i1bcIf+MtTK_;@+b zA&s%|@#*GA#|8uHQ{~+{;nlu9d!EhAxKfCf*whR*1Y+_5UM@T(B}Mkyo6Tkz?tVtVDFov18(Jm#W{iOH32a~C zz`($ed?m36K4ffSf;*(~@#DvWf&v3CFE7t4Mn(zVK0e0g=3j`x>!gV6%_DOcOixE5BwL?sobrKO?h_oAas;HOy)R`8UR)U2lv;781ld@z%9zhoW`Ctnpd^I6*1 z)KpAO&HC7dhwURV>cyD##a#T#cxqxsMzL|BiKwu!@Uo6HGDX@pf?7+rmM||p7iVN- z^!(N>cAXSiWW0!8Z)4P4Fnu3APl`&AllV<@xY8z`lIv6$8s<0KMG&ndhF>y*n zedQkDYOz6RT|X)+YW0(U-7_~LPV~fy6IE>;&opW8_SP3yp24!Bo_s0sBU*bqC9yjfZQILN-~Un-IRSwa1898KKh zINJQkTan*X;_ltMlxQh2F@m$}rAwE1+V~KNbEWGjy`i!;HA5E{7fsJnu z&>Ktv>WFu>k)h!pOMgXvl9DDgk;>148r!#TKSDkv@7kVs`I+xTx<9HareQd?X=I9; z4`@_tS&DhJj)t09eJ2(6RA_BzTY5%Mwde4y&d$yRfN3zbT5}tZ;LKv!rkmkwVd!RP zMIU+!*&WHfMb56S-M6-ID)Gw%Ejlt8^&5n*!LzE&Z~N=@p~!M{(+do9b^WUJpi&0h z{XLO7I+Tbnn-Jj_hhIXs3*MbPHZ~@zq+}r!^8K~kY*%Mzmb7i7a zaQ2%To}^j2n4Fxk8b(htnT(&{LLl&%!P#UYg}aqeN$Epap}xJ{9=bNy6a;sNFCPqN z+vH0wsw}|aa1GMBxrVyA3qiS1j zHo+3NO&^8AwY0R9yAkDUm-=0lP&1F~7^K;0J@l#}VWid?8y6RM1_w>^J(-4DJ^(Mg z38dG;a&mGn+F;kt@e(&p789tQO!^>pZlp;Jh*BtY@e$vlL$oELMZt!1_`ws9YuVdd=?LyBE`ELo}hrE}uDb>v(=~vF_!|Xli-BVXiamq(!xNc1GB$ z6DefjV?W-n5D3Jf&k)-CuEuNTN%r*PK`B4#JE?6VzICiLSP6j`;=8lJBtol#qk{PU zP0QdP%NGCzz0tj%iGmIzDlL5(uzguaM<r#g=!AyO&IQ!! z2|)qCU_;5DA?*Xo=h3^LdnO5d)J3nOtIEmCPj~65Q#>v0?X#o#PiFznTPGH#fZV&O zB!b`fq2IZL)Yb~-DCuk<>=J)$@^sP!@XDLkS$Zo46*k0*wQ72VZYg_3Zf1-higX};9jZi~CzWp_UWh_R6&4GH> ziUZNHm7D)0GDRI-=Uy{+Au%E0Vq9<0m0VH7oXMP2cLQ77XVwA3ThbN1&cvv#=DD?j zC^^Rsg;vpL9e-RWRbIj_7zl`0-0U#2ps>);s2iha!kmjicW0e{FiH!OvuoZ7GB_VP zo^4Y!CI1Jh^cG6qqKaB>=0a$UZlCx;dC*E0W&cOk;D1BO{P!0)wU4dbsp~`(|7imN zddsIzy>+1sC4u_?j2=XP(nIDywHt2!A?MHE9sih`dzW+nbY(rWX#B&IXQzF}CqX5t zs(|g=na`hOZ;sMEtgL*caxjcw9ZEAs8UWuL7#ddiP8k%Lm3%9h1Mz8WXc(`y_Pt>U z2RrNd?d?65^C5;l)Hs}}ad@XCox%Joa(67q0CGvM|AJg%ugqT@h`YP{pB)HQ4Mgyf z5n)j&DQv@BoRNXS(MqC#C46@St8r_bE0qhcTmHsbfy12wTCxi^Fo>(M_8>3~iV#5W9c zmitfvX&=9(Q1@SROPP^>J#~sBEc6NC=ITx@XXB4*TySlzm5!Cb7gT-CETszHo z7}J)!yu9qePj9tZH)x39>Z#(QP!L)!(b8650y&vb6IzK;O?1b?Y)BqPH0|rw7v{=*83g(XsY`&2*~I+_&@l zczK;C+n@5uI>yc~EcCRux1VJtG@&;s4&f}WW*Li8->FXBCaEj9OJF^3;#|LEfwY?X z@I(ebTgM1;#KHPVO?uEbfBW`rbS|LS=|$T_*CCIZryo-l$k>fltS}PxoloY*!=;%o z&wwI)CyZEib&YW_lk1SYBYZuc)_aBahEr-1aw~!8BFLk(wI4tfb({E`jEo#aLXcIV zs%#GLj2)ciF^3LT?W($I@tF|wVkHTc`fX&y`10ka(D8fv`p6FI4D%o60)Q(Q@O>zj zf`jpRdpS+-2#7tgPO}`lzO9r55$KAhwU)HT(HcCj{I!1Nrv31at zaP54H7^uE$>4sijB_V1yo~NO&o6SNtbS~*7hRvcbq#EQ&`_$uy4E%Ju9@ZuyEhLec5l{ zz6B4`(!vsCKsv>1YavKhE0~_1PKb|R*xz;#fq485=MoNni&3G~m%+?qnK;o+)Vx@*Mx^D9AT+A=H5iighbADKZEQtUjTW(mhr8 zfLEdu??=8xE-5J?{l-e36u$6kbaZrp_;^hN;a*Gs8f=00&FAOV%w;q-Hb%^F!a@6L z$N4hpgJ>IQ&3(sWROX{>(JQSs&Yxdi<5O@?11}5-u#KOR+MhjmIvc)|Rf{z>D&Qk( zy1ZBkPGVA04y3e9s(*c#p`L1XN(x`?!Y5?`s-b~FR)tGnL~sk-!I{$#JG}{vgd%D8 zX;bZ+dVDsLTU16yrYdZ@TNFxqic&df5*8MgEa=e`Ex-yrfzjlgyYo;@n}4Rq_`z9I z@IxVL7)wdhWI@3E=Z3#XKjj&R@FXdl;w_xKzDg&K9Xn=MTV8GiU(o};s8&+l8p4C) zeta4~3Z|@;4oTK(&R+|rIIzav{FH=54;XK`tFOZ0ct5|2`%_n4x+FK&^G@Qg^(bTE2F&q+d|IP1s7dV9591 zt1TtD1XawS3w49#zz;(s3$H7H{J*-|9AI6~D`h=Er4$tvrKkquQc_b{JskwCAy_;Z z$oS>b8AG>uriWhN2F*#mUZepj_ia4eX$bF zs8sTsPB1Vq=uba;c&Gm1ogBrC5VfcS(q}~UG7?(Hc67;X0W0(VXWk0m2J)%T-@!yd zOhTe!z@2VPG%d2Q*LnQw5j&#L`uA&D`9a0QDFW z>^5YhJBk(L<)I#Q{QUg-Y+@q_mLq981U3Gq@55#hJWao;C`J$atn5hxc}lLsN^WVt zzfWv&z^BbmX}taE*_ICK?*t5@%nf$B2 z=-*ZDND8%eWX=&p+7TioZMQ1@%G4kg-D2bKta?_n$U5$*56Tx#GM=GOcSOIfsSy{txQcz5EKVshy zd3xH&%Bl$92Hvj#kGJUQ>3Kak^W?NoPGht{VWd!)88FhuvyHX3jqa92F=I2c18Y^R zx`*5B1|=$tv~7IY0fA?^W5-cQ`SdoJgBwK<&`sXlCOG;1&{c|;QaTLibO=HZp1LR| z4ZrsKMJU>S*;BmX_Q(OXVU;A(lH4-%t;vrHgEh_!5ll#yQ&$c$PB%^QDNOlXz_a0p zBMuosC=LQA550layF?kNHUv)YE3s{2sW7C?#?EhX!rF_kw+Ws6NvA<8W65%k?U~d7 zm|SG?OfLdUq*eJxc8 zXLt8rR>}*jR~a1a;!=2{Eu(0B{01v$g+(?pH-BP+wI(&lL|p=RW*8b8>S+!HNiv+K zeGMW@fN*jGkJew0u0L_~e{co@a8xsS76P`4V69zG!R75aaj6}QMt?1H zWdhUJDpmiY&jxK3OsDp6DGa~|Rjg_PN+KQl387tH3D3>TZrrW8fTk7N(1w0F)&SwJ zk(pVZYVeXHV~OJIxQVLI^3%2$KG(@qT9E)&fJqwEz+5%={fa-KE4Z`dz5U0JS_4b;G z2@Ai2c%#J2{t@08q^?D{P?*s*vLcuaf*|r6dc_7E^^0olAATzvwM*8|)-a#t!25TG(n-0HGzh2$ z8R@Ar%c*#>B)F0SoBA-69@Z3;PZw(BcEZ7i^HQ4}Hir%23VIZ=5eJeMfWaUrVw??yH@*JO>a{`Jwkbh9-#%IN{uZ56!Z{y~lOd_wW zo8-4zNr12JS55o_wc_^~X74aB8Cr^n*s7DJ*pXvS z<2rcoAS+LUwb-7C5{KcpP}uTQ)a=(HSn_R^!774s3JQfKCDNnf`lcI$GkgBZ2Lq;m z;{y|bLfms`%dKPHEMC4A`0%2)Y7-6`{pHJ-UyuAzcwSSJ6(+zqG)2ZC`Z-o_B`G=C z<$av+lCI<%t18dmHDd&O8hF%Q=|)E_{x#KD~S8SoAGCCi18#e0b9`|w{V^lMfu z4c!X<2qRf}(pE0M=P+e(hU*Sm9*(4~Ewr_gY0hIUiKoQHM{Uz|jZ93OXTR2_sDOx6amXAHZTbLojUg=a4nTS!A~*|H_+d0~>C+RAaoaR75Kz}g<7x^@;y zDneGg3qb+ZAvMDb3QmbBD-%IMnOwT`Q0~Tu17x9%IiaEl`=$C-EB^QnDVZ5ObMX=c zTM?^0!c3w>;(fBS^z9XEG- z7iV!1DUow$PS~N*uI{p;qE7$#fQXBmt*C(cL;xIQm+O@q?kE)NE#zxUx>A}w3MJU0 zep%VzejIto*Y%BI!q>&LZ6CHhp5OV{OyY5n#?{{roZ=HtK5M;qU(54LA73`1UP|Kv z^=iuwYAW9xN*cXWnQbS`=X^4&ASEgHQKL$}M7ZVyy+6LO@7TFT)*=cWD~-PBMr92e zK7`%3BkkJIZW#Na%4Zi2#P*sZ*yid{^hc zfB)Wb)Y9+X*X8P;HGA04-h6QT_U$(b3As6@r6rxeqfi%YJ99_UQ&UxWRD;|0h*q}E zE!J}fn6)a>vfm1urV5*uq}#S8d~a##d2xvUVZw5V)bLej=Ulck*ONHqJngF$%gqKDb=mte^sOa~b>L>C+u4A3oT%#L2`+xmcV|g$4QZI>FU^?Ni{krTg-5 zJG+a@hn!Q=(z43R%KBUlOii<}*n<-j6WjaWzkmNGA|hpUbTo;uM5DvsKsp?cQwd|{ zzp)ZtJ7Sl7YzyiE)jGJnl!(b1AGcOfDJI5R-rA$a6{d!L^XgSwy28nmCtc^zmI3tQ zSrRFhv(SZDokaNF+DfQ-vM0d04uwkMk@j257b*Mk&{Hm;w?^+YoLfLjN-BSW;?s=} z2;fxoyDkzb6dbX|PE)d2QUi1D1{RH;*P{f_ADeuMDmsh_)^#h5Wgkadu6adQg_jFufoQop?3>4! zuwfJo{}BJ+l%q$F;+Mb6OB zFeQ<(l4erjnFA%d)rz`6%*(?wWb*@-o25uudDR`8>&p|1_tEPUk&fj4Vr{MtxC80q zCuwoXpn&#Ux?LR(0 z@*o!zc5sflN<&fh4yQn~=$xK&$?9`(bS%DIw|fXfBMT4j&CJa;a&X9mdPR?gNIA47 zCaPVPiVq)wDx(BTw|0xXo{5aqDmUtCqeCnH1WD7-e672R(Vm#wPRq z`#-0nHaGpshvq-M#bP`5b#FsGxboxd*C^Mc_cS~`OWr3ZQ|2oc7(c{3JUrNC(dnsL z(eLYmj!F&G!`T*AS*ZSsiEtI;6rTyVatwM1CHpj{pS^CfUIUxCoY^govyBqk+V<8@ zF>%n@tAe??k0!2`#vzNoLL%f5OkJwFGw%)IJUYLH^B5W#u@!}N&b;ZI+5C8FE8KTd zZDo$p)vHMu`i6bY<6SxI#+H_Otx8NYb#-;J!7&tST1)n_w1b`9Rb}PCRNchfT=V0^ zrkL|iF-uEJTWLXT!X3=bR_1hG06oiduJ;{rb5cqcJ^gCFY%KI@u37K|#TeQ;}u|zhk$cEgBb{q{>wXjYS9>p)T%~W$?{~?9;zl3-uaV>b4rl%cK7Ekty7G-D45{({j*bo! zjzWiS!IYE~0X{y}NORBV;Q%Imzu_KOMDyO-a9(qtnG{*ix$8G+Yhz)LsKT&TZv^xu z+$XijgXQ{%_;tFzyf{=0Xt>`95bsaJXFJu*D?ANh%-kdml)AK42W*aUOJX+f55aMf zLSqxP$QH^iy9m$QZ>P|&uDbL%S+siXBFsN_3A6f`TFXB3 z>gts1*XWpaziQRvF!tPQxI#NRI}NX2PcL>P%+?*X>Dh5*xm3mWCUERJ@2By=u15{TuokDPg_GMS}D=R20q%dd;S(%v{ zF4gNcvF1FYqPiA&QuzQnWz8)}RcR7jkGkT@%B0Qx7V89sgdC~&Z{L0oFOC;Okqe56 ziA~GI>!ii$*v9tkg3s&sE^x%>;&3Lk)dgc{rowvhbLWa~)jm~qBK73xtE#G={=N-` zIv_GPGL7K(d6(hrM=Y$F>FHObhS0BZ=$ZEd`l(m2soJrrm6eqjn7;GnYL0~5?$^4C z8U8ftOt>0XJC!^j=}Vn+)rJDS{3;)xW2C3|4t{Mq)}>m{&#w}*(U~~gsjFlNuX!^n zE6w!un296j#KnuHY^w|I<*DE}olIb-y7bzryE|5yxWQ^m( zPYV-piaO9wc6q1yV3Y*48EGO`B9ByFo&9nMPJ9Op-#a2w{*)8E^L@+#j;I`-Jr zy*z@9S{s{G7=$t8#K=hgJi_tbecXzJ7Wz;MQ)N(8HjNDp?ejww6kxEWy`nrkmyR7f z7D#Vu(%Q=@Yam*+f`z^w{DA*8=I<{1z$6`?IXhxUo$K>is9IfVSL2>}xJSgUyVrRL zXFvWe9BH4lS%f1Wpq6$Ai^VATmJCDZIt`ZTZDZMYmm&ioOIe>v6cP}~;1mQV5w8yI z1Pg38@jU{8J9sFk!s>a{-71D=hpQ@h?fZ-DWr65Mz!IpN6xoI6R&O|%-yeCBnVH#f zNLT*drDywQLgnUn4#>l4t#|rL`z+QSJ*95-HQ2t(0^kS$^$PZTW8;w{6sA-;gIbEW z@5#Oa%vg4za#_Nm>-3Q$M`o~^BD)OxKwn&x2^QlURCyfJI`w*h{FXq9Xq?#XC4=g} zqU{uNd)exgdbfA??6D#7rX#>s-)*dOQf(3SA$#y&lpOt?)XnT4nSOHAqV2(!ZHEsX zN?ut(I}PEA>lj%^IoC`~Vqp5C`|d=}&{v79dMU729UgnVwzyO-K6P_oRCk>c+oL~PqgcaHz4#F!d7pDQZ0&@mXb?hzd)+f6ins*hF$8K zym-0hBO{|EfI*ELH*N@uh&X#{-Me=$nSp&1AJ18Y=Y`8} zBzv-yym|AcBpM#~bLm_Dresnc-pJp->K7vM^YYpetNoip7w^kAQ&;cHE9bqAj7%FG z9Q?${kW*8e;&LL4?>bQgO#98x@zp%m2zQ~s^DS&7Zz;{AhS8*VS~^}wCccG_tdQ)x zG`j2ZX-2@d@H9o7A};~CUO))LND*^`8#nsW5%Kfl#f#=pbuF#ChM?Ua^z3w$ei<6t zldhMHK+*-%OP3y92{&@Zw<0$R#Y8OYEM5mqGf6rB_<$E5i$mI<65#>SdVzC zd@?NQkmrCC_Je(A>dfYHt1+M~?@WU4e0wp$B8xxK@7f_gtv0y(T=GCEX(G~c-;@M2 z-(zS#-1=lJrQ6ujp0T+OJ%-y{YAp67_kX%X0MYmI5jzLCKE zWMAYzNnRYQcidcC45TYR+L2LIWB?3p^jNK47?;8?0rQK+DX@3C+6(;*&dp(an@kCCH7LCxc2bMDR;Tr^hzY zKb3{+{srKnKBSz|hoKFBxdHDZ3pu#quOY`Jod>1iJoZ0-d~T*L{sTo3Yv3;;V`R>Hq25s6G`V;4 zy81N_i(((u)!*G!Q2p3n!`yi_k?4e(vYQ_)j}fy{4f5Zym;LbCGAxfIFk#SFvrx&- z6bcZ~QyF!x<7n9lw5+MWGnCnSk+<~AurOmkzfIOz-|=q;LOA7&z#F&*O6L806Xwn? zZ~=Hh=cwm!!AiU0@)chBBOf~^u1cq^5;{^ek)~)ETLjiBG5h-M+f;CqG_Z(b2YHtD z;lpJXR<16&h00{4*wtuq47SygQnDh zg$*RC20_1XP)L*}@m9o^LMEhyJr?@w-75ksLRe#!Uipjc?A~UMx){V#5crJ^h#lvw zJAzv^A^&o6{_lwO7cH$}58d(mA19vGw%eH&SgQwF>BLFDi;Lr+%yg=K{P+=B4In0$ z48&k?qi^Bei|pF}1S{@Lesi>VS{-9`$SZN!f7Lw4q*x&dh=9E$-?~%iY?WWt_ZLDj=fOTb5IEpK9q2J|=E5CvMl4WHZp&+3B$~uFffc|0=LddpCJ8F+D&| zAYl&ZRm5_un|d3Eh@>gjOn?@&vlCb7=-Aj1ZteghD=%_?N_zTf;KO-+V@TVSIu8Ll z?a+>qP{$gWn1C>J1IsPWqZukP?J+qzd35x)Q(u9KReh*oo<)^`nOQb%zCstj-t2VE=BZ99&oN82m4$4k|inR0b^i~`W6-m)$kPAXtcju2%b~Z=*CD< zV_>0(=gdYM0`Sq$);4r=D^R4(i7Wj4v<-RQ08~fNT0m{sM9g}7P64p~dcY;}BbDCE zE4@}>#l5x*!&Sg!_skg^7@U@rGz1GFl}|gSE0cr>nz64T`ZsPw?_lK`yvq$8j3;vU zuCDumatr^Z8yvbRD74vsR2#qK_q-=_eQ44vbh0Hr3q(p$uWehBatL+L?%iE!y4>_x zW4yzE2}biS!Fq_B237(nu;LA$3QsbY7er^V&l!kEW@;E0r~sWFKR#_4x>wJs9m*-= zb{R0XALo(9YtLlRO)Bqy)X>mC|NNm`1)ehE#^shzvhU?ql zpe~OBEcI7FnVDIkKd4U0 zTQ$E?rrR&UN_B#6%6rYPTXKJRtUkhkX~oTQ*FlD$!?jaU)NUqgST&z(c!&MG`B7qFMS= zBEUV4jdO&O$Bkn(i<}0|n|n`0U_T&E+)@166YvormKwaf7lXIN;FbP4y~zr(*?nRV z5jUG4ZnlBkF>IYqxRtx}g6Yz)me4aai~y&OX8x_H@ZrO)W1bbUMM|4LYi%G83+ZQU z5b*5kHua&L%?Xa{OA~wux|y1r#{-uQ@=dcp;l=iN}QW<2=ckfSoLyJnDd*- z@uP0#QC|Etm2yWXhsx1C-fAkv3!($1f*j59a>n8|O?Dq!lawD}+R6_eI#ldI>QQw9 z@)~IM`KuqqF(Lgr3Gx|G1}vP=25szc&c($=pqMVN_t;unPlK`24O;ft{j9s-w?myE zkK|!!MrP(Ub@dmjA?&Br`^)Yng8+bJa+uEpa)*|jp?S@S$VhM!&A}iy24M=qD+O%Z z?TW9bairW%aKqmd!2sDHm?Hd2ieE0_W{m1Dc1vuPgQ3k>g#a?^FCap-MME#?uw)*!6X0P(4d#7=zsY5 z@hqSW+ZCf$%v@oXB4h;oE`!ziA<6qcZ^C+A0JbC?DtDAX`zMEGg^&BRFU~N_NI+Ov z8?0vBTtVXs7}n3yJ4(V66Y~)7qsoVJ4UeHqfNug}REczIetv!f?(3H?kJCp>7QywG zh^~#U4jeJFbj(;Mh(4qEq1lme=;SZr67 zuNUN`GeM%&(qrDHw2ij7=fA7Lb;ihh7t8~)+Jq4Z1V_knGIMea_4L9m{3(V<*w`FE z+Y2Xn!2s(ov<>UYF--&iMVH%uC49bexrG{aG4@+iQ`bkUdUhwT!F$gTt_AKwLEXnf zn`Q@zdGH!p^}3yGfe?gDp0#a>W1|tFJbZwL7ei>_G+cQ@EsU!hVj$9fL)sWv47z*w z?uEc2vdFfTOM$-9X;N}Gn#=F!XYo*l$R65%n6Eo8&8(*#K61qV`x}868TVAr`N0f` z;~l{3?T6cbE~MlORNqKPCsdKXq7P-R11u0Xk0Sw=b&g7dJ7j0h$|-yJ{mX%tlt_zy zyM5dNoA=tP!}EKvFd9o#-7QL;<9Y3WrG#-oj^+S?2Y6Hw`^=6CnTk>_h+m_|x5Aw; zVY>=#b??~PlAvCcTl@M6&yxBnj!w1NNlBl|hUWRm3wUPriQAdMB*&`e8 zfO%Cowb5wFxXl|4=iA;7Nw3neXSKJ0`gTkfmp%iKIK<8E0vf;THr_F>s%H=w{X2oo z_z$V6F=>gI4VKls%*=BzKE%Pl+g(H+svulB2Z;;$>Mc8Y#@d+8k57TZR2f2#@5*#L zA3r~TzNMw53sj0W27@W2GZ(p;?OIW1-|3mceuMR)1q>nAqa;lfzu9r+9IV~Ge*Rt( zvE2Ie!|linS1JqO%`F!Did=;aNOTCz-}Q|l%hfdCg6HgYv9mi15^C}Vf5Ofpz@lSm zo%W1nC8qeaw+U@yzt-hp8QIrB`^`Q3?r2=Ova<*l4DwNX$V!##ztq)9;>NJBRRLrK z2!oU%N9R3Y--cGNPaa3CD%&|47zP=z^#GjkD9D*shP;SRl4?qdts4#^G7v0HjkPpy>cejKS+W{oU!PMcyilzb~b{VE8Xn(7s4VPfrioL4nhOg$vox zBr*e(2n559V}z1_vg!X=q2%z;;L#x)H^5r4hvtAG%-Sz?kbo;GF%mM$ZiB>93 zB1_)vV)9>`GeUYg$(}+A3JTLc3C*NSXLB~3i?56<-e=#=qaNrVR(}ZHl(FzYE(K;f z=o+s!G0tXCpAqr#IeSFPlIk#}!#-Kp^z|d)q_F)&i&g&T1E8yv9#fYm=^fk)t9WKr zZrSK=%KVV2ii!%*kxuB!l`ef<$pPZn;%Qk~T!Xm7u3fvPnl=)0v$M5Y6;|WkikSD` z#=F~B;Tao_-2{RZjp_Bv*xW^B(#^~XkVOvx+1O~%#k>cHaXVS+-@|GoZmYD&gWu1D z00DT(RB+xFP8BE~gs{MeKyqvCIV#fCilK^=hpS9st~qolb@Z5Ejq)sVKuWUVR}>ER zY@pM6vL#90=kr)U$BB<1O4euYW4*~-q1VE&xMKFvT`iLffDIS9{eA`x`z<$%ClE2A zvjvSJ`q!>uf$gTjBXxulw6$Cd>x%K7nw;Fx|CE(GcY4~6KJSIs$6y#TtLB$&3y0N0 zIoj72$0WU%teaybv+6!_dQ`Pnf^z_uS5ar{@?im=F2}>elb;wJodHS1ER2GV(Ym04 zil+1TAZ27>$os9ig6%Ez@8ZCwCGObQ?-y->!r&MiB-2es+m-92(8;)6h@f^7lhN$> z2Pue^ufoihVu2n!3YDP;<^naGg^N+HFN!Q&uQ+}B^i=?sl`KnoW;a1oS2uEn9{=2x zk-sU%+yNHVf2zjMjgx$FJuS59_GH*Wk`1vSWvNlLbi;@9PE~9txOpDHs~TJmloaVe zPv*=L!l-7Fxsi8apxU3-QqEE!Bq-PfTWzeJ%O}{}VGtL}s;OBbc4ur~p)Cs)h;uU}O~lb{ zeNuz2my%1s19zW2IRpj#`t@ro7KmGmKZSXd$&*zGutLaozckmga zl^Ba*&0JxRi%S5(Kk@SM#o%x_qYyxG6J@S%7C5whQZtFdNMb24UEbJVlwd?rRD<0T z-{uC(JI|PvwSD>eH6~up>(`eHp5F7vGF>SSnkE_|#Fn}K;>K+Aik>g^^|6oxf08M= z+jkqe3?SNDoq!uk!O)U0Ex9WO(DShzZ1N_^=r1bbdra_{s&H%S{LsMobrqE-$Ie+l z?<=?yB=$85*1HhQtwMjAr#omq09)wx6 zfz9*oxp}J)1vmpe7C3W8B4EAIvI!)+J!~r5iud0bAToNIVx>gen7|{&fQ?FOMv6$n z&H~9jY-i3Q=#&`1@GeVjb3iEKy^0~5&Q$G?9tu2)Ju5Q)!!R%;kVfyr2jD?Mij@w! z1wqYz zxNT|;sY!@H%0DrpEx0l1z?5K5mJ~MTE;nZFR#GcC_{|i8r3=n$!5Ma?)a8HuA7_urK>8MF`rY45E%B^{vu>bkm8&ZPrizI=&-nG_R1Cj>a5jeo9qAGc~E zG8taWy37^bNuXllphVBYo&){lo9*r3R7%hmhO3o11W0s1>1Z$?V__tUgMGFy=*xh(n!-a6^V*1Kc8{-^9m%?H!U8;G{-DA^&Ndwi(9* hQsCzQvv)ATM4_iDSu2gtMZy75>MA;yb1&X}_;0rNq3r+w literal 0 HcmV?d00001 diff --git a/output_20_0.png b/output_20_0.png new file mode 100644 index 0000000000000000000000000000000000000000..6f248f8d43185d21bb10decece9d53be041a7e82 GIT binary patch literal 11244 zcmdsdcT`jBwr|`jR>X!VQY=^i0a1#efY>n7q=|G;qz4p23neNlZWY*q^xh#<={*Vx zTY7H+BGMCzlmrNbytzE(-ZSnP_nq_JA9vj2uplHWYkl9G^Vh!L@2V-W@8sTzLZR5v zw{K{oP`@dmP@59Av%z;}PCPJxe`K&X?_;$bEU>O-j*n2PX4uDe4p=+u2gh6v(I1e58~x~mHGLz#s~h4KX=EyPCR;8 z@}2OZyRB(7;x>$AU92PQpLChPR_o zpRQekALZ`#hi{zw@4l@Z`6{s~Qkoh{Tu%-R3>uN|EHM52+f47r>+r6-_wI#M ztuHhbMZnfgUge2r4D0#U#21sj4Gx@9`+!{_XlQB%jyFeVkeRctfdV-_87nJpoCgn1 zh8WmeJ1SUPTbIGxY3qwE%7GLrH8?6NQ^slBYN*0JJ`C#PwP|#X^Y_i$_WU_AfA-?V zi>>1><-za-2?+_OYcy0<{ocHN8yp#V)avbQUz*$?5DoCN&2ntS(jwC82&koiYa6IiETU`ABj~657Q8e|W`jG$r{rd&b zoSd9@R8)2s=xS?E1}ckMJF3LWdv&I3ozcS5O8RuBU%+~xRTQ5MO* zJWC`Midgow6uT0s*rBKQ>)lmI@sa zlC}pA95`?|AJ6hemj4+o(xFPv#ETX@-V!SoP?xAIT6)8_JJT8)Bn4d(zP)dmr|^t? zth#-%fpJc#hyT;bU2rJHoZTsokLzP;)XVR`53m{^f=EZ6zcwVm@=qC z)%*UpeY={^pKbTyW4<+QR^OVN?ep-8ii(L<;^N}Rv*8hM5SoWYO-V%H| ztd#&(+P9!H+jvJDOSLsM_uqHD#Dmd?F*A7yuJz-`5AIAcy}TPf+c>(rbWM1%?`nqc zUb}Y9AQZY-HZGT#Ws#Ad-jc3~sw(3nM~(=IiE+rD zhK8~)zMLy?=1j374TU8JGgGJQ(h$mj?`DBWZEXZPkf=T%Sn(!p6N zJaf;QoKh-}EcQ0FJFA1Blc6t>tsE-KE#sJUM_Jj2{zNv~Q8rqk@CG!+rh>@gu7$pHNHlD7$Ub&Cy`Lk5gqwMUO0l`-k0 zqZnafVJ+=W^2GrY7DKlwLQ3dqH_6 zii-cr-gnh}R~OZ_+|7U;g^H^@_P@HefAwTYu5Y3epZg6M)1Lz)BKoJpf`xU3BqepA z#>-ZIyrq5K#{VKsABEaG1@$X1mGD-y{o}*B-x>g}cnTcM%;Hm2!V|(TTG~uBM@L+G zl5korDs8ab)i?J6yeGZ?<|WENX+8|x-;`mzKBs$)hg(W`ue%N6SxjzOY}z3)<4k3- zO6?W}mgjb1XoB|yqZf$)o!8K4G`ED+A1P|lguJ}GI4{7N58>f`aU#OP$~SM`RIFS1 zPh9}_*52N(efMshq;2=)S1yyzXPdWS$AWb!&_-af-^+`f$mpg;_CivXb2+B z>^b-C+qW#)ZE&YDaE0tjy1r`66}=i?4qZT3`IYaRb?)7xWEBtD6h0gsAFrp<*h1ik z#r;)KROVAWv%jfv9X*<{OSI%FOmtOy_1m}a!marfy?L|qlz_mN!PJha4;@o>U9!mQ zcdi8|c0fB@vo@H3Ja&#AI9wS32RRNi(_eT;U7h2mJM?7rOF14uY$DWmB=+ZbMb1Nq zD78l&v{TihB_7ouM7I}McYFZgoy51uEn7kD;ugN0DRdyq%PstQvcJl!+@d9hH(L-U z?e_ij;;#CJ21$6E*J6`2Aa+NKH~pd)V=5KC4iX3s4i*%m%pDOudGdM=aife6H+fuc z<-3n8Ykjd0N3&r+Ds|3K3nurzFF>7!MNf2k%Eu1a7greP7>eqaG;C_UL&!+xlT(w= zCIptbayZDL^mWsWi8UJt09^I>XF1is#=!muUaj0)qhV|uBT8I%q)qo}d9BgAzWjbb zM^m$XI_&xL-(-0F*_2gOR9*`q1$=IL*a|kUzPY(OHP)L@Xxl?5D!SKW=;Q}55y?B@ zSc;wQ{rJgovNe9M4sgK}dJ~ViaxI!7*r;2#Zl#clb6|6vyL5E7@=iRy^x=;`ekS@4 zFRzU)uWhEv$Idmr0q(j_Y+Bb}ZGwh7g|38+Dl*a03D(rqL|D#I`w~SD`t*)|>HjqC zZJMC69RE7)HGz^)bBM;U{fw2703W)rkWf39iD&$9jc)^$W;4~E++X3IPoM5f^ky<7 zDdf)J#J>-IsqkG-TQjmla7&j~O9*!;Lvj@~l$FshMo`{lg6w^S$mPoh<*sw~Qisu+ zP~$*|Hd6tEkbXDDO`Q@kt|-yKr*;UYcJxtbzoDM~*1ki5}iL`U-8pba+ zUsi_&!TtFC40f{h_~4T|Ub9G;46k>aaVWt&N)WJa3=?PXUtC-Spxuqu)YA)3NZ9ax zPtCzIGhp{l0arSDl z8H-;?nJ?1908z-}N1;-W^BiATpJPc?Juts`OV)G6TmgkryMF1~sEkXd^V%kq>_PZM z^#>2A^vx*j*%v2o#0ckHSxuMlO`Mw93H9~Mm$M=wss_dOm?BnvuyAlh1R*T!u#xBdSH^cAj%(U5 zSYKn!Sg)p~$(~v=GBWyAo}~ai1$KQGfL){~CEbAOfaxUW=HAsxQ9-6gcKNJq~j7aa@$1c2}%=N>FjhE5xfQw;Q$3m$p7^#4o*(Z<=Nq^ZC9xas~~8K6x4d>WOi=-%K%8L^l**2 z^6d6kvNTd**PNo@9=lW3`JE}9h(=@Yhv@`Euyr)-#fuk*XwZ^YzvsS61iI?SEqRC9 zlfzK}t7OY$&;UXm993{QoXxh(U5F_$5gN5;Q`#$<( zEMO@WUe&(7x(I^>`|VUHg2T@uvm5H`4|39$cNxO8!-1NjwO;3#0tVFyo0-#5Qe6XP;Bl%ojQe^|H_3w&*Mz(R^72<2gc|GNU^8=U2;msIl2IyjL+UVmGlTGjzs87L1}4S zve&XvK9lK9^prR80jP}=G%I(+mbJHQLUA}LxOGi-8#w6Px$_2`jHN!y*r{jR`0k?7 zzu(K!=ftW&-y9M(?Cn1Vmc{nb^R;2!1H;g{OT7;RBuSPa5$~v~vS;$kINs1T@hYr+ zcO(&!j8<*)2%bF|sZB2^&<1g6pBL~C?fk2O9SbMjQ2jX+n{=gspnwcQ(tp?+qb}v7 zby|5>4o_3`W!;MwjaEf1af&{_1qATP5rD4?0mBmm_VP9$G$iCSy6M%)zjWUZFSt+t z)UFy0L&GRgr{3D+lS=+pz)!d(Z9ae~->GF$&QyZucncg0U#pY zONgiuA*YIQ2Q(C4K&oPFXQwu1uuLbg06Yc2`uktMewB6m88-wAi$Jfgk#q1X4t~Du z^j{pc=x83eAQ`Z}0QCeDqBna{bQwEBnPB&xsVCl4QnDQ^bJj1i3kUv$*i`7C(^K)j zd^_ElKx!@>8epeeMpnZar2|a{TCPyLcSaUiTNg?zR8#oVaUHz6aYYVcjkOmeq?iL~u=2dyhd++>~{hzHbWsrk2l~E1#1` zguQ;LW3m*cKM5=&N=l^tPK`oXy>{n4uAAgM=-^>h2T-UqT;YSSI}xyAthV4q(TLz~ zjlWKtN{yww5ze-1&;%i~Z7*F|Njc=422`^oFf_UOF9&3w{J7Ct1shGs%F?m0u!s`@ z3CUbr*45C^Xno>MG?9xW!p8ODqQJ_8Yb(0>S30xQpXx>sC|)~TgRUv|6l z#^3**ot+)x3jRf{eQRjwsD8Q2ARh~l7_ZN){{@DF=3b0E&^^BlF{G1#zES~f+k@2Q z(}CZqc@v2`w)IU-!97&=bG{t>_FYV<_CMPwy8ehSdgP*o1j({BPEoZeH92_-2t87z z;GeWxd4Q#7V`HPOr`PwLq5+aFe_2E(T1_UpnO_GO&SbB?91lFKps48VyV}|QLS=YN zAnp!9BqcBqM2*U<0FELgtOErQLIAt~ph;mQ0^mq(2T4u|E{GU~wf?*r;7JnF(rzyg zy2g6bGEAnToSNSY@WOZ)srBo?Z%p8AmL}UA%LgN5oDc)JGecLb)KIi3{G!s-)RdC_li|Wayx8 zbIV|YD6=-^SbYA!)FLvi9&_!p`J1_?D;g?1Fov=^)zzgLz;}jUR|h>M%lCmE-3ohSi9)?sDHv-kvk;XD|9ptR8hl&@V@?>weG&i3FN0q&w z&wIrz%Y`}^ph`h@59MCdbYw2a4O4udFc%%cCgehj4l6#CjRJ|BWZMkMOpzt&1s@AgmHvXY` zfLjf|;S~M=ejOssNOS-HSQHu>DtzkHO@~Ta$Z6Gx&V&(6Z>}O#pO&?CI>7XRIX{ss zMkMp!UtaaRqox+pLk(^ivuT@06`1^&!f2RS{5IoKyh?S=Fp-J4?3!)S7}jPNtLVcf zdB3HlMHeQ9Gti>q6*q_<0z2(4fe8q|MTVrIsoegfsg#zbYtJeum>?b>=sU2KiN(g{976xkuMXK_`S4&$5OhpA|E__7&)zV?_SD|1EX|*u=tqf{Ca==(uHx;=^O3JO5 zFJI!op+ii&)x`stss${c@MAAw0_qGgP7HI^=F?paNIIUfuKXopr*|yPk?d?6pW9U=zeq?-JUU|w6;}okTp@-eW#rQL zC@=}}2f2tVFTocJ{_vsGoE`eho2ZaGOT%>$@pxW&&-fzJP-)yz3d`Un!_o4FRZt> zmkk3mI0aV7qKlxTXnQ}`^x69_)xUo2-_)?dTr-GL(oe{*{xUMZCHru+qs<_E!P`;n zKxV^4Uv|BhV_f;%|9#Tm1Qv|#;K0BHFhz@0V`duDzYMlzhlx9k5AHjU{1t_pNY%|T z#^9n3y-ajp9H07F$7fsAGF0gST9y&?#s>4ZP>VD(dzY22_N3IXv3#@H5bv(V+557T zio}F|dJSD1T`BY8V-~K||P)It$`#yn-eG-kFdppR;Tn3HwrhFQWd5k zChNS;A(u2gJ^jhR6pB;F#)bgn-~<}+n`#62b3ip%Lkz(f4N{kY0Bz8*K}1m@z55`5 zCTI|e)q4g44~H7dPn!PaFU;jRskO5#c=Dxs;T#DY)?{LUghk_FbbI`DUo0TCElfws zP-Qt1!ktnMNpqSA;wk_DNduxy`SffvlJ_PBnfxXLABHe5h(=+A1T9VHw-A&9_%Pyt z+O3}pRuL-$6{Wg@k%XoDul#b~5r00fC5=bs=19xE@$RT*nz z&H2Zd-z}CsAZ=BRmemmrRsQ(#Baj7)?-@J#6a9`#*AG9ID77OMiA-TAXOneefUwxx2z?tZNM}%-MPCo<-@J9}6+}wirllkPmn9y5zlsczCjV$j+j~Aw0u(mfUK8x) zz(TY+?+f9%1c_C(HroM7ZYrcGHh^BTxTQ4vvZ<84I%^#>q+)dlv2at#p#_#Ld~(dC z4#Yg-^ZfalpT|QgdhTzI63hq0CxUr$R#-Trt#~3<6K)xa<6txTOPx}YjOF(OXKa>d z2ajj3H)8q=(0zSwPD^v8>xydTI~DO)Q5&%||jAjMK$R)ukckL*8pMpKxAYmFU~I&#PaVzY&*} zm)CwNT5ZvUMKe)c?tm3BJ+V;V#vurnI>bcnQ7IIE60j9X^=%4Qq zmpa0WR8UfKAE2eav2k}na!LvT&)N_Y654sQ6jM#5ZKRpx$Qv}f{^h8~(Wun4w6lom zC#Mc8$Iehb!y0O#FA7auCX7vaD&KV&PjT%JcgiK#Hb9RK>hiaEgbUO3b=r^3Y|UM`p5C> z5aEc67?#|HL6VF(Q=sFdDE!tF`hhT-vH-R$@Jn+0n`u*O(fJ`!Ef?Lrw~uG;P=auy z<6(eYw_Pl#_l@sOxcA>xHbj7n(1v~ak))CFnMqpKKLJ-TsZAq6R5rCMX#zmXwnPHj)_{IpIKYrt-lOg%BzXMz@yW0bhe_}Q zUikAX@L^R9WPcfMK~-I_zEyr?h!bPfsL-QW2$26ESTofDgU5FW?y+vHGQXt?slgT~%%E4>GVv zK_vCTKbXD>>&IJ*-~#!xucj9k9Gx~+Cn62(OTR{4dh+8Py=|xknP*K9jBTdEFdv7p zh@rol29G0K(Ex{I=s5@3!z_Y>DN=x@kE3}Yv$(Amag_>`SJNR^6t-lg-mGld z5637jTy~w6fMZw^a=4}Q$k)gp{fg=x1?a9hb zFqNACJXBx}8z*A%eA$8py@Re~3`FI9B~KpuEHdDK$Suvi+{G2ap|IXMO(v2La&i6I z?Jr-xgn}zOx8^ zC0mh^7p=ObaDwFmi%Dkj{&<6rFrAQ8P*7-{SaK%=YkP)I z1j}*pt;u>dIN&FjzOuFeC(B2xs7N61ginz~{x2vZ!fqGv#mTGQm*3k;ARK~#Tci_X zhOxM4IWHN>Vh}Tnh#-V(jbLS)puo799tf8~)P|MqEUdTV;fE>>L$Bd%(`!TC1rHQZ9tWu@60evFFQSh-6VH^i8!J+1E^;{~yvp*Yf}X literal 0 HcmV?d00001 diff --git a/output_23_0.png b/output_23_0.png new file mode 100644 index 0000000000000000000000000000000000000000..3430aa7811f687a4c81f91d51b4e5f17875a9d83 GIT binary patch literal 11599 zcmdUVcUV(fn{TXGK}AKWM?n-25a}ggN4iRrE+P?W~ElaCS9yG)JkKIy=~6oo%h|{^4To=wyYp7Zs8e zI)C;LjI*#i-CrLN!a7}^+pAVu?K2IFBqfmEFux~-3 zZtsH0Kpp+BUQX2h(zGzqP4hEZyLA8leMc#F{c=KShl`ni_*uPoKYrZCO>}9erlzjU z)(AHg^^Xv}jkhr{YTds5Iyg8u*J-3)hZX+NC`MnLU0X-T`uF!&9`xlAwqE*IW{uHK zOJWS{Zo871cAshAnyP@4rvbh^&QQoNW94iaRVkJSnSeB`xnM zTu$b|vvPu4`+&pfL_vRhD4!-zn~}J$pI^(ntA6vv{p;$%TE@niqobIi-@ix04eYI) z6_k{e$dokF{4<5Mi@{n32Bf7WH$lU~8-6Up3zaues0#?zy0&>mW+PMuO#Q=^4m zy>jIYAD@!DyL-UX__Q?siOw9w$jHdJ?3XVOBqk;C3kzpenHBZg!*_#+on3}HQ9h%u z6kjvou!OmSLcI|`ZZ_ZR+RrB>q<-Q=hU=Wboq?2uge$>^IXEV?IpLwxB_CV1d`(J>Vkp8udlmlQ~l*_3taCVerv$ruKxagIz1vH!sesT z7Mc6M9)JGwW!n!?RGF3@-?wjVrSdpsN+0_D`j(#tLJ=x6Gc%OV97_`C={o~wczLe{ zYw7E!!GdYHTUn)E3t(--M9X`vq-Z9q^9u^n_=VwNJWE79SyMeZ=c2oto7BLrT_~zHd{ERO+fL;kt6(P&P=Bxv%9)DrJH43Dt6~1suw?1x>Df1Drw|cbqcvGCt=C- z+qZA-Wlg+F%%{~`>m>WrckDfSJ^1|j^J13u>_+ZGVXU$)={gzuiPhE0y)NB$8PbPQ zsK$%A)>2)i_yS(l*FW{Lh>N1|VPxq|HfSc=dU~m{Qze?_=H@G78s2I9*(A=KJzLu{ z44Z0YI2tQQ6}6~s>@e}pIHeMfEKvNlfaa(B*;rMZ0V4_z5b*Uk4SqQm9X@#Q?d+`M zF#DE^3E8(OP4Sbst2>+meeMiqHDCz_`%$Qmm!!6$Q11@}LQS20%ngrw2X_74Uf#l_ z2=yEKWdQR&Avsx6U*YuWQ?bJ*u1Rm~g2Xa&#Aj zISsJV9Kfuv(D(%eT6&6{qSHm4M{lgp1bMf@D#z;@yI;-A%TrcTx(Qz)cG=n4uy6x< zzXk^l-Yx-3j-iCZ-%9L*!8 zrZ%ydc)tDdV1 zIb9n;$SeX)fJ1>`=-PAtS$Q#R#)mhe3p4VqT6m8fJxW0)_I<|t_cuVms^51$j4qci@BV5h z4)vV>@PEV}|1+-n|NrSR_EAO@s{WQHx7XSSEyJ_lDwGE+lwxIekaaISJ2)+%7$i6Q zoSpGmNAT;{KWwA(Y&!TwL~fdznv#F{3e10E;95#8Ks8pkXN2rz4CPgQX- zJ#5>wpU*RHCGy&AjkclTxSss-?+{+<@bIuTEMAl(HV!y6nNKqbQyt1D17*X7--pV$ z(Ixcq#j$l0_)qvm;U(C5+=%qsQ)cT(0D`xirv zyl8E#;?|)$S;k(*s}4nmzR#cEaCa{PDiBWSMs>ZZR!&t6B6l1)a%*w&!GwliYip~~ z2^raAZB9}N^!3De#iDOd8EZ_4{dT{qn<7jIsfC47`#I%q=UCL;f*TFN&CSk+MnzGy z!=XY-N=kUU3xVSdg|c>_x}8HA1&cJlV8+o%jMV$49u|ZmZX%F##h{mhr7RSaGW}Q+GcLJ&e)ty(q7BaF0mt$X_bS-bmx9fHu{~}O^ zRcapZ%n6H(982|XKre1i5hXR*d1=}dJ^P&-A*`ckZy!iGf%3ts#`2fa!dtV5uI?Lj z+>mDS&Lk6LWZl+RuU?Ikc1kK+Uoe2DW628Zsq(AiqVQZPc+cLwM-I&f?TZKwe%E1) zS7SoYzvT3szK9SiBGaBSad9G-pMuM)#nm!rKS1qSathq~V1#|kr&J?_kzF69aVhX0 z6e{<~-<7fcVcf7NK=xy4q|93lap<-JtchCW`K!yz%XRrxRaLLP3{2~P{``5Z)eMC? zP`i~g5Ed_Ke%{$@q0_Rf@P2$6iG=ILb)*7ybh-=-4DbsHEu5_k;#$;1RM|NyK#1*+ z_n&Ogr%x+-tuD01q4Caj;vHh0^#cx|vxZ9o2V9DWT#C_Dp$O_{nZ1C;#vilTV>3!h z41-%qx>*)fZ7r=cCr(@hg%%~}p3TT9_v2n~diq(Q5w~#ArNjjwfbC4rL@KtEnQ7KG zHn=oIt4>^GfuRv4m;+(!zFF+|Ht8B-}@!IK^R^aaT}qJjzhT{4iOm__X|q?og7gywV$wxHDX3e?FXoT(|J zT;}VmD&-rcVmRxcD?4J6C1`fy-ZLGxt|XZTY;7f;3 zYqVvKX=z22&mT86HC?}@eApPt6fR!uBYRw6y9SzZsiKk#->)ni{U@&aNcaQEP6zzD z3lO*U@#gb6ub4eSMiH$M(I)~`$=dU{DbyX+g3MPkS`g(~pDI#aY3abBsW7t#=b z8sT_b#|^dZX-R1%XHgfaBSwAY3MPY!#RsRKUD%3xSlgP~{JTo-1lz<>5UM}%u`)`Q z>$6)LjUE2EoSoJtpfE3@SmXM)ZI=cE8IuKfj-Pzx>r21cUhdtiVKM#N@(&DhrTR)T zu36Z7jKiO2>~|G;7DwIMB8-xUTk&xM=U9CAp6VAnn)za%fiBa9;?0+rmj<8e`rB4q z2N%$`t#R^TAnK=~ub-Cz(}if5F(0QF0W>=_%8nJrU2on~NX8~gvj<>Zr4p8w$R4OJ zG%_NUWObZLM+EE6gcX`L$*u3;0Uq$X4)RIrVSOGdl#Yht67LPNW1Q3W?fW^m?naH+ zP_(RO@5Q~`zj;TwSCZA6mu4PJ?(oss6hHrcId6B89lfzO$13IU29PE+G&CVr)>Xp5 zd!j2(SydG=$C-t{_IOQyVjxiXP^eulTf8qV{2$MoVO**YW>r7WI;^?5Ih07uD)U;E zNFjnkixjm4)vF@e=N4~_pAbh-4bgtn178fB$E%g&R+zSjR99D+Y}>_1UvZr{S8;5E zJ?;K~;e73HcvtuzPfJg4U7aeQ;wxUEki@N9&%hAKO=bw~gS90CRCs!pBseM!$a65E zP#8fWB?NZ>T&P|IhWUJbZSAmy@y__xRxJ&^>(`&(($ox#i0HsXmz2n5tptaLhqvGJ zQUYrWi1XMob?-G0@%wko=XXi=d&Wmav0hbF#D^&=DpKJ-0`dWOta1r3=8(#&+FGq^ z*PdFI(yNP*A^tsVv$8bo2+#A zBesXus;L1wU&&*g){%!_v@e}+R(Zei%RX%=h`e0TmhV7FBO1W-S?9%q~#N}M)v0K{O+Tz{zYfCebQyJG7 zx%Lhv8*fAT-06_M!65Is^d7jB_RCM00zd5!wlN?s2uY=es>AB?V->v1!i7yH^`_c0 z3~XG1=bR60*{cZ2Kxt+<-J@XzoM;%7Ba5-yK+HgjL4m#Rix*ZCn|3Zmtxg)L2}m~T z^`_c%O|*&fUSg2xm|Iv-pti92W!)1%y0iMQTCB|PL2wG3InxN6!?m7tt)S0?gg9On zmgEM74MQfmX&*4sdG@_z-tK$m=2o5A=4F%TVXs_bH1nSsVq_6EPOs$hF6oqc#>jE& z?%j8m>%Xf)kZmSTSaVw+@upk)1r`9|s>Mj%+_7T^>-l@v<8eLq1@LXz3%f*K-gsze zXb%$;wrK{HYZMlCD~J=9CBUCB*}JWq3sp9>8Fw^Mi2d^Aj=7kolXbDO1)VaF7?>7H zmKCj<|h8{*Xv7o&1ty{r7;%tF2>d7(cmVS$1K4mzGo6a9ZYOHQ=$Y~Ah&yRPr zidy(*=j0qY)I7^~17e^Eo^KTu`Gw%=KXz`FII#-1z^Xtf*}3o7n=k=g3N@=-M@i|0 zva)gsg@>2ddZa!!IDuO+aI{I0Yg2Q9-Y#98ERI6s^D~QvSp$xVoV;-v>hmJc9p-FF z`<|4C54VExP5}>P+)YWosI99jprFt{XO|0=Zr7EoMAFH)Wp17b24CE+OAHOQMVL~6 zSyq=PzU<{(vbn^9+PHg3;y@4ZcW)BV1n5P~Kd8;WUp*aabP#j+c|n?;G0Xg$?~%Iv zWe8nE*`ZApyq87DHlOab*qaQoiH1!_W*cIB zD6M>Iu`+EMr8`ilPnk|{WE*oVHNJiQ8l&3_fmw!L&NW2Y5f*ZYO2M!J#BG0^L$o#- z*v24-1WD<(T}xr{kP)T0PW7>(J#ynf=Ej2OsUqVS#&6^A|5(u%5f)1L`-* zb_5i*V^PUbNF*w@&sR5Ly;lv^f1g&k2?dB`8MU>lM_5>>W64B&giKysx_tS_@#AAi z?E0q>4FMx+UK75YO@&P8`tn+J)30xSY^vGvct~R3^YC$VUmmOs>Ue&T+quKYbu2YG zt{IB;bV2t-i#*hHT1iPyPK?z3&&jJmAD_OA=ms7Y)K4gK8j&!toc{SKApG>HQ)3V( z$+(Qae#*$vbqBAi>JK@WmX6Laj+T;}o7?HGvdLF-B`d(HG7^7PjM0s5(D4F1JXgS7 z*g3C4Jky$}!eZA~qSun77Q!<$GD3nV2doTBk0nfi$ChZP(1?g+4p|orlo@2c$uLLG z;K0Xp%U8mL$fGBfnjuLOzyIsXdWZLVL`5J638Zyhw4}!Iig$JtUrIa5bof>_+!9_(ralfdOrV0U(a$%*Qn zf*?@brv2=bXU_!ApT7lCToaa20BL7BU&%Nc2uLdCwc^|hR1{#J1%X0>Qiztec4AMD zVJSqg)m2qZ!KYN?>1K3A3-yffduI| zVCys?kD+pW&&?hmw`D$fu<6Yju(AXQo_YRNs>y~mPh=^6QG%QW)AIWJ_v=~N00S+l znx}IRnYj8M#4q;?m`?aQwJRKcEmtZi_lo6?>%e{^zBfx(Xh;CtJwMUiK}v_VEWo~Q zh#e1~sHi58KpYLClv6xBDevFE$Awt3X%Y)%yN-xf)D_BZMIIim$SRb2(5%}AbI-5~ z8kgJ-QlPu#;21e%625-@%GJha;!kng z>cAO(er0Ir$V)qb8{@=}iy*)jXRw*jLf;A2Bb&E7G%U;t5l`nAng+nry46D zOl0zPiiNaq-%bH;Md%Z{u3hEc5rqvsF2d4VPLI(O ziOI=$`v(&}MVcT#WZY*Hc&vWBHzm_osN&!qkk^TXl~g1PGq5j8tiq;=SByDZk2NO- z^jYt<@Q=Rly8X|GVq9gfwaE}s)-}_ZuspPLh|6pKRYee&u+nCFRkmu6&_!>tYe$T< zQ|{ewdvKG6t`}{n?HN($Odlek1b#(14ZrL6!yS9)`|wkIf0AxXPJ=v&6GT(RIcQ=t zv``wP!RBE!mXLPMe~?&QJRXQlA3)TmgYoyb%~dxweaovBl>i$l7297%-k`7Iple~V zh+mnvs*4g=fwlDY_irt6pOXvX#rWmh_wqmc(lnY40+6>mfJ>q5;(GBUxh4p`F|(7A z{l}es0y^oK{5l}DH;}8+CVLIg9`lU=d2&p=c1+MPPI8|cwrYHHk0-1%ExICvH5Irbt5C$$w25wA z%_P;E1Og$)4(gdTrUPkN(tb#SetEUiOsYfpT<)Tipg5gAw_nps|!Ai0grZWlV3=Fp~!r{s}7r9Mmpl2t>;-U_k| z0%an|6?zGfRZt)dZT<9!fd*m>L!-2LK(f@(nU9X0f~@E=)VDs_Idx&OmjoRS=#FH3 zYMG-#y!oH>riggLz(2{vjYnupGlK-mhbcqY%*JL*ze6;l(%JTn=m)z@bPb6QLk~zf zI7x%pcQ1OuEmJ^1K-}^7btDrDu=oD;;`ID@PJ=ZJwCjV}GqUScCWw#q=`T!blR1e~ zOlsC`#Jv6Q|H8pXO!DVWoH&t`knmM=;qzYM*VEGugD%Bvy&Wd>Sr+c9@vgiY%>`(T zR7tTjI?eu8A}*GS0~WbFdDenzgrCS8j>AvRXe8?^UApwpeK^vxzL=n=7YUW> zrw8+zJl^>B^0nZqni`uYoGX>g8giyP_p`Rz#xA&&RR(g{G`F;%sel>0LPGUm$;I_I zh#SkqI-s4BY5>++EMYEMXTs73JWZBAPmW!8J}*^_M(>C_Yea7KXP2HWp)w2>NmRVX zPZm|~JAVFaYkRu{8GWoik7o|Lv-ox!8yhu%LigFK(`e{km;;PNZP2GS>>U*Zy}U8X zH;koaA|O#Sy8rEnZ(!g;Xkubw)sW*Dgc54`FZ})I$-jc5qSD}O%EXTk@olT)d#B1) zGm)+la!g_*eH8|l1|b-$yl3HgQBfK+6Ib6pE6W3NP&Jh zB(rhZU%y`2f9%`^I0Hi;wI`hs7FNhI$+8z7DNajM25&YaqX7#8MPfHA2Z4fnTLgt( zTCh0BKNd5R|L)x-5P^u;0cRiW>1|U}wl=E*1Zf2ZDN5WX9J*K0>1_TZWVl#X$*iw^ z`MQfVdmt}$$Csjfjz3T07>|gaJb4M?K()Arz3wm%egp%-+mNWb?ci35`;*gJH+CA9 z*2l_1YsFYC-^%8{r)FgoX!Dh;6IgE&aqahM#05DzIYF~7_1CYv==J%QfOcU%zMB{f z=8?2D2!V;=wYZEoZ!SP1FGeTRu+z45!MUt_d6=!OwN-3oYH>5Xw4(Im@#ri#fIxX#0S7;5e+DK_xe@#YgIACc$HcJj=aA8Y`O(j}jjRY@ zONMh8DV7a!`zZ|FMd1mM_L0)l(>uAmn4UU$<*zuk2hX{mfNHUl9Kg){`sT4VQyHD% zG}`#qNxgmVPL^5An_5~4fWbH5kkPR8BDNtOX<{E{V(<Cz654P3S zm%gG9Qe>s2J9FYd*qMHLI)-3Te2{!sSMU4_Hv7U)a~?=XS6TTM6kea_oErE}VITAy z5roX>Q#O0d!s6ve1BM0S6TIw#`nf5czt1W`&?KMb1rdVS>r&&5j0DJOdAnoKZ>fLD z0{xmNYkK!AElCg=kjIju^&z27;8DWqp4_@@x@<;gUSF;z2J%=Ghi z;KR|x2xD*&UDeC>s*v8b!aFSBv8&M1rC)x$a&kRufPn#%B*G=Y>SDAxh!E4_*Ds9>3~T_5?m@!fd~rfy z`8P9n)f(u{h5HR_BVoG6B2a_FusooIi7(gN4Y2Ojj9l_Plf3s>jvR?p5i0uH<5(jI zj4sNO8)eeVqT$#LM?d|PRz}w6$ES3O3^r?pn z_lIkbBgbr=& z3@c&#F8`^)>;r5(SP%vKBV^7B{M#-Y14N5=27nbkt9Yz`^qoqXHQyDn3GcF-?{9)aT@ zPaQ7$`uf(w{utf~R<|j3p<5Hn)I0dKmb~0@x`D_S&$YaM`Zb1N!5W#ZwXo4<57tRR|0Wx$rQx^Lz$0=n+pt5>gv zV_o}1h~D&~Na$W4hl6{|tNk03os|uQ1<|=4rv~@-1{&R=?BRL#x=7K=>(=i*=bIGc zWMBbAC3_qmje+U|e;1^ei+QChvjGRL{CS+<+=xbJK|jI9qCUpTV}8^WGO0Sdg5KfX zhIXB>b=3et;=AD%C^SpW+qW^udbN;rg$JEw>W~?qEZ-n#8XHema&AZgGl>9Y@SZ&R z`SFt{kpN1O$YH5PGQZnGVSvc+l=nvQa)kFXi&N88mPnAjk+79OD$?;UwzZ9C4#(ytlYxBX;AUMeS?TyJlv{Z;o|j5hF#+p7Ox~ zNn550C!?t^ObTMbs-R>a*?n@%q$*f87*i^B00WTYk<1(%b`Z2jO5MNvNFnI)xbm!r} E07G1*JOBUy literal 0 HcmV?d00001 diff --git a/output_26_0.png b/output_26_0.png new file mode 100644 index 0000000000000000000000000000000000000000..ab7ac54882a158f1378b4426a7ec36e10961baf5 GIT binary patch literal 12530 zcmdsdXIPY3wr(Mgq0s;ndHXuO>k|nAL6opXaOo45nMFAy8$(aI`P?9l$ zijs3lP;w{=fuew-sJlLUW}cZdbIzG_|J?IjA9$4VV}EnxrF-4W?H1PSmeY+RKK34- zPFUA7l5&!#PaHvedAWHiN=do=?Ey)whoh9J^<)SvvfEATswWD?ejWK{Dp1RJLZMFD zYF{{O?3YR!4)ijftY>`J-*NL?=;gb2@1plhiZSiG5Sy4PW?*>doml+4D>;(_Sp({E z24dfj|J-xHz_`e;`N>9cakLhogsRZhY5u;|1}bRIPo(W z0d?pu^1zMwZ(1ZHtI2>P!$4aZ*P7bguT?$*N9v)m{=jQb@sr3`R7yx zqsEQTSRrl6giD>BogY7Z=(P47Hkrr4X1wT>{`q?xHjjl&OiV;2CH0VZEew`3yNiK! zb~-!v-)84iF38Ff$j!^!>{Ce76BZU0m6Id%xf$Eol-AWL+dDXH_U&Y05torMsjjZ} z=4&1Q{(k)XdVFzFk=OEsw)bq8#@VxHBfKtxDbpXF+FT=I4}#Igt}#@$UP$m9Ja|w$ zIx9Q77#|fGx#ptO|KPwe1jroW(2$-hfAte;D;_DLFD z!&=I-=6w2e+5YCu^>}N^gm2^Hly@Aq$CZ`8G=D@%=e;;BD%+-9UNw?p@7PvNMKsfRnRO)@7*R<;#~to8P|O z7~RHClZ(`-JKfa4+}7w7xSsCduX z;h`Gu;^>$dXVQWF`?Jp8*<~_sWMYy_neXo(WC5!l-3pj4sHiaBxpQa3K4*QJmKW^ z-%D#371{Wd%`e5DxN`Msl8A2dM7t6A7XGg7o6bmHCFxrOCr6hD-PI0=TsF|ti^S20 zqeUepm#M?P={h<(tJ(Z?E$6+jg&HpgQ{#QLdz!zELOD@gG$lx*x2nfKFJUu)x6>RXwtru=I7vt>9L?mF%?Co>0 z{_RgyHb3a&vQF7G_Y59WR<_#M*l3u9z-;V;bYj6yd~?Ov*tl}?-X4x3voag5(>Jx! zf`9-0_umd27$bZ?AEQ;>l{R#YZ76Pb$q&{$d zxU6OT36WGP3-{fVr+qKGx7e&WC+EU}V|pd!y5y01%5tmJJlthxaaluAQIS|~PR`8x zCxYH@)e++0y1p$p`C>c~!NVL^dGx@xer&w{yx z`Lm2ZS-vPuzNi+$f=?~P&9Q{m+@+-@ek-}qyv)B|znJ&THLMDXD}hLghZoRj1d?53 zn_|%Vvp&3KzDcpEOo45!4@uf>O#R?*zx50@e|3BR)orU|KNFm~<0fCRy`y8XbAKt9 zg2&A}nqJ|H_+(hOA+EmV2e=(&W9f+DK2XKMD73W_c!n+CC@0BXs4s*TEv{ zo_g=iPqT`|yH#u^+Z91O_IK=9GG{}zjlV5CK-ndztr$GzRqq>*lIH*SwmGIO@J8U^ zkZi?>Y^KZkgPeyrGs02p2W)rjMosS{KQe=NG#uqd3q!GVWBQi%{Vsn-+}Lxj|Dsy{ z{n@L+vRn8=te_zD=DmIUHh@-QRc-j-!2?z{w%%SdTRgk!`VsZs9jMUwwly~)Z8K}{ zxJZ7r#T3=enQTR(>);CwyOzk_i4QTA&i#@RTrxV@7bCi!ss!#ZKL!3#2>yW~R^e~l zxDjM@^X71){wg?wjo`&c9VJ)Gd-C=9!I9PbZ36K&eqZmQprpu`y*NEPbEUQz#Z{tx zH@jVpVfFm^^SQzD{N@Pm{MWBvD-x%sro?1qDu-$+Dx@c;ruqh3pumxQ%u-M&oNQo~ zSFcG|I^&kFu=*Xy5>QfOV`8#pocqv&FYFclmNH!HzF!QckqDJlQet9;US3|6-cW?a z#KekL4nvvqP)uupx?6gsoeAX@8Nr0dlgpVC#$x=qC2ltgF#7nHSm6;#) zp1X-vY0`M6!b6{uYwXO^P4SxPIO+m7=ljJyY^cI1`?+0}^pusP)ACL7*6Qp}g3^Hya!u?pPmb~` z2vFvP?d=Dx*_Q6?1F*?KE(?jX!Chr#jeb$?AOGOcZ2*}sfC;Nfs={$+OH)NHtT&M3WY5fggxJb+Q@FM(w3vbt}tCF`qB^m031N4b_1Z$%cS@>ha!*kwVaM}*4EoS241#Ii~)wC?$CfI~^@0zNf z^XSN8c<4n=C1$EQJf>$D>-7;d6oP0IZn~*yh4J66T4*TZ%km{nkhbqfqjWKu}Rc6;x zr?yYPKZI{$uGmF_<=GxE-B@s{&uFlr_5-hB?=EbJv#&;|3-T~ou%dD69j&m!%;q~z zhYg(zA9f7E{j02J_~N#Mz<7c4Ot+dDTqt#Chey)(;S)ZWw6(iFCHa{32>n*W>iwS0mH9C}USA!P z=?DIYH@TiEZFk>y+qW@h{{a#{|AD;w+=cpATG7bUeVJqn}aHJATrsr6k#49K!zLAqhhOK=TVR zkc_osL`*EF-Q>MCz38?>J5hMUv$t25-i&MYNvw!oYy(Yi^Ltco zp%G$*~*sc#~b>nmqU2e00i(!`;-xB+j*#BpVkSJChxyT2yZB>RPJG z*z%;1M{S`Ye8?fyH}yHC(wA&w?K5aEGt}=heH{8g_^+>Dzv2`)P`AxYr|QoN_&1I} zJI@k0|J=krmwJiM(=#`H>%!*JdC}wV7mGsq-;#VbV?3iImsoiam8JbM**A}^M4ppr`*(jzl(e8@o1a?R)ORhxi++vk`=Ds!rjNsgBZXqb zf11~Ou18x#LnB%!zq=5e>C%rvbxEooX-T7VHddzR?{m9$OeWZtMn~^gq4XFb;C8W| zYC~*eMkU|PPmiy1iAmL)jS87?=W^Qz-q{*25hKLLt5`9#xv+3cH&y;hw6VE)!L`;F z{l<+cZr!BQ@IH;2iReqx=#C>up#<`P&3F*ivAQrU{yAwp&Gy9w%-F9xQ8v1B-I&|^ z3py83JBm$0Ebv+9boAnvmvf#7=2Az-OZQo%s@I1QRi}PNb^QD^sEhlNfIv=yjlf|h zH58<*X*7pS^$DxT29F~;LQ^u`d4SQ3Ki7&Fvtkc0N%t9gCVCsCtJUK$`meZjIEHr7^N$-&)7CTRr>7R^2u$ zsNGI+aa{w?yJk9l%zmmcN7mfS7h<(Jt(H53ChOlt{is&b-swRCDwJ5??ROlxlGY1& z7W7vnZ^Z^v)1;lEjZK8<-#A7_^_j=akQF{oeR{G+PN?yY!7&1%YFg|>PGDkLrKPV% zN(-44CP%gISW-eh)X3NKS4(qvM7_k1t?z|OYI+B@tJ@huPgvcUHoR3*aq|Iy3_L4h zv1A67(ZFxJny;q4Z(mhBbA_x6!biD9GPC47{uK=2TKx`AY#N3v@%in8E;czowai^V z>QTpU!XiV~OdXh0aL@mWo%(yc4Tt#e$SmmxZWUg$hTh~6>&(nd0GC}=F2p&PMvqAy zVG$8AX=!6K+u%yo^|3oB6JQK2YN~uVmZnm$VuFI_TN9+r3=N~>Ph8DH(DC#%(!9wG zVgJPG(7(mI)>BODw>RezLJFa+aP&=?nE`uy!xY&FZxPgjsi`SVIW+#L0i*QJqf;U$ z!-}k7!P3U)ZpStZaXV$FBNKOZ==)omJ?);H|-h7F-@DuOna zEuy}D_nY|c7u5PE(GzVI{hFH+1bs>4OJN0o$-nU}Hd3*c{Katz3F1;x`h|ss4c@O_ zy#k)j#MRXmAMD}jSzMWrQ&CZ&NW5eSdk204ySxi57@B-5xWosj5jc^UqGHX^=FAM5 zG}_qMrwXC_1KAg?$R{NweSH6ZNg}=8(`zAdqGfFNk*1FybIPUI-@P*o+Y7Fq;a)uq zp1_E*qa|jmyUFu-$n(hb`OY*wJl0|Ooy?8)7ZYdpbF^cGw8vYb`g0R(fE7BS-F1guwczOa`!loo z>3u*IP@1{1=$1&{fZ5!H1!XoAs^c6qIg52Gdcl-lv*a_5k>TOtUY}+9(VvrL8qW4Z zW6ipEdwZ9ej!w8u2;Ex++O~j+Cz@XG4w|7UbG>Zak%&2m2DVi+ecWn?JrwB-mEDld z{z@Qx488S(Kk|)P-}n`t%=>5Z^?&Hz|4SZ!Cc(q2=%p2NOy4w$Po<|JI1tQn$#c5R z#NXe)o_>EXZxOIdnC_lJBW7b6=w)YzhP=n1Ap#mz2UyQ6$;K@Y(qOr!QQl>Q={qE4 zV}%_RHOfP8ZvngX?AghXggp?QyNRzm|JWxeedF!VqaMIS#igg0*|)~0$??G5h>D0b zj|xL~ZCaomq2N(%1+?ReKe2vo$T|GcBjZLKJvJ$+&?sN8mpJmbCKrXVBc^400$($; zF`cdkq;f5}!E*QR-Qf`tz4__5qA-4(IZ#{x!A#PEU%YrBjUB0LmIS`0LLF$O?nI?j zmB6Y)5*EhT6sT;Xr%rVef>vj)uyLNga6W8rZ~FFX{w`kZoBM2BszEPVSy_9E&B`o@ ze#(6Q%6y|Qh$K@ht5hpVq#5J(Qby^TT}=Y0+L9hu=# zQT^ZEJ%nJe1-eWNmgpT45)lCs!X-L~nPo2;pw7qE*6z&nVXKR^WX#t3_nO(fl%B?r zkXpT+V4@>cZ0~JqeeiH@V*`VXR>|6up{nvX89)%krl*r>(iU1;e<0+U@TK?yAZ~%O z<5CHzfS$H9w4WU=Jntg^<6)kkFzOtkO*hnKJ6`OZqt|K&w6z)wHnFloKsieNk|QlG8v$zT z-^Uw}!a=D@KV^4+B#^9v2eK(e)};#=h}D&JhVq|GQz?FUrx(CJ1f2KuO?o)J3qKeD zx(H>QpJ5&yo0f)G4c?rI(O2zcllwB(ZisM|*Weupe|srGl1tt#<7vR0Xqtj&URxDJ za}n^S7)%k?`o@hc;Pm5CQY;lT4mOHkWo_fFe z#fh;^kIs4Y=obK)#)xPFIfSy>tv?Upn$R-t)RX-8JW&A+GzbaJ>`{ee*szFRsyQ|V z2(-Q$Rfr77w$x5=)gEwot{+4ZXgok^VSJ;)A3mJtC4deBUy=nls01}K0rHUj4ULU^ zG$_OMfrQ`h-01~c&Vs$9R;QWK;{H$)JHaLn?A5!eql9^wJb3 zEvXCT?PBus<`BT~E#p@#ERwgE!qf)b0or8jWIf${xc1@C(myha=nsb5t+th^LksG7 zByasnZthQJW>b%HHt#%w{`By(VljpL0E{MK5a9k2?F=2SvcNC9^BhAfoKqL0PVOJ~J+6uy3R2H?VLf@7w zhqbXwKxq7oBX*CRKJm6aRj~w$pos9fA($4Mm^fpp>M`-h{{8zAUeyWuMmEKf`)u6O z;D2C^0uX5`tG@dwFZ(Gs*b|8OmoMe3tt9V-g~`qMp^{5qoG!G}BnLSa{+-gOm)}h$ zk4E68(Vz$?%e&vGcL`Wqxay*yq-1Gb%S;1s9|^t-1k= znOjg$u*Vhq=n6<32vzDs8j@M}`;T>q7P`R3Eju&z>P`)HB+&VmQow4#{sRXpL1EVJ z0yVGV+N&LtlasR@ndcE3%fP)20~s+l+8B~?2}uKwNz5| zMjt(T)Pmreh5-8)FHR!}9IO(s+NsHGEekH6$rY^bv%fdngISv3=9W^)DPS#TC3GOh)rhx$M&26AWsgHEmVUvU5r58jpsz|g_Elhf{z z8vA1)w!-)Vw7`XW`xun6kX}4tqzJ?jQAI_IXlRH$RJNAhfPPr^+y4EAcDA%NlF?{G zaAh#f2gHBx=p2wJX7bhOg^@f8Spx$D7S2n5ad60b>+62O-`{b-L9jVzc3vZZMzYY_ z^xW>R$*+3Y6aR6WNC3X&8!PhL~6^k!^R8zY3u0pVIuk!U>t zrgO2@(75N+ofmNx!HP1U(v+1kxz- zY^+GN?90-4IOkH19aV+Kb~_`BE9HmsQSf|Z)~l+h(by3}+H(Z|^Yn0y+X()WvkDo8 z6mSC#XTSbK6#Jj0!SFyQvLC#-q~w}QadCTsE$*tzaMBq^7HeZDkknms~Tj^uDlc~>-wc&FRvo{_1)co%rb$0 zAL$r+>7EVgGY@7PiUO&N(RH>v6cAz#aun;{y?p@IC|^9=3&B~p<&mE9<2pSM_;*zD z0h}fL{4WM>D&D)TzCECS9H?E0y6`{#D5%uEem(PIBu^o9KHj7ulX8d8U10vXVKSfu z8P_lJaF^l&0_Pwm*Meov8dbQDUxa~+UPYJDhWa)foB`j7gJBS+lC7|LP}3tk&Hoc% z8Ekubh==FD=-raXDK<4;g~)(FM~49tkn86LJrS(=ABD|0*+}TJtwZP(WDKRohg5VW z`=Y3tTH}Z+u*EW^&S*3`RLqqpN^RRO!c%@!>ZCN)S)zA)6RJ?o>guWmQLf*)9?}7Q z!BNfV)~ynl8URIW4nvGMg*4+e-t&0~0}i7&=^@)2{#0T|KS*xxf6VH@IKs?r7QO=S zK$ucMEC&My2-{dzw;b-_;UNv!FMz59mLm<l7l4O;$yG8y)pYEQQ%@c=Zl!O{>s2Y256F;2YFsapha z`eil7Mmw`HiJcI_z`?-LEDY@Qfbl7S$uJwslL%GNMkIhx@h^v+@XdtjbObF&@G6N&oXG5ytQw@?= zKPdOKxU{BdNFfMHns=4U?tY8tD(t8YDYd`UT3nm!jKk%$;N#`uI zZA`=jELKk=$rXXF(9atHe1ulSdRmoxbJO5h<8}%DGjxp+-Loanw}DGJ3H(xCLBV?h zDA)EPFq-72{M3RVboG=f?$bB_ z@Lzhx!fX_qE+izB=$Ib7_B$~lHZ~FPKvJBz*=8S!NNCqO4TD#>f|DoV7PPwo*ai@# z3G*s`OV?taK3%jdEh&)(QCkEwjJ`F-Mmoa@ZvUza!n0K~wrO;We6`?>$%Kp1gB4Cj zX)bdCbZ5P(wlwEmzZ`aZMY8->DccO}Y zczC79NPnXbG={@rZ?11sLl}fMy7Vd~Q&M8Nt#e~yYHAJ&k*Swg1=boY2KwsS;;^M- z`X7J%f$_C6G%`BK!&3r-8JqP}%}dZG&&`)L_5nH7MqI1xw*e(T2U>}Ikc-n4y~R)m zWlR6D^(qYDPnnvWEQHJcLFz%+L0@hLq~4K_lsyTp-e((ahOJ6{{r#&!jVZFu9~-*{ z<7|EYX@63Fb&Qb|ns=Pnh_mHCXf0(c6uc;HYo#5TSA!l2DefRHmz29)s_O$>6##9& zce@Jp`0?WfZ9WoTEi8GJ{R|KepcMEBV?#s3wEmSFHvDs48Kb7oqR=cA?G)5*__L^` z(%D{?55WivRH**J{KBixZ`|wZ>hc=2Pv|8sf)Py5o%$Z_x>%<$wiAFiC4nQ`z8ZU@aI0|pUo zK`!ytKc;Ao@wQnl=CxV)*aNaq< zGm7MG{CGiW!zKpE7u`2u?EQcd5PImL)D{coy}u*O{`Db37QodSaOJqTxZVZa!AVjSK4wRQScsCo$PG3r@aG_)S zQ;v$V#Kc6d?EZF~7?5pwZK~6IXB0iB9_c+*zUs&yQk|&w5JVt^wjd1qSl)?(SQh#a zcmGm63D$L;v6cqdOOm%bc0!er#=JwO~mFDKB|x$;}hG zIt!||kNO(SZ3N8&3VGvj>PT%-(MRYR-h4_`SjpN9fjoOLdZR^cyYqeA&NdiG!vJ0I z8EUojFb;k*ow4OOS_9;TTrJa}W+cxkGb{Id)zDgg0_#d*_;u+4Fo!yDIYss}!RqQ& zCrLPW0L#tMfO&jxA55Xh6`!qvf+C`#GW@o=IXMLA6^_a%faQr$UQ(bENqczTUV)UA z4C7sIw*Z@#c?Vv4*=GufQU-{hJb-Cu>5%bFd6{2uNZBk{PJ2{KqSbxQL->~DpT(y< z0QXC=uJuU*5+(@_nvDD#`NlTV`woxOA9k17s(G$_mP>(A-xNUCi9jjFBqhxfTY$bp z#_>LbX9vw+e02EwuDv|yDj24LsU|^BpvDt{klMAi#f1TzLmDPvZ6jO|BR~@%3*)IW z&4-N)46Z?K#riA^T;I#5j7Fr&Zctb~L0aBfv+%GAs^SV%(PZT1z&j>_X488?LnGm3`HLdnJm^$nzARrKwu1cSj3UPuECOI=;W+w&UaPqr{90GI6OJiqOkT>-77{hd~Q^VHsCA-V5b$yPY#w0_lvaz3u#`d=#mxtX#NUKO$XN~pVxH?u*XH*XDHw%3m5$pitOkWx7g+dD z&{RzmTcSd?>{cMl)8gByn{JsFH|3GZ+9$?#n=m}K=RWl&J*qEbSYPN*Y@^dcp6P|;C9Kzb1fN-v=o6Pk{L zNbf-i0hJOU6zL_D`^4Ryow+;r-r4=<-o5_fFF(F~^?lEKo^#Ig1>e+AqCdiV1c5-% zBb9GxBM^JJ5r{o6zc~n7dJfSu!s1ynpnmfBUgj zY6SrmS~fu4s>4*!$=PF`x0DL1!aW`Q=EyR9A+oj95QuxCyzu0&Pcktg5I-IbIgCL3 zaIj%N0&z0PVlM*mR9_0d}{%`E_>(A@07uKA*`Kk7HtDGCDhNu1t1akC0w` zvd-j(Ky)Uc(Xw9p`f+iBsF!;A`nd*0W`lM9)!Z7%Iq%;qliWIF(8BZxgwfgf6!XvV zadBB1DUwqI))*`iz0`JDKuk=xLvFXmv}G^io_;eyfZM>_zamb=yzu4AbEaOO9t~F5 z#}E6?%LtjgD(>2@H7lwyb0%#kC9$&0_~?p?in`)V(BUwxMo+9zo12uPKAfBNfdk@8 zdYo}#dHMO+Qy1?T3dgtD^%tg$yW$GGmnQtlI~T3n%en53z6)c!>@+m^diM4GeQk3L zm9nwX&!6Y}&es~yoe;cPWL8`5M%GYIk<_DO5$;`I7-gH;9WhXAZfWVm8ee8+X3o9- zm;oJTdm7V`y+Y}?|MKyTYc=UUN2Bxm+2o5=2OlsM{S zS33U7&vYJJ>vt6t6)#Z?jWNx*wPD}b#Kc@t%Xi9A!nm>H+Z6NN?yZd_HX&|~2qlh) z>^G|n?2^3P-0#}8!agr;Fr7G&m5^{!Y5TF76M2l`@J2@myW~TD{^nD-^VX@(!9yA? z{)4!hqi+dSbOw5Q;$BXCSFRX}i;JU$>0qq*jEfS6yhg*4q&y4p9+WJzTA!()W3rt; zKce#>I#vzf1Q7_EOqlpk77@brV=@`lb9mLv%*^Q_T-n^KQ3jcLrck7p*Q*mk zMi~mBCkAjw;Xuyy!qa~eTmK{!|5tW@yK13rVp3r2gi`>#9igZ1J0EZIa+X*{tfdXp zqrriVkB#B%J@@wP6Z87=W9{}TF(fRkj|b!Ta&po}D*gZhfsMg7a0v*g9zJ~72ev+ zeweE0WPMkA?xLk6-&*4PSwW4K?dzq3o9It__8rVAE-oIf1O_?J%{}-lnCq#e`En16 ze%tfQn(z!d8XDm=qIvrC=&zHM5xBeKGahTO9ACesQ0u!!;Ea%d3Ba};dUf}2fH${1 zhqSe|RZ&$f^F0Lwc<_s<#6Lx-|0^i|uh{(`Zsw4;f%OgiAi_Q3w-g2}nr)rxt=QGog%&vk>{5b8i#&^reDNKpqRsnf zXOndAwY+^&HxXB+{4l{o?Kk!GJlY%af-R*+E^(5F7*5}; z57>^0k2hEwjFJyJn5&7AH7d8!N^cZHH*lRjD}Vm{`H{K<$$&WOgIk0nD+Rp}a&wqxiMJmaz#v!Y#TxBa<%NRBJtv0)5P zDeQTCCcw~{_)9QjUzxRLTY_l1JRel)Vr;_0$B*+p=Z9A+w(+}DRhph?C0LZ+9aXftecOgYz(V1U?jZLR-+HTyLfMi_5s0){J8N=K{ZhNs%ADNV zkXuM-Xiqr1)N&7Ir~J*1S&@NRQPo_4g2E%NCh`(|1|;&dG^{Wn;LWw>R$GxpPS#1tTFyb@i}- zoh1wfB#6&^?HVg7yF`E+Y6(9dpO%{1Q@M9y5B^o2C99n}b!rfp&NJ>fa?wi~KJ=B< zBqybm&K?@6Hv8XE15`5NQW|V=fy(;zOwmozJoar#;)CV3(RlRibj0~Rh^qp(?L|uj zRXs=itIWK|nH@hA%OjCU^jF+TK*>;4{K?hTb$QUfh)-JDmeelfA$_ROz` zQ^*N|sL~s--dM$Ko_!u2r8wmq6ji#RfPGX3c61pKh^sma|NcZfyH^JBtxI2D_e7gE zGMMR%$acrB@|!pJQ;#4{2V3m5_T8|uZDyKk5!o%n+8a#m?r5@#^Sik1xp#eIJU2Nz z)klR??P;K_{6t$vr^1nVDNv9unbabpx=XEJQ4Qu|X6bhd+!%k|dH}(2hsqq?mv3MX z6J>;V&!rt;({+yijI7C{M~?vM_T84c`YLD7UOHy?Ek;xF?m5HQ*eEE{wp)!wxcq!( zpAIIRpladnPKs5NEAF;>VqV}eT+?c{N3vI)fB!`nt&9TIokxP?R8dy$BzcZtTU%Rws6Mr3-nGMcDyV1J{!CYx@8@>WPe1hA1YNTE zvNm^FnNpz@G;`(~#9+)3WF)_ch{25;OFP?@E4j(hJeqc(vsf?Oejj+^=#lPcXRnuA zwZws#!N{3MMn-y64QlT#ukng4pA10Ui@Qb9kudjPi3JnT2ZhXsDCIGo0YJa>VRwf* z-(POqGd+i?vsj$U)|>7;+xr(?UG7AZH1(aWaFv=I#K^f-`HJY{7pQB#6JdrzrzXoh zPVl78H>>2@_YW3e0?jgWc&*3clD{f1p|!4bz3Hyep>XkOQ;ENc_V>zFZ+BdfXV3P9 zgt$sg%iXS@sJrDdTkRYYn)xoZ%^jCfXu2}Wc91$Q&aELeV*T!E$md;Wp6{#5Tn!8` zzWU$|raqLUKL`r)SpV|Lhj{FaYyq%UM|#NR{8A4i))TP} z8UEB&6(q6?j1#4@ueaA`cCZ3JotHmj!nz)iu80hzKJU#`-JUhACODDZ)DW-d9Rm5S z0VJ$)0X3T|lx%^*SJy&M2x(hcWrB&bS?hki#wMF?U`8ChyLZ0HP6(-UD2C;OSfOmrC7}7W?D7^@m^CTAVu1{lv^`(CL$BoufV%1x_!Ue z%Kx(^gb;%RmY~L7B)AlSXo;WD`*y?!9jq#-#oCkuzqI~Pi<;y;ujR`jXJMN zyG)uET;?6gfdaI5@buy`2!rsWctnIqXdy_;sGVy}bvkoH4Y)EQBRQO~IHs(=7EVVybcC z54Ro&w%9F0rqp@TY#AilAH*sDp121C;8kn3GS#Cb9IqR29X|*HL>R zbO{s$qiZBe3~eGh*JD8m7z_*yphajKVHwD-e|r0vhI@#2^uTbARM+=YV*4rBYI7~E zv&h8_KloI(*(UX%Qesf&s-j){6+Hr}Wtt2jbMI*qI~UjS2;!{#1J=2gsJMXDGK}r( zdwVwDp4mx*MJT|>hdkr=<^JaKRL`X7Z^f3acFCSj$>b~F6^L4Pb0Kj!d#2;s>>q;> zBM*kC?7sqihUcL9{aL@lc+-t#e&^$e@V676J z<8^(-Gwk~d!N!L}_7|=g;rKgZ?-ezc`PYb@@_S-Of%A@=ML~VB)Mk8eLghRyJz{!Fjo;p8=SZ{~=5NcO!p@7?_xur?Q?qX@m4;hOvWjwF8Pm z3(-)IAci1~jFKSH&-9=WY+)DtOleCDg!~{@1}eBf+l&tmETqwNxa`IlqYQPXj20lB zM@GnQ=A;H}+RhHw8k18z&C(ma|LP2Yj-xWtl_Ca3vr7DAF?o4;y88Ouze^916{rXf zthPtR-@`-day>E5N__XnmV;n92nsBwx3?!Q*O%07Ot7_(mr$@|i$8z zl?E1b-U}DH!$re%wX|M5e7K+eip$mSzWeTL13=x0=ljdJl(d=}6B6E|r^K=m#<8!! z^7)Fc#&5NgdzS(WA1CMayLayn)_9j)yMDdGqTvV$viatY4g)_wzw|~QX%1Q$AaZhY zvU^<941MzC`>LR4L=?@Qx3M$zZpD{g%1`)*f3(}mu7J(y)tm5fFavBq8q+#WHo|oRfTTZYK9wg~XzS``Ja@t)*`?6B zH*P#U$Z$Fb`YeZh1na$^brhSFln31?1tleWn63L9P0$)D0s+7Y$z_U^=Ru#-#mH4>_p37;M5*X=i_Z4Q@+p9qW{-s+4MHO z?^vW#(u!38HY*_`Gjj^c39ZtjXFj}W5w2E)3|Z2B@@AS+S)Zy%ZHBRPtsWzf2GCCR zG8j~Qh!5dxMRV2jvL16o5}lUo4Zm>`a5LR!cGs1JO!2zMq`zEEQ?l2Bz=Qy{R?KZe z4T{iYX^U_Vv=#J>j94eT9LoMU2czn>gg?Vzih%6<{3(9MaC4&cCx5u=RAua3zg;Q2 zvu-J~vpyOU9?r0AQwiFr8+^&~ShS`cD1X|YmJu>p4WTTTx8>WXC_&pZ?;|rCI@3QudbGBeP#Ihh_Ih$I|3#Zdg`5P^cHPoLtcFrfP6_7v>K68Vq||1Q6fPz4tXMA^}0-hc&Yo*1*3 zxZID8kGD2;YZE8L@agQ8iNfA#O}IsW`U=e4I_b%GoCQRuYV2^OR=Oez+J5$nmgOM= z+|bU!PreLY&X(Io#>U1Rz}FE6`qZ*&CeLmZvfcsK##Uns_BJ1xr-{+?DSlPc5FzNbHR;Rf_b z4u8D8qi1F&jC7nHN>ztgO!4VSt@)ZNtD^cHJk5R6x-}4Ef{E|D*dfh0S>oWi(q~`~ zCLV?}iVMC~Ap$fjlQpS8jl?qYf*jvnZNZti254fab~Z)QqZ?4TPb@Z&7A?R=)*pVn2N5Uqb{yhCraXACcbrT<1)~(4l-h-pGyI-Ur$@ zY3t;kT8pT}M85bI4+0S`XoZTqaNz#oa4YUTa$L{vpA)m1mUA;rr{KCQn z08kNa&}C#~u13FQ_)8pGKAo(|M=WMHm6es#8W)~J>)AA5V?61y zbL!^mY(AJB)2XQ`NZ4#?D>+o8E{Da;OI|`k0_sO+o?d=TN(vVG;^G^kdp9GOmBLSJ zp-=;;HKc|HVWRE1xWk7ZfZo)gZg|vJe|$hEX4}nWb?45Yj9sXm-Q3zppn1QUFZPo2 zZ~;_a!nUxuxZd@jj&=><+-5l{8pOq^B7qyKwF~dqpb_pt%!l0W^yva)8V|3#gI9e^B{8QRG8+q2Fq!?!L4YK>nD1)(^@KAQ-9cSQHOXOpnf%|Du{)dxni)Mqz+ZH@1wIm zIK!nKtkWBo(ZLBIKYb_&;f_P|*B(1=)}j_eLY|A^3@BDGH@6`Q4&XyGx{-LMJU zon}eZ{YhfBQBX{*;e7_N&h(8wGA3~DiRZZA#&|q|Hc-$C_8`QY2iOACdr5;)LqjGl zqYH+xl#*A#1Q=J11XM$sYQ-+;&fA$jFi};%jb%P{$`&&C7sKAzyu2gJHUZ>^p5qS0 z$~M|-5aOP5CX{GR*%C9aPX`191zUY~Hpu&AlCbY0&N$O<&8X~7*a}?QSfqZdw6DZc ziBd7O1#b491zB?NTckoFHZn4kuIZ@mK=TIWvu_7RQkGP=fVMOp#K)m7sQUImae8MVZV99ved%+JXw{yLBpLfetUhfAWOqp?szI-ymr9`N*D v-8=BEAJrTwP4A@kAg~I8^h*;F2{K9vReC21(j`a>5ZYK!K>-2jB`6&ddJ7Q{ z9YjPrB$5zNq*v+Ee{Y=G*`43)ox8jL+`T;E;US!JIOqF)-_QFg3BIbO!m^Kj9|D13 zL8)HRMIg5GArRZ1@7V?Kbna$hgCDXUO2!^~F18+C*WGLon%6yU-E{G|>0tF2tc{zy zg9}DdR7O-n_%HSz9=F^th>1D>c7Ujho1K_|#ZVwzWbZ9i6L$oH^*Zx=Ted=$0|LQQ zj=G|#@0~Qo@YOf)>}!~9-4?z(?i1ggXQ%I2B$alwWiP~+zUWeovJRIFqv*P4^9ge% zM>?um_yqGd@C%9cNZ5tc*;dhQtX@z@51p|v*=Hhq;`wpGBaa(+CP!E!BW{2H*uRB! zX|0T6@~EU|ZM_CxwqL;spV(9^tPc0IYtOy~_<_jM(Lf-65rKzw8deuNN+>Km>6M`=LUI(IYtGRv>JahpH@=#+qbF=_f~nVC<_8%dMY*< zJrElclc|+_VXVgvPo!h#n`MNgr1V=Awq95?ZAbiM_>LmPXN2}IixETTKYxDO!uwMY zt;{L5&v!;%#JsYweWTj4;Dx0NV?OIBCT|d7G<&eSj(q2xzyuG7& z`an4{Iw~!dX7PH!V7$1M@3Kjvmd7i#x8e@jwGJGI(I`N^2|Ug?oa6?@o};*rm7x z_i8oy(?~DAe@&^_Z)9K~?TryQf8JPHS{f_5AJ$61tRSw}`*Uc5oL7F8=R~GuHE!%K zE3)lX(0)(4b43qH7=f_QfQ^52OpJ1wRX&|OU8SCpkuly&Dw(eQd_aEv%j>^h=@H7? zyYi@rX}Z#*qdlbW;Y6OV`6vI$+WHqu@qgv;*GpEq=H>)53`q&X>>#nud1ZnjWyH-r0JU_q6_3PKMp?hDpY9;NV z#ECmZruX(r@7tSm;L8<+sjh)R^qVlwytz3yr7KsYpjscH)|RHa3(yK1^Y|?S9os6u zd=@TmR({i=Fwoja()xnHa{SvVVXdZ(%f+-+?5Axzc4Ze97WS0`f}G*wqy1LQwQG!- zQqKv)=0q87cm_Q!tuQ9gJbwKBZ<~}JxV4EJiZ)t^tzB2D_Fbm%gkO9Ph3(K=>H61# zM_ZppIXF0|sjHXxo&W&c^~FN=Ujo$sl`8)4(ESfLbH6{NF)bV^7~7PQqnEYngn~zW z_cbGKaAd@(r`V>!V_ z{o5y}5&&&YmKXn6$P`)4KP%+Ivbe$F;oQ{JODiiYnzX>p^_2v9U+mqf32K3nv9Ymw zxZMl*x)lDy4}+LBDBhT-d??cjO!ALE=I)TYia0;!hY#*;xoTkG+0sxY+*E9OE9S!P z11GQ625dZyjWt@PMJnFim7|SEnwHw@q%}xk>v>O|Qap3!Oh|BWk+lZTiXU=lXvkr- z?b+{P-NVC~($OKPq$JBzG5CI7B!cchYI^tX2sd}ZZ*4-)kDL5ZbQv(SYJIM0qTIm9 z$f+|^6F1k$KeUKrJ9*N4=6HAmPk2M;$D&?LMVi*A!yxu3{}56#Gs=y5+XJP&3cPvF z^@CLt`JE5A1B_khKL;P~F0s>YjuTH)6o4sRNQ}Gp;6a|(Oy6Sp#;A&du7-xj-6s1e3wcWq!`(1Qm;qM}+n zDq;H9uRlvxXYz^n6suy_&&oD8ZrD#yh%mULT1PqyufNteF>x3vMj%q79qmT$*3P%c zElw*e_qvBXdej-lDYwvx-z=@$v@9^PEU1_cP*MuwZ5)}0SC4G2j+ULLt}P7McNQGo z8&j=F*|SwVtrb@=S;NR!|ZN;qz| zHa6-Q8^)F&lfIwW*oBh8Jv{T#Ve~QS> z%VpGgtj!ZS{JwlugLOQ0!I@r7UkDaEm{bovo6DK-@yq zUW}ga($miIU7p^zcdw44V{W-KeK_1Eab_qsV{4;-HRDQT$RnqU+I6>U!`l%rPu;Aw zD#k53Y9^l3RF4%kfD@QB?bGWAd4+{nU0q!@agX1r3Gn_rteBU_hHE`S5?0UO+Dx`- zbR*r+jL!{ZB{eQ(dHNy8eh$87V5o+vAgZ4T`Zm8!w(PP7W0Jm64w2>ft#FxGkQ#YI z$_{6xr42ULmZ?$NNC8xCPL9rxKi-+HS;N@a+EVD$iN$vlixfsdcJ@_xKiv&=5F3`` zRI11!_0@NoBYlyUtytc&9dT*G@RWcq)I!KZ`@Y(K;N|XfgQzLM)64h2UunIgsK_pH z<6-&Do{noe^A%Rn`jOP{TTUZc5ZgkW8a`gD8803n& z&E@{UT3|(nURw)nQA~3F;J`C%ST1&^UQH%oE1>no!Mrm&{L5Q_WS3$X7c6|I%G~5e zY22jbC~~pxIIZm5#0cI<;CD=W!9E(daK6Gi6lWCnD@T!+=y2ZR&ga-gty#;gG_;>N=oD<%J za~A|`td4~U<+lOf0es8}KFm+6ULc*2R;wE0L$0tPenJ#h$E}YW)pkVis4RSW%{tNc z?DBYLR(PM!Nb)YRhtg`d3Z?9?re*;da$TPrpfZ7CZm@CF7=}@)l^^-P{zs|#A3J9L zAd|0~iTBh7*79j4qyv`^x_>`cC7dfk);&`z<)Q;Mk~vzO?5I0t7-S<*U8dzX<69KA z{HFS<&Bn&YatQ=|EVld?&HKLG%57tjIsw|XfQ(N{BD{L_qliiIJ*FCGw=olU(11~J z!DIAGa_v7514}C!uK%+b=y&L^@mE8kbl|^sbarwu>?j12U&xfKtn9x1`%8SUAOhS5 zt`xp`jEdqN8qU{IRrUOde|uYGZf>p=cG5UHHdg5L>E|X5=g4t4Y;6UFgeC}UFwj)w zeU}JiH0UFze3J6rT`V0TY(h2jm2dLnczJoV)6=hjW@ z|Aa0}5)#T79i|km@xPRRY;?2$61kZaf+~UXMEY0pX~f;4_(w)XO#~pl zzohPB!#H-BR47vG7neObd6QGtEq&T+ zB-tzFw|$C?jm`33TVgII0D)6=|H{~6IdiLvrby9y5A(e(CMdfA{|f!21Ss?`SSUX9TW#r6-B+~+CQ2kPzLg)}YDZ7XluhnN#e<3! z@N(8)u25JTOdSpT=9(m|nOFWw;A3pY>=f4GcYS|6Rbl-TD-D`3GBR?ZZZ~%}F!@j} zNhgYMbBa85w; z%mip(oV_>vK3>mj>to$rcBEgWVSy#FtE+36Y51IcS$?b*3lz9-gL~_1Lu5LaJTBXb znvWG>xEq$4^A%j8oqL(qH?v9%Rd|6t_9Zv=HO0U&z z*G!Pg!K~FEL*Hz0V=h!-M%YmQobW*#> z6%H`J2y5#%QuI$CJK?X$KEn_LNQX0mf`Zu3-%3rVQ7Qws0>A)Dp{K(pHJ1$47aTlz zunH)YwEM8e8D8GA;^I1B^giJY<&vj`F=Y(LH9F`JW1245$q&z(M9CW9i~(7BV)0FX=O=Tru67%t$3PCW zm$V}Dpvm+j7e>><$H%hplxYUp6Ud`9E{Qr3O`RZ;(Uz8?s0+A-Y))(TrjdE37Phgm z`JMX`shgP?(t+~3R>?JcsiiQznJ`OT|(de#;m?Mf7vfO(FIM3W9GhuY>@A$kL14Sm?C%+7oM&te(6QfDTy6P!2npbLYGG_{u8u)fR|^|>Kj2+9WSHyd=ChiB?|rz(svHC5HN+dFn2fhGE8aSmd)yG7CW z{u&f;%3(Ehbaa|8l$&S|{f;{wv+#(JkdQcX>{u4S4l@c7G979=wQ zl9DAocfl4ZFEFX+J$KHqsHmu)j0S@@{l2Ea*|VxZRGUo>ArR*uintuB8PCmwk|)l7 zZh%2y0Z`LXz1)`vS&cc5@?-nC&)yfgnv-Np+Oxc963nN4tBK+Ni`Tq6eQAIS=J*6m zyW-iCsn3 zD&RcZe|&k{v^Ky$wPEg&OuwIAPEHOu@dh3qrLbEkMkCfiSmpu&fH;T-2~cW7QTOJ? znzTa)FZg)^u(I;Fg|_$clAa()E`?JDQgGt}o-=(Gr%s(>_BSZ$?edYt;Z}SBoF)Vw z1?XdTV1U4lcgV-|%dd{6!KD)}csi!46j`{s7GX$3N9%w7`7B&I*4!<)+@+suwCJV* z2+jvwxa_|ELKQBbbQAP2)iDHRYMQ_tC(KC?K|$4Iann=C!5}=^iIXy`21B)Kkzyw8 zI&cMGM}4Mts|Fl*j?tp^@tU=1y^)sW9rE|llYdhZ$kkDvjoI+PF0k_#U+!T24p(}# z>{p==UaP*M;%!m#qy!5$(j5H9+g#1(Am-8s3#J^y$bIqRBKVpt9OpEm%g|+$d%#-- zus2~;v{cyqnqmxM$%{*Lmx<5e3KaOx9~~XN6mFYGAP9plxuT6+Nne`mNrPYImp)jV zzVLSKtfBq`+21xjww=y7U0&_w3wTOV%pvXgR2tfzPeD1a((2IR!)cF1t5gG5JMm1ptCywa0QNRGfO=|bYN-t+ zny`%U8w|ws8vivx$RlKWZ{5Yt^l^^1uMa?8qo%D*#c!?K!NA#xOZrJbOw0&|@pgIT zN3uS1=}bI4b@_gm^ZtGNI-Z=mTx!!4gU}jA!;(aHWwuQ9+yGPZ=Z6OuTYSxyK>OvP zYXjKjais$T16>s^X!-f~lDD~j--5gVS*Y~HYlFl^3)$NPZls0q z!1c>a&l5tpJ9q9dp~S1tCrcB3bZxSvl^4bI9U;~0uJ-kk-~9TSX|9EYgwPharJ9PR zuD|+@0or|>T7X}g>E|Ae*lq>V26nWlxTIu@2na}3nN4g(u4$;p2)CCybS^-JG6N#8SHo!)E(HK6yKxuk0ED^EpZ^H* zQUBJhLP%<*y{659`{p->A8Zrii;s_oezU6v)5a*qMu3OsGBhOZg-;1|Y9{y(<8L@z z^uc2M3r|v1<}h+2=m9J8YbvH@#g^%R484nnvsWQRW&e0&Br~Vyn3yG@pmx&~+@HWy z70f}+X8+8A0V|8ZjYa07gC^b~B|FIsEr9b0$;imGrG1!&3QCZ$39Emre7Szr>Sdeo5@Hk&(0hU z*xFe3oGPO_&JQ=k&EJxSJG-`xD<%f`v*Cr?t}zt;c@zRNjL(k?6|aC3zZ zeUN2TPZs761f?5&8z9DbbLzN9Qd3i_^7au?dhS{2>2E*JGGn~_xUYW5ss37YaBwg- z+~HBCZQwvKzm#1|Qq|gSR<15+L?-rSWM>A_;TX3}{bD9*0O zCnRY%1R~O*)TO-TykU^%ZO|F|1_lN!o3>14IMY9V)K5I$nF)R{5RB85LyNJ~y$&FB zO>4I{W<)CJ&QrZ4$+piuj_;ld7{-cP5SZ^%`l@}2s3<-YC~OL3v^(Sz(Egh%BVpb~ zEwShThh$hNiYL{=&VOYn))2OVK@@3hZY~3cyx8mBYQi13UgWtpRbd9VM0s}k!FKrs z=YTbOziC871m!*p$9OUo*7Z{Ou$LBG5!!};ouZkzkF=B_R|XGH1Rb+1eD&%TVFVwD zY)k8LT>m=z?bf87D8~4}P153Alb9J$m(pqSObrt<&+^6Cn8384Kz>31fn)sX(#U1$?xJ$o{7vZTVBCKD(7- XmBsnM;oMQUAOfYNbtV7DYj^%16Ag&A literal 0 HcmV?d00001 diff --git a/output_29_7.png b/output_29_7.png new file mode 100644 index 0000000000000000000000000000000000000000..5e3b9230d4e7cc0dee248192e1107a146f501645 GIT binary patch literal 9278 zcmds7cT`j9w$G>|qYidKL9kJz4+q&KBXD6u<&5IRT~=^^wMs-j3! zdO`=Kx6pfi`{>-6xo^E$Gxz=TW<3@xN)9LIeBa)`w$F1_WjXrYOuJDi6g~R7j5-Rn zjRS@HF7}6=@Rw#f`Xlg7)Is)!1IE_G!TFY*F-qx{!yPMI2P<>KlTOBV_U5)W=lMnW z&+(o#b8xt0FD4*h{o4WjwsxihT>67}ILWR%*LCbssC~DPukVti6U|YmGeoq^WsQ3g zv~E`oO~;5ghKuNqvtLZ>ZhF* zJ5Z>jj|{h=P%kbEeuqMRhzW(mja0uLZpFtTEG�dG#zXA|iEq`p&{cJBA=J`^z%V zG71&LMVoM&jfgnThb_Lrqn)NP)l-sd-FZPN;-Xq(V`JfPlI&9y2zNR zlBFmH-Wv@AGuU)(Yuxdw7&i zmMmdEMN1o$xGqtBSj2@K$29nEWL)a6B-lEv<9h^?laf^PZMrqo)noUvh_wkP+;x+R zrjqm$PhEXlMRTIV9WOhTZ*QlqiS90HHQtzSwvd$*Ka)T3ah%Vu)0|9z%ibeUtXfGp zq3z({;8mBq5Fg<>RifSA-p+L1a#l)?=SxTMk?YV`M26u$IB@ciZ@no zH$A;3tXkx6>&$FhtY$y-Q4Q{;rO4UVeflk(ZpP0KY>H?X#6w^~FV|2Fv&LSI*eZ(gl-tCjN8qPwYPF`=Ozxd8SNLugG}IZRP?wnBnhyS6 zJ^x{`{dV|tNEj3Of|Y8BH}hae#^sdcUGp;c@50NU_X(8oE{wc#8XX-g`}sjfe4>IR zu7yUYN`U%xa$PYV#c#^3&elF%Q&1RR#3 z<0xpKHf|w})!r@A+NyMI^=RcDMk)*4eK>UN3P9QlG=lpdwx zLHgqtRj)q%v9Z&(jI_Lb&waL<)6?5K*IoyO+8+maASx;)c!Kb~=tW$vSsChMYTpK3t+_e4%E1fhwJrni|Nq;wA;3 z;&Q?@qp8X@yndZ%@_1}v*+vH^ovib~LU0wWrE9p{SSOg`nJu)Rfq?@ZcELLA8iAEm zUVcUCu+FP3&3-$QTY>!^arLNa-dh4EIa^s9r zw;)qAPTJo2iyl{Ph6mD8{0)u9vw}mkc{n~CBeR=g zZJ&23*SZf>9bo6+h{6bFLU+G^FQe}^Q$fGDF~BL^s31_%GBCqRkYgnzHhScD(vtSz zn8=Y8Xmb6F(YP+t)A`vK`Ih!oTa2gg*$4YjQ33xM6d0J~x-{v;kL*$)sbV0%Y=e|% z)gDW>AGQF*t*NbT&N8kI3<@&-tuJ@}cr->E>mrL^sWoUxR5>9zTXjaa;LfWL-pr=I z9<<7O2whWErF!k!)9zZJh70%WYyLa@|Bb5pBU}8V4qw+&WObic1N>Kt6r&g@ARN;l zVyJ%OMpC>&$XJttz(S?nR~W-8maYsjdoznD*GtU3Ff=lvVWHu6WI8zs_yz^VA2@T( zY^32;n565X4q*XTGK(u&An@?;u%n?Wq@wGoqDppR#DH@O15WCbg-MgPWsB998(CaR z*zLrHm&h5pp##Ii#H6I_Po6yaB<9gm>=Gtysr7neoJzvT$jDd{Op6~re0YhlfB%5Z znsUSsL4l{xx=xU^RZ$m5anaAa>Qwdh-Rp)6d26$D?*`-6mZp%})l^kg-Rkjw z`-qNc+gl17d@EpB$gz@*iwkXRYz!=sZKQYxdhN*J!)GNW^=(%lt`JIsq3=K{4^xQ2gE1NrVvvV@ks<%{saB#42eYSRdiPF+y z*8jm92cR&xfIGs()baT^q4Er&vU!BuWt0D!f5d#iiGg!a>U=_g9dg-yIbG6hMC*zH zppoWhCp_AI?tTCK5QV5M(2d{P@RkP&a^Jdw?c6za_tkmxj43(kRX^xCCK??I<-1&) z4r=9O-d5rCOKQ5oR6TIZCEqVTf2~{oQI+^NE(VI^W4MUQ_MJbf-o71o@ZdoqyMgOR z7#V*@S9<0PXL)!O^zy9KE?<5Cvg0W|b3#fA_cy*yiHua)tP`ISy0_kCU(a>w)aA~6 z+gAM65?(~?e~rBnl%5h-$G6`zjsWLtL`%6dx#NdEzWi3bE-o&fzx*;?`3q|O^ZVzj z-p2w?p=;_5NEsPnD3u*C!kXIJmJ@B6DWI4%G&H>G7W4#@NhC_W$KrVwX^)#A>#zZp z|5mGWm7&+BSKPSIo>j%+3cGBaV=8Bu?Zi2qHG>W_>xJYN7wZZN)>ZL|&f%cdbSKZq z`J5FLoQd#!P7)Z5;DW^|a-yx)sh>vwHNcLA7@l*Py-mWF=rW7gXtbv3Z)74ob|sJD zP;HjOQn&MXkT$k)bzwXxBEo7I!HFu6J6Ty-fgvG@tyotjKR-XQd($y&Tw-FnU%q^C z;-~-0q4>(%Gkq0s*A1WFJ_-sAy-`Ne&8?|3{tgN^Ya{+Rl>1O$Hk|K2mg0Y-ivDk~ zxa@F1ViZnZ5;w1U<3?yxQ&W!PxE7ulVJk)PBE}oJ7C{M0;R);t!DspSl=d+4w@iO| zr+M>c>f^_cO(f-DcNt9PVs_4~#2w zE_!9_o&p&`K-<6%@IFF6zd=c^35?O8 z5l!pu#akDbLUSHh_WM=#o99T2b5-ttFGGJs zWTCJ1UKV)XxcK>ZF0gkfuK>^3*>06TP z)9;Y7UtOdToqJpo8<`D3Gpx@JwN?jkTFwqsZ{7f-y+crn2k`q(UFAQvl>fvLXOKcC zI`dTmIF!`w?6N>PQ()&mg$iEfREf&5M8g^lbhIzLcU_!N1Dh4hub(nkFKqy5q;6sY z7@ZOr9&Xv11sL*6yOv^F*(OdOzp=1Dz^JQhKpRweF=D`MUkb3|;ZQ;xCTwKs+}gkF zuCZ}ETlMf9e6~wPb19oTs+)k!tkGwrY|vVzM9&tUNza$DNgR@5DUE=f`WqMC*fAJ>CbO7 z0^;J>f`Wp$`1#Y=jdlu0*C#%FxGg?0vG(6gab~8YPHipm$f5ohUH<34UiP4r-M}vg z4;`vc4$WDPj~H!Ev@CzT%T$tsojrbYd^_Di9kFv!w@+bA zqF<*@MBv)TP~{qT4m)wLX1gulR6c%=nVA_+0>PG=86O|dbnf;q>KII}Va4tzkEcyB zASj%(X`j-Omn80G6gp3(b#>ijk#Z~8bRCX#j`|ixnCJ;|ojuzC{Fm!Ig>|HLxbjEao zMpOWOr<;F7E|iJcEP3Yf;Q%RGh$!;9b{X(CY zfW^C~^bnO;YYCc<`JmO+{cCD!4l^>g`U^e^s~^UI>}qOm9&{?&F6q)&PJ1*j&q2i@Bjsv-c$EOIyqE zc*Ju+Zf4~W1&HrZ%tr3Ek<)KzuA=cmMVlysjy?qL(436FPK8zkH(pU$iJ!WwA~EyW zq&`Z2Yx&KC?MzU*S|r{0oSd9s#3CMllP6N<1m@yx|B0>TO8>YhN!Ju$A}2nCk&oh6 zAn-i;j%vUtg@HWkcC!HLJ1~C_#s9Nl@ShFgPr)UB66w{@)eQr*KEljQ1Y^@d2KDuW z9c=>F7lOs1U%q@9ChnY;RQV79rw5+-D>zOm^g zP}=5$xDV!A3W8kR-0J4$$ycsiX-PMbW|6q3>b|x}Szno>B&tMDN!0%jS;sZuroYZQ zki=qcfoQNH-(Bd~{P6odEwAPFNp3FpBL%AYEprrd>G@;PA3kuPvBPNF559k^?q&bI z?ja0mD!AL9<1nh;?XgDlADevYK$>=B1Q- zA%|k<9jcK!ke-$nNAed}c?nhm{5D^~Xy7(X{%g(N5o>tx#EJCf<>e_!eqmuv_z%cO zn1sxH;|i$-w!Ko0Q#~798~{$%QGB)@-kzRKkz5wm=K!fc8k@^^Mqplx_0$$Ye6mX|5$W&xQ}vI#4J7 zL5Tj(?v-x?fOmO@uoto6Hic*waVKzWfjjA$;vC1R?YYo3X4_#IjvYHD<~SBeP17er zbT*z<%a4KVXfLaTS*t(dk8-p7(PgV+JV;`QTWmLV9E}f=_eU}qNl3ywaxFu^pcZq~ z&;2Vx;pS#T%Mn;}jTDU_qX5G=UgdYjuBiI~Yo+Zs`R}h0vM|zUL23D8w!Kwkt)o?| zl4qr=r)R0}&?rky$8T7UhufBB0<{R^H{Eznoq8*Vn;&tG5;6MlqrySvuOE8MZBlR{ z49-7<7)L5Zu6P)Dti)gQIi4IFd-}=a$7jJb+m@~*fahC^99|!034qw22*KMbPy<*2 zYp|y&si~0t`!7!QrY9vOT_W_03~=Nh@(u4&R#j7bWz$_a+LmeL`TV(gBbg7!#ra2) zDIAIQf`~5u@#7uV9XV*Qj3A!KHpMg7jxaEA3kqgd+e@+%Bv@5mZ@}mT5jT*)_;p?e zE`UTOacJ)@^A$ZEJq^VKmFToxhd4ly1qL1_=@)5%Dx(6ujS0MOR*@!w?jqeJtHVTr zkM%GLmE+FG{i`0@>gi7*64`}q@?Yx z?C*cD8^#i=>vQ$OhVOqdktS63H@-M_KFrM}k?)KMIr4tj09cTGiF|8YkM2C{a8|eJ z%hsKFN)U)4qZ5b=QkiWE-hM;OpY@Qjk{Q>Zd4e5Ef?Ql&jY=Zjafp-Q=9Yi7lfJ3Y zaeSL(utD+4P`JE;0_NVm0tn`W?FOnY5e8rmqz#Z8R6E!N|FKQdhqOrROhgB8aEXfQ zz{-xbXD5PDdKJK_vJ;o1wbX)9Nrpn(y=M;w7$MK5n`y+)O4znXg8t}Fm%zx&U%%b} zr3aq$_(cRnkg&ermO9W$LSQryBAffko zio~mYt3Q>+aQ%6g935%2T7cB?E7U*+mTNz(T(Y&f2C=kNOyw+bZL&xuQrvm({85ig z(|T44m1;5C6u&z1nlN7}y{U#|-c$IkwMztQ3PShh%?aioUK~R(+&Dx(;mf;cM99D! zUbmZoiUHx$6wIfmp{jZkr1-6OPm@z7Uk9_i%E(Yv2;nDfwXEbpHe-YcD@g5nJl3q; z*Jmnm@C97S3>O*{5bzp&$#^wqbjxIS5%Oy#tE-|H1E0laKtyvT-C8@mBOjUyf%5p0 zrk0kje=3BSC}k6Y=z8e1BER1)sMO zV`APE4ux5!0zvPA~ojnqivE;d%ceemKW0UI+-Szg)IVwZMq6fq~%n*1fP3( zHOn&U$4PIDs(>GBO2#B2tjEsAb{6J@4gKv25YGbi@7}dbt;}Nsi9n%#FM}r7J#Xf5 z_g6)W3<^%4KD|v+`3(SM($!~sAF#fr{2@XZUjiIKvf_?n7kd=vTsjyjv<0Sh(F%ei zA?T!?ttEV}FsP&;+K*LIch|06W3B1YQ7%I-p`eP8@h8YxH5h-gnGe@R;vgl{ov+l? zo7WM2&}T=UC*aqwLhPjh86l{TKwsY&#DpvLGOSHx*R!F|o7T1bK{g=%21Yd<^ZSHq zvxIJy@91_JjvVVPD}!!f9P!&`2*U&295X*Vd;9H@^2C)fV!8$f^BTmDa9eLOhLhHw z&3Os4q79xlK{+zz!FIY7m1rqIXQ!2w6(~IQTeoh-$jyY;ORXt-F$z#~%$w)edbhBU zb0eeQmQr_D$Q7huc{uKAJBN0JpWL^n@_JbF9l*7W;=IL0amOno#1ZY5#jUzl-RfBe;2npQB zM1&8S7{EQ1ZmwENPQTgyfR(H%B(n4p>0(%T%lVPUnvWlUY#7M6s-+bS%pbqLzJ7^d zSOn>ZWlbO#?#mO#!wd`zBX`#m^76Do3_Qp%HYR#(td1^r+G>NJ59ZZ5h_o`W!q^i= ztSS~8<>~2}V>c*2I5cE2SQCWY(Wu*_x1J-&iOoC!&p~I-*#>Nyre{rJSNGVLH8n`9{9$#P@ zX|Pawfawj0z% zCTK2%P3FRT*FSjr_~gNCr1x{7mbNw>PN>Yj+;-5ayO3hhnieT+T6cUrKt(DOd+*El zJf}~W<2F}@w@ZeRJ`hgWensgLT?64DhMMTsLuSfg1+6B@O;Mu)@rR@M}6(o8wX$+>ULGY^Bd#dB0U+a^P@&k z2}sUFg^}hqNq-tQ4-W~D{svg0?DF#RR1iJmZ|P3tK)#zDeI{lK(H0jmowym~ITPVO h3Gn_#Fy6m~BD_d_u(us6f;=vRmQ|KXyYlnH{{nA`sO~=!n@W_TNJ3V!Wv{X#GkaxZW`^{; z?sw1gd_LdxKfcHR_#MZu<5@lK?)!eN>%6Y>Jg+3{dpO>7RNmM{mK!oqC zori~uyNsaVoqsM6aCWm5I5BWAo=1tn{h9ja^mA`};&(`E}e0_xhFjK8(*z^z~I4j
-?q!idhGuy zr!wR$PZaNq3KoJ2ktWtAk%c`~#RXzQE}~~orhoaRZOL^$>5<-2V6dF%TIh^98&r^V_#06#@^Ye$01hj;+H#r|0KS5EB#c9~{i=Z_bK) z;KF<84)xnff9mK6i;pLJENFUb?N@s6v2?M`+6{Q^8$I%olyxAS`pm($wIoy z%1ZOym683Sy5ke5>p8kEUS6$VOC2^_>75@{Gn<;4dMx#w=y=SJgR(0%tf;QGY>lB! z5w*Q`hk=NKf`V39Cx>Ytu5a(`R8Ch2^!WZrjXfYRkb<7x$Vr-qk54%uK(4W|(c`<7 z2<^f4QrPhDFcI_B%--{vy^Br`rG{g5!OT0~hwh&x81R7cD(gN})>6K9?c~_l*x82z zV{^$?^IW2$l&Gnd6=RzZB_$Xdje`|YM;hAxVdv0+YBpQSQL);XBX7f;RXj& z-?~!mhKtN&S54o!>88TNg&YR?#_uGloggD48>{i9BnrRSXmzlDs{qe@w3~%vo(c6L z*oY=Tsz}^%&T}UHByCEKTz%K-db;yC_S^idE+yrGtND6O8qTqD=Rr_;=veDL=G8swq!QQV-)zy#JZNo$7(d`BU+w8&*0=u;` zRbr=RW)U-qTY!cBiwet2aj{TVxcLg+a>YMdO{tpC7HTC)Nh2>S_i^ z3)F~>KcwDgnPh5-sGxt7_5Eig8f~u;`#5uK%=p~7b7xstu<9pi%sJsd#l=sDo}GH` zJ<-6K9uWFm)_Z2G(w*Ss$%xd{)HTLCsL$2j&f~IQP-cT~Z|)x-t`|Fv%berju=x7^ zc6&!h6Kqz8AJ+-a(+K(>G0~xEK0Lo}@U|tm{JCm-Pj;ft^>dzLaAxdvGQZe!YNj<4 z3)Z}-{>Wi8f@ue+n%&Gfxg#I&7JSW4KzG2mO0>2n0y#B*<&*mP({?C;-x$q zp_VfXn^eBs@bDR1V1{1aOI@Cq+BrU5z3x&;2PjdAG!?&HrIgh6jr6n5F*|!RZEOiv zKYpO-Q|p4eyXM7Jm0MqzrPci$x8LrR@#|NzvO9aremuBFJnINhm^yYe9+{P=2Sf{UopvK{Qpo_q7?wA8Z%Dde9C>aOkF zul~T^$0XPMo!6pBW|?QQOGQ~3@BTbGH#WYSF^G&*`MMDemBXcgAO5TyzkN=P{0!Gt zh1la~&!?)JPepBGppeT(P2xoAu0y-aIid3T0ax>6g&=08vm4!%2duRrE!LU2*@#p5=$_qk=8aX970G#t zGISIaTHyw9Z&XIwHHznAcMbLpjoLM=r5**~UzpZHSNmyV1~qRXok7P*fUV-SQy-VG zW;bIO%U6oWR;L(|g)fkK?~5ZuQd_vqpiebdk?1*8p{FA%pCF)e{Z#9*3xl_t6f*3C zuz9q7Qt23#DXDY3;4NqTtD=<3*<+XL*tO7CDi7ykk)4axL2<>xz}9<(WGU`jw?sv1 zUc;ie>%RRY`?V4Zio`jCxXU74&+Zgk`k_=jyzX;hPvZ+%ZZBK5Ytvk2j76iDg&wm# zc$8I1sNnyBv6i-%N$(qnl-G_z=ws#S_AFUsax-M2=F!`Y2`5R598^#>CXTLxh2#y2 z3~dYk53U<$Bq5VBAk3%wO7f}HSF^+IwKJ>Vu~7TFpHIge9iI`=C1bw^qwyr{pjbLh zEJ_)0U~j}nKY%6Srt_@g7j$wH&*{B-2+pVC5y`a+Htv^l z772+^TzX~$Z$j7VrtH_z(Lh(HvDGFOEQqSlWz!c9xWU)QGbNF>8`%dU+I*^3rgZWowD5*KBh#TZ}qmT%F44Dgtk61vmNJscuE^edrX$Y<2y_R|XoV9O1Ka zM6x|&50H7M<$BB}LL~U!rDgYK9K| z5VgBq3>36<1a+-DiKYgjH&c72KJeQnm>TdQRVFtu_SFZ1Yu(c!m6Iisd$(moTz+GP&F-j}oY7F$#lNDEuV-j(&N5hN8c#^c zp?mP^QEDo&rluy6mTXKlRJcrE%sL#f6T6-_U`?ITC*wQVwEhxn@k<|VIJ;rzs4v!+ z!Sv8&79;>J(|zDkg^Wzq%S)m)mR^54g__@R>OON&eH^1~QP3|xfYtrOLpJ{WnZo-9 zkYPMh%W`t{_Ab1;ZMC@awsSMkg|n0KGm#Ak_O5Ze^6w3*GHEvw6Onu@5!eSu@v z{hN)%#UO?7)IH|LPUZT;LLWrygjU95G33#sM?`Jy^KM*JQ6j`z)&XOyMgA&h4@zC( zWTG{LG@Iv`XA_^Bav>W#*W6Dh4syh)xw(7CzYg_pS3h`g>Y1$f$%29c@kcSsJXu+^ zwT$BwTlnP>m60TelqKZv&k=1(u3bfTihaVZM{N0e(P%V545KXd>(|zk=V=%iVv34{ z##euCEzI^P{%#(~(|29&=Z>Kj#glXzd-H?$nzE)6IWF#@ule`UrnS zUNY0WdU=wfeGsBzw=)=4C+nDVa&l6H%o{EDvR=PtWn)wFK5PiXPm%K#F)VY8eDUJ! z8%T|sn_t|>(<`NYvYaA8`e<034TTdpc0J>C@nZZrbpvngJvVX9i4-)NB5g$%Blg;~kX%>v@jR1VW`6D*h7;}*ZR-&(fAy_KM0wX!^RVnjLOJUMR6kDdD6 zrSab3Ub>t1q!arB)E&oFoe2E1HMl8nlNeU<6!9VuX9p0+cf56~RfVDLIRkQ*X=NU> zW!PHrOSU981#bNOzG`O9q0~QLO+XZXQT>w%a+rJF0TcXAhMqO^K|qf1yeKFA*vDS8 z?Wa-!AJ$K)AxLSJ0Ch+11$SE`xS)Qco0KK0{sB(1u#G2!Qy%dvB+A`rc2m~X;Oo+W zrzq_E-6MP3sX^|)!xY+>N$&YG4ud{K$X!PA80jo*FJoX%vK#|*Gao*33G}KV>zRh# zL7_!zw`>)*`lZ_PQ6auEg@KpQiOkw~rHJL1$Xyl*;V$;*@F#@Fd-g{6;#W}gmE3Wr zb@4CQwWLx!FgcGdAq<;NqP>l@+7|akX(~3^k7%KwRYJZPb!7_V5N@A>$MA2s6}38l zIT9Z1p+prex8H~{I32z1h|Jp(J>0<1!rUe_9>2UHs+ZB+!8}SQXN17;RCpjw31-Au zMGO=J?}F}_Y#zp7U~Z>~;9;;_j6X1U5HgRxjLo!@Uu2!D$l>9Pi`t)F6elsF z4NKkI!eBO^s`4pe$t3f&dcA#x3eiW8ZKNK)zIfe-YWG=B0-R~B=YYrOijxhc+1zZ- z%J>blWWPA0GnC#~!?>VzU6&OOP=-t-JcUfGsHFKdcTh@Si7?8{WQCN(gd*&__trVc z40QM4O_vBoDQO!IN|l={1m4(MM-Z3ypD7ZftM10YoYr$l-Co(=+VHxF!0FCA)q>Y& zM1vG!e>=*y!A{FCM1FqXIO*}Q)CdiWpjh}>6#cBWu+>j30b3>-x$^(|471$5 z*H5lLy#(<1qg%f{lw^s@=--4a1+Rl5@$RPcOo*Zl9&6DP9HOZA`+J49!v0&dbGM@q zT(+V@Zj=xf%kaI`yTw1y=sX9?NHg1V>Yd#=n>Uy%HjpbGsdJbe5Nm997zMd#8B8rd zmqWlE1}_Zy7!sDhgZq(C8FAx* zZ<8*E+0YZCGZkWV3tw&^`Jads>;sjHfTvlul#Wkl?&Enqt_TujE)1j(W40`GMP=t@}uvx8Qh>+*AA^c1~c;2euw^wRqVJBd<(0fP{%J=PZW zeO%8fpYS7V^a0k$>J{#V`sNUoea~FQu~mN8tz)H{S`j>lj6zrBIgnN zVMR8%6IBIDu;TpZQaNmSw(A|oj|XSSEV zoDs1ih#;X2-CF1wvan!n8hCy86uh|Ed0Bm^Vfc>N2q}l2*Z-13&NP;vcAUC~#`Mfg zh7kh;0}n&B)yGpcKR)sLtbf@1{LcC+pFt6dQP!*Zopp!3uyCSzNvTj%Un1j1o&IR! zm~KSaM{fjq+6u>$;bbPx0X~@22G9bE&|Yf$aQ z4`pcBX`j?iD@q8=q^)xd+*uHS+d2=Iu)oO+2MnP8U~;{$eJQZm8!i~KbJe3Dyyil%F5EG zN;(&mwGj{#hpA=t@k=^Sye$i)q{VTlDmjsuW60?% zeZVOzD=X$a!NASUJwLGyRKeS~Z$-W%+{Da`_O!yhn=}>Cr6=L&Pp5FPnq;djA?QDq z9+~or!^_lXZjw9{e2LU)y7w1Nq(60awIuQC1F2!S_A4kTNXljE{1ZlKaVNWa$R9hzke?l!ytW%-|&6?#&nZbT~Hu{tQQGnm#C2b zeqAdotHsvC!$Zs2*4X{E>h-DF*)Y@KU#F35FID2sD;ZqY%pJqFh+*1OC}$d@u`Yh) z4YIakA7_!MtM8F>lPer*fM0i4J6}&JNB3fu_T~XwM)vjVx}iU-1uZPcCYeim2RfLh z*<|Z4-DYup_wFCY;KW~SQ67*6?7=`8Zm0h@0J*`%pk9jvf(&~I1j?Fs65{E-x(LoY zNS;_*IBgNoOb93DPa((#@m~2xUpuA{R4q#9M41gt=lRT5Tf!;jg4!u#8FCNh8#Vxu zKf^}NS{CDqN`)@L`9~n~7fnf8jW9)G8Wcwvwu6QFyg}&{1nCiKZ=GV|?MK;%QoGasHO(jDwmwrOBX#&<4uoN?QhS3Q zqSWktbG4pURETG>q>#rYl7h*uhf=f7_Cng~_dvo&6!u9LTaE$v*A%N;;0#fe#x=E@B zza+%P8YWMUV(EyV`Sjcvxk*wqERg*(s0i10c3P`8O|&MzGF*8gjUd9PW;T-7E<&}h ztn1(>=H1LJiqo54EdPV}>PGi#+?wCtZ_4o@@qUR6<|X&WH6miilzviCf61`3sMKo{ z%~SKe70;5`kZ_NJo1DXEMq2L#ze1WQI%(yzIGo_>=LJRWqi7lK0h7P`0+cu7aYZKS@03XBjcuz-qL?AOk6C&ZBp z@Q@2`m6V9I?KM2#yzu+6kSGPYuK?w*rc4(Jek6aidWCrmVQ9#eyRpTPyU`7nGp_VdV?8z^zHG6Ur|x9+WRRoRm2T*7Mo?L*Q*_WFF@JZz{Nq_7!iNu6m< zhy;9a(h(+?Fyu}=zFEyFh)Am*BlEAPKx??u-J=)=^#$_BI~ zrV&t17BDe$a3JR7Mu3QznwlE5avd%z$W}h{Bb6g^ zw>M8^M$A+%d&jISpVY#Ae4G@jl{cG^GXpdDi&-ZJXJw=$yK@za@5YZG2{$)47ke{R z!$%22Q8YBk*?uIkDmbynJVR9|una4*SJ*F8etH^qbxJ zc`ONu;NQE)ck3i%iRK&J*A zy1*Mi9-y?VBh;)GX#NB8XqmvepSnZ=*gsr$hyM8ByP%kT|C>*TT-@9ZmF^2jDuP28 z`KDmwjdM7^&M%?bY8sT8=QfmYr=y{K%OX`#E>-*CCKh<$@z%7CiC)s_UVc75WM+v^ zo#m8sk<5TzcKR)`oztyAYy0d)anT#h92w4rW^pZli`_6Hnyo-)OkM-kj z;gz-KO3Gd^H;)pPEa_FmU>i~q+egmL+qFcU27zpGAdd#*JI@Z7K@Ur99i7C)#Fy2- zrW$b6)8uIRjmng-UnlRk7q_sm_?&x#7jy6HlY;_CX|lWKb)AOFa{0g~;Qbc1SPMH6 z+v#5G(^w5rBW%O7w1v=>D5@m8&6WwP0Pi^-)QdYf?2luYQ9TC(MeeM*4`jSANKhmy zh=?XmD_-E=Y^vxkDiLX_^f-NRU)6GN#0YakBx~5Fy0z`40&J;_|DY0-ku3C@vvs50 zFJGV`+iQ&gI9cSb9Jx7@TwXQ3dP@U^qM!Mvkc7k{_Zl32F zg}!HfGf?cMIVs_0{OME63v1Ql`8f@M>RwR`xJxeHc&f}4LYLYthupu!?z28rl2R&- z<@?kEuF*OTv6bQmrK*wipvGd6z$T4gvE z07`lR!dBk^0S^EU)VS9>_MsZio?&@?*hA|;XrBHXAGfKH$M7$%SjPi9zrE{q(Y%UDD!%}_C+I7RY0Y6ZNXa@Njk)Baxp{;& zo9xs>mOEx3Etp;@r=VgAryN>`EauHMBtPk6gGZ@LYC8IlGRHE!O?=5yPd~}n^dpQL zpg5NubC)-zsi&%KaLru&CI70jW(U*i$BkoQT4I=Baud_uC8o}#Qmk%{d@f5!{p2#& z$B4@x*;t&n2Ly&yKVUw3I|VAi-WD8LCG5W;atA6wC~Me}Cs80z!g~=O&F>ZA(e^ox z^yTThg?pwKH^}~m$V?iI$hVNG(y3^y~VJm2w2gkLdQx1}RU>8WJQBfzfgP zwUqBH7LbQ7XN9jK55WwkecO2&dXgp1Bw~Gzc6%T2)6K`%x1q5S8)|K-pd+8G*>cAbY-eX@ z0|SE>cSg(5F)?qmUMVX_C^^}O`r;T_4x~PRQ6zM!vC9z{j>ZY%ClKlS974IG9t27E zKqw{$x*2NM#-Sma$$%}=GRKk7xj8E-X=!;01t>)2{kH2H!-<8>>QRnk6%^@#yR_Gy z%Y;kZ`6@SHnLA+5m83RSl@)sN<(oAnR#u4iSl!)#s!1mdjIO4trjLEoqp{iBji}6teBXf1JrCA^E)Bw@T$}Vdb_{p0*q22NY(F0Avwf+Hw|5&b-a=6G zwzbBe5ytlQ^&S4;U+!d5?lk_nHqigAapk+Qw$FBA@K@ESeJLFz4=7y}Y|l4w3AfFM z*l5)z^H3;_h*RF)UgupUjLy*#iHAHDRDEzQ?=&?vtAYYk;K6op{=<(}i(j(IEG#WM z#yKP;$~t{ei%{`~&tjQPH->{!P&L190fc&+oprlH|EcnF50#HfqU|O(To`Fc^QdXH zIobMnUu!GugWj&Ct&P2)S{U{_xVyXivYHx?cWP&6r(2t?jh@_nCTi-4n zi-Y_jCHBg#VPEVuJ7{Th&)1Z%id~xwK((=C3uQdSp9rozJqNo&{1V-@JL##nqMDn;w!no>)%Sj2};)wr{NK*AzQl z)bB5sP_>AlLx@k+i&YR7&avN?7Lk-x&A#^BWvU))Tm}RSuvOG!>=Z{wN1tNwL%>UO zLn;l8<{5&>&uWX8VPxq)clxo}H$lRbtx>4?-e&#Q;OrB95ZvAS_GZb(uf0jj@hZ>D z>gvt!Z+}ThPQJf6+lGS*4GW{7rhZMY=>AO|GEscfpr7my9z59SRb`%@`}mN6kT7wX z9E6Cpl16OM2$k&CZOCz_k|`w-D)-e`Hvpqn{=*uESlBSpG=i<*$LNK<0=^A1kj<*1 z3v`gQV>5XD)yCdl8|YV?8{{8m={eXOxe+Pf1AEYj88B9 zpu|ncWl8IZE}a9Sx*_||1%@lrz4y-#ZZDi8*IND5f#Z1myR^BovgYie?^ri?eRb+7 z7csEMnAx>O7zn)*f7|)J`OxRG=D^@q`CK93ZQ`-(yVCl2$^hZRtZxZ~_0HLSLUtos z=WGEHVwfQcQzUgLbC{{D+YC!p(my-x24ic1(s) zxxV`pXqA>AXTO#Ai~Ztg^%+5y#Y&HjH}?VBYsNky;$y)3@2sy2;_vgM!xbriuHeq^ zEL!fmwr^*~3#DSw-bLyI!Ptus-~cOc&?1v}gZKiuP=P<&kwh0W)2`lS{|)lOLUhCO zn>;vEVMvyzJdpc0;u;}bE5 zS5uffO#~N|#V>-uwe&6WzxRt=4n~qItyufN{32r$r0j+i>8n=|*Mf^6Qk7=7{kf#% z59k&zmSRA6A3!%;m1S*N9tI_kWSu}0o+a?f%)|GJzW~xByQbf~+ z)ixYxY@tTr9X1}+rOAf^Ec^GR#y(Dq(Jvus5o@le-nZBLZWUzIWLtN$o)E^p9#cZF z@DJu9qdxb1NLC!&E#tj^>diAH94Adzs{slhAh{RCmE4?%{AHT!agtRPN>q0@Ku7c2 z5w^-fbTrRDS9JG{;YLT4{e!m!6RJSIGSqs2(65V+j5l%O%vdcJLf&1~Ke0A{+G2&Q zZSyCTco4!{opG{Od?ZCXa2k2lSKfS`>Kh*u z%8*5JockMdH}th1_xHXziR^#Y58_}KfggE$^^Y1F8@(?E4WwUFQc=IYT=66p#JXXB z7M*1~t9!^L?PfK7ttaa4<28cvupDZEB#F%HRUwTQ*Ge#E5LVW(87HI=I}(yEqClOU zS@c9yi<~`pjRCOnKuC+L%pv)`I!TllCW};ywqJA?nVG_&goORbR*&p8ygW@_Tf`}L zEo~R&<{hDHG%g>D#AnwZ=7aG*lc|vvnlO;9C0@zzaursJg$#T+F+spnOyoQ=tyW@wrGNY)67N)RnG@O^KL{zxw*|rI z2J21fs-Ryo9M_(qRbuHH`ua|RBcY+jck4Q&A4^^z{C2=GVf`5Vb%WaWkdS%{s1Z9p zn~SCulmN+1k-07sh(y+TuY&&G_VX!fJM~wtTmi5*D78QRRN_t)=pdFq<~}0kxS5t{ z-f=JZO^RZ0?OGW)12x*%A(yj&!fGYisJ>h)u%?6?>o49ho#b}d%ja}p5!rqQo>VSR zv}*1C4DnloVr>1wTlp^Pg||K+NkhO^mt@b86l4o(S*LiCh={^xp6n?pAFvCO6&3$H zTo^O1|7!SE?iI7s0@c*G1|ggaGSmi;JSmD55XIU314GiZklKAfTowK}5E_~c<>pOz zQc_YcG*Tr%g-{9#nrA-B`dc$m)|HeRF`Q~6tVQso9d~MIUyS6I7u6p*&`-_zla`tq z(PIIVC~lqCx-w4vZ?p{Rg5*y!$)UjmaJ2nJ^NgsCde$hPaRs?rmUekXb+x{&2jZvU z5W#}7(7frDlgqoL*&nOGi&DpGaB9C)rQ~|WnHy+$r~8@o{z^#?597m>6avT)$5*$v zJ+@ayC}Eizmk09lwta$s?a=t`t;IfiL?w2+@70(vT`V45tctf0##2nQiEVqs@L0V)%iYgcTq$vs`-<>9&L z=JsxF+zv6i)CDWn{`^KiH$UG1PFbb!({`!;5{b6uscr+xKvD!X)@?1cNDiwpy|g%m>rv z&f)Lz$u{M0=X1eJModBbFL?dij+se^flgh*@Nin7XhKdXeXR$9 z@>gUz#Xr^upGbo;-#8iuq^s9fvE7#AHh_l1H^vC*X_9jFMQr5i$Uf$RO zreTUcMh%Ai#H>NHxxKccmBNl^Hlo-_TvYC9AH8(+e}X;KWcJC&^46> z;cLK$GU%ogAYLP1>+^w;uS=c$xf=~)`@B*K9s@rW%uNQ&{>_c~Fcag(^qXXVr(l>VRz(VXMp3QE=2C$&;B?vml-g3k?)1f6>*B|_)B1+ zj?VbwDCsv(9Uurhz>gWOUvsB&g!Hc(3gJHpJN=jr=dp_A!V@4F^F%Szy8W4${~0-i zje=Xd?E_S7+Y4U^M*ZTxIF=$@8~UpMZ4nqjI?6hg8oJ!Wo6lC9KM6$K|V zysBSkzjDNgU^x^KRgDd;e+zI%npsyEyX-JCMjKLZ69?=m!EcWLYRSYfFhIdPbL8Ln zqHJ0-nk@}RNp=NNMEA;i%aD`#C-Voy1%|OiQxuWuu9dkN*FKNF(2-I6b4~*dI4hTl zNlmOmj-K|bg7*ej!u|Y(MC#wiJA5{G6vE_4vq#cskUg7t*R3ega(utQr_h-gDMVzS z$KCD7NKAS8Smx;k%;^y^6L}J{Bq-J*2+Ut}BewqfocYF&%;7W1pKh1gp1b{*A=CQt zrD*CKRT>vAU?HN%!Or)l)>b@-o0s(T^!V91030=upbQG9pr7o^B7p2iil|Q}O-fyuyu{Xu%Af>}#-` z=fU*>?nu4p9B^cBKUC+K%4gCj^37#NlC^^m0X4gKNP=QMbl)z^KIbcK_}-3Ud8jb{ zB%{n!v|#OdSJxK(k+!zB%r|ccFpR|(7*X!u#|OrOckCK;gyicb--M^c+*HMomCaZ4 zpJ^Fnw2U#*Z0ts0>@}kgFB`^PR8ramS!imiAuL72n&=qX2c{=~AA5%*-VAdmr<1a> z)gs@YKYtDiz|Co|f7fI@36LFk^|p1y`ozk;N*u!m@K`c0hzgtCrs_uQn@?}$?YfB} zT#dlH|G5F`$4zOQb0s^gI z3F*za6y3Jw?dl5R1IxRTl8zd`M@dO1fY~5o))Yuq5=d6O5d^2-vi}bvnRPqcQh;7c z>}9IFlH_k7_m&ZCsabK^`new%q-A6pdwVyZlxbYP9HPz<_VA%j<(@ZW8a6gIVCq0c zoMa?Ifqz%U-kt}Tk2Gmfh{h(suQdVXQmi0w8t&Tsmzik4{p8}@P0eK=Kc#mLaj;sO zU6PYiolit7{C0RG9EU@^Cj)6fOu6vEFF5@Lq-H+;{Bm&D6s($*x75VxvczGFPIzv?u8+w>M_=0=Rf}97;X+}P~N>7rP8ecA2-WwVTr_+#+lYUkWjLkPeG znUjEB|JZHsswqgsqK_4|s5UzyQ}^u_PS{12f(7ktfEB*S9VJ9tTnA;=?zb%mkT3XfJ7UL7`T$Tzb`F%=lx&5!_$iIG4!tbR{R*&vp zgAy8iK9+FJm>#r4t6a9m}|LzmbWyHL!{6GB=j3Y=t1VddA^FRF% zxqk+9*vMv$k#kIIGv!INaOyO4&hI09T^TQ~s`NhvK!7u%CY`!^?^0d=X zo_=9ltLAf=QtF44aF&Ecla}xP`t=LsNG+RjaI&L;+-)p1GhNZtd-T(% zTosX1u=e9@HxV-Qespy7nwORqh1bgPU0P9_^W^u`%1ht9<0;`sc8F(hszaRD+E}Fj z-kSN*{-!2F^?$AsgR*AD=}7zSJ;7oIs+Zh@4{qC<4ufxz*2CT+^Cq>nSUPc{w6ruA zclV}|65CB^AY+453o#(yB^AtbGqdrE1#9id0^P&aqH0+ln|>zkzA<8(enW;sSeRmB zVxnsF_U+pn+uP01+9&L>_?bt30?vE*#0P&iC`q7n=k|_K$-JwQ**mV6Hvp9TeauOI z(>DtYB|>XD9v@3f(iD|FmLQ|JA^49BK5+c0_df*W&Q)-*_ZONnhvAXt{+RuFaDaV2 z3kgCHe)WAPk&UsZ>o4u*;c+iBb5RoqhG(wt*uW$zTnpO>h-=FyPlEv)HqgKY z(6KBu6zY-2+iuzQv+zot2Z%cZ2ag0{AfWq|1Z7a^#y%1JI}j=Hq2P{R<%QFcZ&=z0 zAp5z}-4<1!Cht#9MRgDCkrkDdNvRk9YO~GLn z{i~S-jt$Zb^GMCQOFqG%307A*OZ(^W0h!{__3h0~?vgd&T3At=&{;gc<^b7Y#`EVU zPdqPOx|9(a8Cl`^eUM1BGgVR(w;m2PI96PQL+3vw@!nWtyJ1cgX=P)xd`sAGu6Grb zB%*RxH#eS=?*4u%pq@@U;h@aT%^}fxyygXOASW-M`1Gk^NtaHKoc);R>S<9X$@pr4 zDc7xv@1d%qittCE3HJt%s{6Oj2HW&Ny`_}qW@X4a6!qUMbNnSP73%VQ?^n!Kr6M{J zUwv}gb%(o*dLjf~(1h!m(jFa$Qna zRveol(S@uT6#|M3v0*+nBzgl6pg#t^Tt??_!UHY0goK2bH8d_=xk7mA)G45TUL2}t zK&nHFtZ1rpZKSAex7qr{hyAHAG9hrcj8hGRv^2fC8VfN5bsmh|o1b_K&45`1`BVzF zS5!g*c@4B}pRU!(mvgIR*!tGR>z&(`vRUCf=7|-b+GawtQQ@##;jof_1kTtd*q%&A z!5dQ-wwDKpQ7*Hsr0S^>r1wuUhL)C!x5hC>LwVBBzr9ZL9y0iQG`D=PAS{I?C)0$~ zDdLKpJBJJ0QK&jc6Mzy06Vpk0`qZaVm@acm`y+RRJ3*5W))_%F$^X$bSq4N8)c$b^jz*YR6jlf(-@O%#Q#uX4Fn41uvGki5Wo>WwaJ2} zCj|usfe)@98rmx+d-N+Cygl_msZmo?+l`j-Ll=?*_w5~|H>}EI3ERlX2*hUd_5>El zs|!3*!Fs0Pb&H>m&z{?LXMZs>9$tqt5GU+qy2Fd3I#Z|m4r_dqZ zQh+rDVcI&*7Y2i{vQ4!0M_8mIR_xJbBe*T!BpZNWAA)QT5jsXx@+1QxjZGL_) z81bp7sB|lOa*qSwT#pUP&u{)G0=Bnb*5Y^=3AAdJC$HXH^3z1&Z+h)MjSsa%(_BK$ zK=}3e4&NUj(;~+emY4tVwPffXECv|sw4NyjLw@A9yTT15c8S-;0dnY8-27fx7qq+y zmcI`HoFp7{f@X-VuLWj16^k4xAaKZHnM|jo3DdV}8u3+L_{pyvnhr2r^ z#8!i~eW>rFAutJ+bPo;bKNGQ5i~aWY3QQ|C78;hPz(xI1@NbfjplB#FGpA=WImav* zQeATW*7?K&5)tKmJ)^Z>$W)<6%kF#`AG9ycfJAV=g~oJo(Aw5E+O5*~2&MsY>nC3SuJRk zgpXn@4*L50H#IfkK<7p&MY+lw-Q4VhU3(?zNd#Nt;|1N*{(MhDXWBO^HkMzMY5%a! zTS>7HmFD9FwEgtb5}~)ZHwlwmMPr@w!3um`1JX|=2z$bQ+jfBUdQyXDdOZKtOA2`} zQ5$Vjr2u@80Qr^$pSwa5=0g^|a_K!k_Fl5yIB*iTL>PtFXRtnxcXxKabxBp7#M(pW zyd)P4SZ z-D72#0+0+6g$o7-XGBCqHU{)flVla(V;2axn`C|i6cJk3OV`%cE&{@V?^aDkpDP?E zz=UY<61e?7)WA41qK^F~`?tWtf@BUaAW^r2WF&kR=$E_9LHk%RAm}J*1RZL6eLWt6 zf!wBZNbSbXP790_NC#qQmzaVST*b`nY_5|8S}UC5Cg#7pqLwO( z0xD)dXLo*P=Ev~B_xOpVIizt$;&;u9yo!o5d+U>hE~!s{@YNyRt^ct$*gs4n;7;dD zUziLjEEJ52j&}WZ;Q8LJcc%Ez#Ml_LL^Pn4NFkH8we`Tk&tKWOOnXS&Y$O(}pPXby z=(;3kP19~~UpO6R78XB-s|k2zH3b9&ZqOC>T)cSE!x=AUnHL*K8|0M0MzH5H>4I;d zC?VJ`hi54>1ou&_g1nWdF3N#q;h$s^aNXD;vq{1)h-Axy?Ck8c&?E~bnnj6CSF_}Vj}o7NK+x;J z#lxR#UrY1OoH~_JZKAEsDq;8eMIZ4ye3CQQZJwv6r(ZC6l{aAD0+Bx&+P7x1t|q75 zW(K^sh^FRm23D#3>6d}DXU`alZ+-BadBA@4(}&43-JZ8$@RTsU%^4XPJa=r-3v{QA z6Fz|SH7=8+wxdg9r9Z!}6z-cV_VxT&g{zWW;KBR-%{Jy}2?>cAcvK7Qq-ber=?t#p zUu4-JcFq8q$j5Q+92#~51tTM43(~Z#Ff%jL3?1QU7*&;LVa<=I;g?GI!U6)r(;O1DeKbwM8%7ZGs)Z&G=w|>EZ z&=A3)>dg1qoVm1_Up{eab!Ek4T_F&3;}$r&i>=J^e!60ih0+M#;sZZb6f&t@ot@3V z7hLfqxBcTmJ~#u(Pcu}qQ2+`Qj0_CTU_^_~uzR*}kO(DGZ&Q;}!0%ss%+);x-JaL3 z#jX9M4cUk27n!Y@PVGEa0lg|*0*3D|zb`4F^j;ZefwD%ALC&XW_>C6ZCIDYmU=0Aq zOkdVj&+_!`z3JPu*3xvcUT+Deisyk9t`Z(9G^IJ*`Oax*Xc%?!%UIf1#mg-PBI4RJcd zSbzqa$9QTXC(TgH%57=x;Z#t#wY{@*8W>4IAS_ zCAONbE5pUstX~o3g&XelL9P$MN%vyHXa-1j6j>m%QtQ)4r?ju8s3zlRtd;5VHn5 znF}Mq0`YMgc>_@Z87~)CR`@>6yCFL({+9xjV=WNSlWyvdOy19C2em}+4l9!1xBCoy o?7`3gxfqp`;{O6$cBB}aZ^()D7<&#r3x>LK>6&uEMYGWV1I3U6#Q*>R literal 0 HcmV?d00001 diff --git a/output_38_0.png b/output_38_0.png new file mode 100644 index 0000000000000000000000000000000000000000..aa35e8a0ab7f4e863f18c22927c2a8493027678c GIT binary patch literal 24943 zcmZ5|1yq%5(>9@?q=bM-$QI;)NFxmjC@CnQfOHFz8>CaDrKL+0K|}#TO1e7)mF|}A zhJPN;dEfJXziXZ4^6Y2dd+xbouDRx#C-9-7G$9@}9tH*mp{$IQG6n{gGzJFdy9+q* zf0j`On(&vP{XKPi6>AfFM}4$0#shtO8w+cD3p0aj4#sFZGixgzc7AqlwrkJq?QQIY zI5;f-`vAK&+LVJud&Uz6xo9J!VTXZ1tdIPM`B6O63R<^xi zQBkk*5cTlzu%GYte*OBj+v?_!b(L{_0Lg1w;h0;RMcp4CT^F*SuWpHArY*b*mMXtg zPugxMpa}ML-kkmMMU%h!Bw0DmPV0wmvKpdqKNSDJ7o^b=v;gP0!AUBgcpmy zXEZ|d^Yi=5oq4#pxJvsyoV0) z?)58vHT#=$7m10RIy!9YIC@(jNl0K}q@|_BYSB|uC%6uYCyTjLXa7o=yY0HW(y{xs zF^s;ejibuVC-9z>RQ+WdQI|Jz(X4_?Cl78)caoEl)di4TN5@7*MP+G~a!ZHNF zU2lX^j_c{UCNg|7H`P?r)io?KDPYIn#4~%S?c`FzW!h}{^Do`OC7H={EG#Ur+7G{f zGfcGxW7O5DFaiSuVFej>59;fssQImu=5E*2)RdH!Ma9KAwQR$urMt0|*4EbL6%`z1 zV%M(SnUP7SvUNNiOU1@g4GqeklBIOAn|U-`?(STq!uY`a39oRZK>T~+K(1xG&`*!E z@57H&9c{?3ynrA7tXq|0(vdJz8WI~z`5^Ijh0)c-jz*5EqsZ0Uu%>QQel>PumUC_< zL=RYT*VTjnm`Fz&G^ef7e8|Wky?QmV%x%7#p~z}PZXn+n@qm)(HhFI40c)Z8uXj%i z&CB;DgJ1dk&!zmp=`OO=Tq#=>^CPAwss^Xc_vO;_kGb&_kGkAkE#D-9eMmsXSshUZ zdx?EKF+_U*#i?1j=y2R{Hpz;WP}Y6CRLQm<84nVl^=3R+*%)g&-dgMnyTW6#wp7p+ z857euUgIMxCpQ@?yrQ>0*|4{_H*IA%UX7`kDwbS!REK3f zZXa^1%Pb<5TR^#5^l38|m52qSg7j(0{;YkF8Q?MPVt+HbEd3xmrrzNM`oN zmDGzVx}L0jmwL0!Cm8XD_w4t%Ki~FwR8SldVL26=P_q@7W8uKa;*DHH^~MUP%a;;E zlj_EXd@hPo3mpyh-P<_3*4P<#j98;$maxZtJ6~j}-k;*-@<)CruG5^y$z6F*zY24 zR`|-#;OiJO&}3$~nx&-vHmoI3YUyky3;CzinZ}xggTHPmg(b2k(8@BN`9)ylO*C%5 zGn;RJYNsMu-`V^W3lE*}R@ujhtJ`*eXS#VcnoT}E8^|mleZsH!T$kfbPDoux zC?opH*-|ACKdH|@l)^K16Lm%w@X?uT$%Vt1Hfw^^F?1FNy~2A&Z!nX#BqCE27#^GY zMw3`GLRdFX`nYCE2DPt@1Ok6o>wS-%8%dd;Qz>)pE#KNEl<=O7|8aR;_GqjX8{_rj zpqHL!NN;^%77|bDjAqrH!QZfk?2j(bf3{5^$2|LK&QtB8RBWGT z(ou2wt*{9SH6>dQoa2*ZrU#K7C6m_HT*Qt3{lo&t-jYVK2}j>VnzYme8A*A5ROf&h zSMdXh@?c`@N|v<)O#~JawIU=6_nQU94z{mh#&5`{7=@BUmJP3=vCcGpXNUpg#?~{Lx4D_H zY&l^IGat==eNtzOX=AVRBW$xfhPyzkC?_l|EJ`Ifpt+%^0F7=k6HR>{$8OV#qENF5B~JAIUFl>L<8{H> zf8uGSr~Tq|LM0?5*fml(^|AQOf4+U3{bb+D@T>X-{9aQNI6N=Mh*R_%2kWYJr@kq} zJb#!Rs4p96XlS%22}ViNyKe=p;=qLoLHRP=Zu5hMHzA&VpFB2!P!$=8Zh_EZrS;T= zsH<~;sM@Dks{6a5a}-(Nus|%U^yXX_GYd=L$?@S_nPRfgi@mL0C5=2iOdiwDdXs`5 z<<54KQ&XEGCP#bg=WuXlb>IhR!gZw5r=1PgbtXGA$mr(lJcauBghOT0@~Hgu<7g+X zX@%^o+uDNZJ@zINid#B6Gpt6wZ>@|Z+DxO1nPaE^kc zFFXe4NjS>e}A=lQ5@jCLBT4%)((4-^?2wB_XRyuH1NPLC}QxTHOW z(bE^&Vs06(440lC?CkB0y73_462y&Fq0!M%Cs)_8XHq02`|{>6cMntgOi^-ejRu*Z z%duCoAHco6G1JytYBz^vXyxB2 z%_aq0?g#b<+l&7GO&_dHwwH%unGrS+Ku0gM~luWQGKjQuX5d~2Cb?r~@qy)G#cpmX2)(PkAK99-A2>`4nV zu_K`74S4nHT6ppmXF4iVyeuACf4nSA zZGU5Gqb9Y4t_`gl%v#MY5=v)j{fGtcf*_8(n&Q{M6}K*qcL zyAA(EmMf~a=GqEq7vpH9>(k^M1oKU5iBJ7j>3rHZO)?=0$==*aG1{4RVxx%rnN3ou zgZS@Be%qr(s=SiAPC?E>rlfuo2NVfOY-CbO$9(CI?cn=jwW*j-#<0SZPE2Jqd{=R> zJzjdr+3Z|%LsMGpsTdUDy$NeNvTG`c!qngz7srs?6)wRf;e_YkEKYxpu`Hs7dl*#~YlU zi?+jTYqQ58>+3%S9>`Hdzb}8oicQ@9N|CH)1b>J970a!O`TL0N0zU`7vFXHF(`OQz zJ@#oNxjTzP%H`eq$b*d{fDQ}W(~tWxgCJ3c;h(9Q zgTJ_iLjzb;LvwDFUnI~V++M}jBw}+Xsr0zi)0L2{AeH{`)}ZZ6-yx;(6%&1Q?tLfM zXGu4hqFR3xu3dbU(wnxaIle-87+d{Dc)VE%F^D{q<;z8}(nM+!@%4FjOu6n*r#@AJHofRvEm0uT#Lwcn)(o+dc*S5SnttE1=jMHLB zdlsj56j^^AXpu^PC6Hq8Z7aTnqbGGZ_!IA!zyn5cR_RXFQ!%Q1>e|F=U%Rz!?7V65 z@F-)%nnr>;y{%!|q^|Zf*_mrNh1~)VrXib6`eMQ7WPedg+)7txS4?5`++1iJ7!&lx znxD>iJ2i7{!^Tj#>wZa@MtdmZWRGfS`}hQ5@{MY2-Iq$&Xok+IXjZ5A!p?~>xN)K- zlzUQw>t!nZGtI==6M|rgSoC$CU&~mMeRmoX8LnTcT*ej`#TAS{d%l{J;J#u3ukY zUr*Do^J9DZty$JA`Ll`eVcZvU{AM}dRh-&gr8_(4krDCp!Q%LW5d48BR@pi+(pK39 z4vZ0~mM!$ThgBZ#ib(8v3S4OYNWr^E|ZK* z_|cv7^JN%MMRC>j+UC~QlWojX!5{SvZbd7cSBa7v`r49ZMXv$^M<;8&qj7d}x+^oqJNg5`k zFZBDOn+OM5t3IvQto&>L|7I#OKW0d0o}Hc?L$0Y(;qu~OYe7;=OAAcbEDm*89@Iu_ z`xDWs!*5g$8U2H~KFE9;rKUUWI2l{Aj}s@KJ;l%OK~Ct6{6Qplx_`eYWaxR!dnJ40 zg6o0gW*M>X=jWdx?8Rh5@cvpIv7r6@rCU$GjUVlAI_IPUMe*#}JX4>qpI>Bnc=)Q} zYkKjN>gwuYc}VZmR(w?UV<8QeNTjTu#L=vJ6*hQh(h6Ax*^E<%fCti@6LT}2S4H3D zslz@fC4nCUsP`jVjpNCH zuleFja%x_^hf7TimisgWbr5wXr2v(4n*|H+ z*RNllN9iai?i(0PGW9XtxIqeQv+C~R>I#t9rsaeBN0+i=i=u?(YjZD;6^crI7(5jHEZ1#&vr@GhxMD-4r>N43L_pTx^3BUx2T@!(cq9IoJa{H7eSZVcvJO4 z^UMCk^d`%Lg~N_x?!bWbmN{Bu9PBL1D<~+e94LwHGX_&~%y#gP8Lf_1lyCLOTMT{+ zoT&3pEX1F+v-1&7@xv6qdxuGY44=N(H>8)>gp4J_Kqc=QV1&%N zzKdW`SXidx>gdlb6@S=%spy&3b@-c%loacZmKF^{i)mK@ujRJ=OU-TThcv>N3EIta zdY-sZ^FGu2&0Z4P`h#;z?c>PB&+%(h7vgv@xFb7YZoYptnHx?oEgQ}BKhtJ@rNgfV zIjYQ81FqMRyT2v=#>$M$%#^89VeBSUc`MlJw<#f(Jt==YO3s#l!!ZrCSWSkcLIWKgiYxSohC;CbE`zc3wW z^Ts>ms%obOn;190t25?QB$R zUnGPeQvXObR4#Ju2B#6<&#Equw>w>@-nsOzwhE9-{$_L0AVL}Bf5BN^^zA9MEkVrT zi+&&3$b88~(ZAE$yNv&+lq%z!SIIW=1-GNIAnYZf6p8R$=G@V~J5#(QxGI9Ifov2d z#@9rO2wH!8y>W^gz4*JF@OI+B0&uNmq0F13=tF_!=p4eobf3Z(q~QxKtWq`MkGu0I zsh+6skh=ZC?@>f9Ag|9fhXZDUw|x`|YfG3}S92eeM$~>ltM)j@`mNB{RjhjZ6W6o* zusBvvjDdHQCo8Jl#9hfcRepB`+m68bwxx)^{xxjC>JPrplRGw+0-ji6i&)t=ygSSt zgd#}I=Dr$ASUctaYA6{GByl!e;XHs1eQoGQ9tsOWErpVR^t@v0D zdw2Tpo>)33HhXG^0~TjMNO`Hez(V{hGw=_)voo%XiL}z`^~!>g&&ht_ zTBv(k_lu%UPpC6rSSv^DZ1X9SaYeO8kiX6(ws#&nIkwRGFfqRhXf;(HSstT`{Y^2V z6uI|qX4Z|P?`;zTz$4QKyz@koYLdQ3Tg>GlpLWht%Z{EhadWhxvvMWmLCe!we9Jrs<* zIx|7&sPqcgY-JaLb~qTUYBUq2CRGPCL!y?3X7tTexJ;Etl|Wd`k$ZY6qtL&=A8eU406v6@ zuL(RjK6_#CCyO;)8%SA!oSm3sevNwT1V=8~n@m&RT)v-g3|!7`I63KFpZtJXq}%`0 zKI^#y4aq)k^mW_ULdi>pMFG#66}$(I$D1O;ll1`_s(cZ)@w@Vz7<=u0*I!s}$S&t& zm7Wy1OM-x(DYL_kMkT$c!UA^Hus}Ct+uHSiCRt*LkZZ?N6iUF>LOBCv)P&xB<-l<_ zb+x*fhH)t`Y`~$N3&4JF$f+6e`W*X1u8-thV_#r}vVjbn`}m8(08~>$B zPpo{7xMYQT7LQ=jj`p!B3;=j|p4P+wA!R&NL+hQfYSUJCyV2x&-nUZgnjCAh+~NG# ze%!n=AR=rkj1e~c#CPa94&ZUA9AHY5+D5Qf+%W0laXn@xrmglq@>v`Yf?J4yzOA5< z|9(emK>76wxf!^n6!KOs>5$ui-wR{HlZiI{YmYqdK1qOMf%of=xYGJI&Y^%M0N_1< zL6aL`i^vDbiHQB~S#dpEpD((#(w5h3i;<`A$pL%d4m`-VwNCWVr&u1rhyX2o7(F&o z_?ydb54K28s-#gOUdNMw!Gja8exuSqHCpxxvbjMaW`%z>)2#i*y~dmP zj!|)uvW0r$DQ1u;$~-c35u_IP5Gfu;;{yuFaNFOoU;G{7ewcGq%FkocUTyGI3k_h^ zR@uNdh_z#Btm8>GwmQ#56A7m&hEY1K=5$cZvf^~vEnpy~bsoLhK=T8`OCG*3^X%8B z#{^ezzaH~EO@^T(lan7D?kvm7mu;|&U}9n>3D}}`(bLT&%uE!S>o;*Ls=Rk{Unb%% zC77Q6iJ0<)p&6BA7c}bI3&Ol{3qLCMvI2QdelLTbp~Pu@Qa;ACJ?`%Q#>@azn4s9z z?kF7GAfc|_&nJ5SUv|u8H?7&m&SzHXPQ4}P+#>Fl4DD66PsDSyC&YM1@;V6=9b!%W%A-ul!< z0)qAm0FLD5CblmFH1+Cur36JKqXaG@|Knsg%pwaU)gE}&->U}AAhnRIB>48BPSub3r2zC zhz2NaFV%T%t4z#MR>u(DjZT{*`1teZlF=kqPfzvO*vZ^a)wNB#&Z(3KZSRhUvIUY8 z8oHnGZCz$S5doDcp{Mt@&eO9@RnX;Vy=i|TGgTc@h!iGf@qvMXpHQAd@(8QplI)z- z&sAEsZw)n?dEUclG}z8ShBgYKVDv zKgY56ARDfj=t|X-!w=B3cHm}V=u9`+s69%?5E=c16M}l#PRIyk;TD?LqMy^GGpR*Q z*Ztl?&j(ocAx*184;2IyE_=b6hMC;O&EbRx}ALv`Al@D~JrG)#0S z?n>D;6NId38vknium~r;zHUn~Z`Lwzpk0x;gI`@ z9j!@5Mn##8eCGpVw7J6VaJjg2vA&_fcCtQjc*bt7lj~XcwLibVw2e59Jpiovyf5d2 zPKArf(#w*Uc#k-ZF7wV`^t&8WaZY!H*enymTf@)V<)(exri;TPY~{|L*ULqbw3Pjf z!TfmX92I=kN-g3`~2#9)9 zf}MX4&$j{V!C?(T`dsZy_3HXw{Yh4@AR$>X2(ymUN&keX^Mk2Mu>?ll5O7?|!vHYW z$)D2WeDS(pQIl5_q^57;C?jeHj-RX?b4X$;BVD&C;4D=m*P(N{a+$?yOXXHWY_a$- z|M~Ck7g8#1Y?u^Ev59ivgpfZvBYvt+%#IM|=U~Dcm>&{ph`y7#>ykT;5de40QEsD` zpOoitC6Wi|Q;CRMgeIfh3@NY({; z6IgzLyVN!l&B&x;^WZSkeC+6>yK{%;j><_?SbUzQ|yFfD&OQF_J;z|=U6OD-#?~o02cdM6ugP+*C#1%Dsdfo|F;^_WioaJg5 zOqE$U1_&tpU5qsaAfVWgs38jlwhg82mBO$A*4w_XjrL|4_RM&vjpCCPl7R0?Ni0Z4 z_?}NR_0__kfDV&NQkaop($V0Q38aI|C*VrfNS$l^+~6H_@4jPktraV4~T+V z({xiEzEC+%MHOc1HGvac$YsiA0o~I~&kxw^oc;jr@>d$sFUccdyiq0)BTEy6lJ(}P z0|NZo$>T zAeP?)t9P&_9y_BkvUYRk;QD7#8ytEi{u|rKrOl`UgFjhGvFU5;HYM7N@p(lH*fbRO zLDW@p#~aCgl*{M!?3-jh;T%FaPO3c}&8Ymaa0T!>E5H9|)jg|gZl~7Gm3j``r9`(A zYd#7Nm4sU|eSfNPa68)^Fdi4|v*zs!7yLcM@3cMgI$z|51KF^OCy=9f^P4aHH9Y6f zYQcX7F7N|EASV)iJz{ZY1=Fz-Bdi^}>XJYyzL@!W&8pkN@mlZeph%nt)JyOJx$F$O z5;;+7Z_$kC_vYUqqxn?$>i=*lYHPa!x2_M}-=vv|GlesIWTDq-}bh7LljQ+@(<0&fzVl}id`_`f~Vxe|Sj*&E;;Y_*-t3BCgHqz$V-i|YG1~JsLS$#Pp)>gk3!1dm>e;)Fz_uB za_ssBI45y6#cU#bO!i3_Rw;RNxN(D6ll+OvpZnv#A6y%nin_SAuIJ{6xc(0q({Av! z+A^%Jn(312`N+xfULqhgLI&_!MqiPSYM9VxRty)4rD2M}wuyKLvXy#^%Zat!x@kIU zdB$~-a}$aF*N#6Av;=*#$PS4pD2lM;d#1+!#wz3{k~Rfh0Q1$x$u3lg`IIsHlu<5e zo>O^R{e#ei`DVV@{xU{cXy&Eq#g@g9s}M<0eeF!GKXB>Y?f_5(h{*uDA;POUNBH_X zO9N8(??cU05~{`;-=0N8MFt6kH((VLy=;oPJMbr*lo;|izE!Ud6Nm4ph5|Qk6_1gB z%KT=?LO2P})p?|f{FiR!k?~^gKa{D*k<)kkg<1p@Ae3po zF+L$R?_b@9nIF8%T=ka&Wf(3#I~Vr3@o+A4t)B-sCWL9Onwonx1+Q|ZU2(3brw4=o zYK@~cbCXFoJNN4%zPjbUV3~-y&#A`2`f;w)ruO!{2)JIYIu*mXofr}ja3RHM^5Xq4 zI`@GCVv#ir5Y+%$;@tf{WK|Xd{3?%e>l+dJ>pVPB?d|QuGoWvQazie%ZJtl<(y3}rIISHu4a6_kyAQQqxE#0)|1r!(Bt!h4o&KBQqAwhus_nf(=oh( zydt|aUNSb85&G*NNfr=xZ55pz9U;KHeuc`iNU;V?o@o&qv}6op+n6A!Qqt4YTWQdF zEv1$0t5mc#_gg8ZU{2MN^*oK~y(;$lVXiCq)CDsQH+kc$hYTrZ(y|S*t)-DN{w_;WQqm1AaRvs4u_n+*>4QqGw9T{1&i+V1AkQg?Jn|sC z@a2+m*LdmTa~*5pP}{H^hWDFI02D5W+f%r*?9E-ub#rc>oVP2Lm$|Gf0^v2}E0=Hgn9TqGkSyNHk9W|x?k zmxuL*L-{lB0yfY=GTJf^UUik#wqDe;>$&L{JV=*X@1ISCVY4%b)6agkvAcevr)OsF zLE(9SCRP`nTQFd8w9&@F`}{Xsmt_LqbBC4#4Eb304oCM0gG@I@f~Q0e=rDmaY8sO7 z**}tQYtS$WjfUf;UwCC$TRdq?{3b|nq=E!`#pj-Z=iC6eyX_2^E)5j;H_>}0ef!3X zLqLUbXROj4eA}XZ+QOV_1mdak{n6 z+WS*nPkTX7l6W$;Y~xve7WWRgnPk^oBiH3(?PnF(F0!yli4 zD}3FZS04Gq0mS~kPcjb@pb)-H9Ea}3OFOGbUhQxgSl2WJYK094)^L}8OI zfJEOFAaA8(t1au6+NwM;QXRbP{5upL>n&&qzD}qhtn~J#5e6XENoQPJ zdl{N5xoTa_d?D1@o8^}N?yd=QnF$%?>eO1iJ?puHwN&;OP>@G8#KBx;l{3i*w6UYD zeA|s6w`HR~kHD(3cmD`#Fv@>i55k~_Yq#DO;)`6u+Y3~A7py#cD$6IX$2m|Y3F=wp zxTPDf`O|bjb`$D7=UJm!?kO-MQ*?$YPJ5aUo6#3Mw!|DThAXKaJw2YgG7FEZWY=Mo144I)1c1$s;&phggqCav{0Sk zK9t%lJr;47udpsMJx^??*S$*iJ>Z0d>dNs55yk<3ZYyv|6n~C`1GH{JC@&S_=YO_O zuyslz=U*3pye6yJ&s)*mXfZ{xa)W`%=hKXvbCD0g76UruVTZ>FLtQ4>&Xm(e)wP-9 zW!~WtXi3L1H*1vL?WVcVUODGdN<|%#h($o7sPj{5M05$prw1g#Wyd$A0lqR9Y4?pV zWu96m?ex?BDk=Sh42;MNSp@j`4=MY^zEfdcA78o)*_HKPNwr~7tY?2i%O)aaF*G_9 zBEn-sp_dUC9^4zolYAnXTn6|lIK^ATeL|v#&+=q5=iKaxEdf8iLS+?+SPF95_L0XM z_hNi;t6maK)pU^UxDl&p)_(0!8(z|SO3~F-kh*^Rqwx!?Pg;#v%IA|p9PQP{x&(@O9-o>D^w=d{{KSK|JB zeOUsx%}eR26-I>(!b*91pk{$2en1{rVcT1f-6@yIov%68tsaR&)GW6ke+ae07*{aA zak~FJ>2|vD3+j94;$t66F%lyW??JKT#U;3fj6dDocm%}~k3$Ya%B69Irxb;f$IkiM zw+fM>#k8{v+0jUkuqq2JGPciSWi$H#1`{EPkVhnl zb;o&U8kB3lm3@DDv|amy$@w|Yji!BxD2urx^eGEQJ=y>w6kX<(CNFT)8@&2r|+jzOqp)lRNrW*#R>cf zpM)02rf*)HJx4)OQ;)XaThqrOqLBe1^k0uZk%MYbZ>j&Qk+HG1Z5im)K|IJ_N{UFDUNTOc-L47ZJ#e279Gpui+>J~q0`Es zX=rTR7IjTZa&QY}6kDiSwXpX$E; z=*0Yw_s&xx{5d6^DWa|cuV1%oi#aS&eR*2=4jK~NHd>g^yOhtg#rA^E9r(zsN7q-U zsJVG~S^#NlE6U0;pinQTr;V_%HUwo9tBd!z7ID z;emPE!$LPSpr|UF+7v>FlLmmPm#^^d*P8OF9_%DPHYHYZqT0X52|ujQtFJjB>f);;v&FeK;*C zsf3J7Gv622rGBo#Z)S-8F<#8w#XFd!8n!j&$A@VW-o=+AYW1mb-d7EE?zht2-4L?^3jLED)IWZhhi|0GQK!j?)uNh1CmlM8dP{Qt49M%c>_(I)E+)c?%1+ zXx7Kyr;DnX-GQiH8Y<@4wczF8-~g7kQFygn5>6Lz^w65(L#g9bv#@`!o*hvtu@4hg ze=>Ug zThwqJC*W6OsVkOD5M0rIU(VP7inaBtn9Ww)RHt;gk;dC+EeGLetasKCN_oqzlp(Yb zw{v`Ip^;HKw0DC{^$O0>xnl8)UUT&HUw3|#eS9?QWoH*4^A!=O_W{7MZ{!%nuC}AS zo<(8NGsKHfOgBM)@mkr~jJh)9mgLikO2-^QfGEvCK}BE{AUy*E_g!M5HM65X=oWl3 zk$yS2T-t3-SVd=c-)q;|&4UUlu>{%&f9L$ACO~Ty*cI6^49OMznQ;>M9yAcKVf^Jcg5TRJ$bO zoB3xMDu5jh;Zd0QsV`S?B<=?xb2ftL9+?YVQuA+wOWM(s*hPsbwuR|(itt_?tRSFp z?BAz#`-!J$!2=e>K`l{gu-+nEwEW@27Gpu zevPhu1py_~8w8d@Uj}GiER8fQzh#k0DlNXqh1G8e#uw*SK6|`_#j&O=2}St!{CA_F@@j^&1KsXy*d+0})h3>Pn{UWEu|w zk{;3Ri}+hyf)P;~Y~2=ABHz!wWR>h8iTjQD`#2S`=M@Y;-TJS9UJAMVm2)DzWS261{SvSRgoKkk1k(RjD zRMJC{T;Tf;s0L5o0e50muS~I&AGUcw8^_bs4NN8rSh3*q?{Mp?Q_~dqWW?}#g=?)( z|CRzH${Uo#lTi1h7(yxmG-ME;A8LkrV9wSFQQ?)m>2uK+1}(9e8ly0{w`HHX=|VVHUPMj)`z6i=iqez)9dp5pI#T%N(u8JrCsYmdd~5_mbC%VaP%nDg zCFEQ;dn&d&LRF5OV_v$R;EQH>$BO?;4g_dWU2HDjg2zOXZ`3CbBVM;1)({4YqRorpP-s5+hFl4c^!>fHLv%e!qn=I+kS*a<$5 zkYvvzD7-WqBg^E~BEMt1W>1}lIr_RndWyH#>EO;>OZOtr8j;ugMZiuK!N^3BzEYOi z+jL@W-^PeAIn!Lpy(?3Im;K{d5H?Voc;`N;Tklm0abiIYpw3AY*rlQ6r2#3|$8+k} zUM_BFZr1D1(|>bQjmXo}(`9S^u7Sb3DAHi^Ta@`rQ@nLvIuCCCxRGBz5HW3SoL%!? zyzYPFZz8q4l-79id!#Rej9GD72T04nn>nY@*|J$jEY1lkR-kzr)~A{lMk~sqdVdzXBZ5jJPJApxuHwscaC-&(55T(KT$cW5W(V3hV-Gm2q8Zj&Dd||^PI5~-v41G z&IC6s5imH}4TZN_rD$HWo>#I_HzJ~h2+~OS_3qy^wZl`&T-~vC)S4>eqo^16L9SYbqrH@ z*3A6a=?OGPZW7*n@>#DroT2>WU{U07sbC*bntB1syL4)yN zAAoE*gqsgiV=G*Du{aItFFY-_dH`wxfQmDquAHve9lg#|U^6Bc8W_kRC@8p#-uft} zCKZ%hh^x4{|NZ(IOVcApoq1XCOdTDac=xw6NFXW12oW}ijDMpFgvKh=ARB_b)E4h`hX`s_U&oLszY>SD&|X zD8Koj!>hPRrX4SAejZdhIhuO+K=k^glBlZke4?1|`>Sbv1Q&9Ef{ifv(%tq*M&<$o zL!YBt9l%msJG=L8`{hdfR)gPIQc_Y7z7)V5wilpB5=u(x0+Ws$;Q|?3E{`8{lU>?x zmE)D`pCvunDs{ax#Px8-Ax@Zz)UjIn%iA{LOTXGcTH6p~) zcPpW%HpSz>3~4Wd&LHe+z_XAh7(tl<13I&~K|X!|HC0W}<(o*~GBysuTafc2DBWZ^ zC_rAl;FK3yMzQq_y8b$>M8f>z7ta;}NYr8uE1%dx(d${MxjKQPQYY{rT4pr>gzIq z)-i_*rt*-;aB_y9B{Eo`HbU3^f9*`V7v1~*xn$kn&1;MMr+kW6ZCoF}%SHrJ0wJEDDyJLX$5J2G8&X?)^ju~b!cYVX z2$J**t}iC66d6q)7AA3YIRx+uhYBQuc!|bXe5T6&yudND+c3^;PaLMzfQu0l(443& z^`+l6QX_HlZ+h!*!BO0Yf1#B4(U6CN@~ktm5VCOj-+PF5x&3|)>TK8`lInQe1|lhi zIZ6WJ4nGGDp9WfocE7AIcEOxwSEYnBT4{KlXK%k{u8x=Fw+u7AV^W;7EdY8xTSB838|&e#b1>PN>Mf*_m2M? zMUDD$eqgG%Mkt^*Bp6{edQ=7XW@-E++Ma81D1^OrFS-HihmZbv7s#O*n`$y?^_E@1 zGsqhf>Kl*_Df%MXrjd?Xgn-xq6|vPrCo;(3|BT@l(d_M?-#fS~BMx^Q(nrKNSqt4) zXS$uE>=%UZSkEKo5U1Xm7o-)cI=?cyHfIor#;rfLg6Df7Ehx$3!goO5z7^b@*CS#J zephZjlMfRdoNxX0>Wv}ivDM!8tuuL!0X3j@%0in%TZ(0w|8z)cHQcSGt{so=Ui0Am zyw=tRaa~3f>7h}X|MjH)e6mn#OE7>U=ya0x2?AwGq(N61ul?zT6?b|Oxf*X>kXY6| zN7l(69M29^l}=oh4~T32p{k&{gb9Q-2%d_OMDUbX*NXRJvKkXU;pBi`06isftHrdY zEjdymBcOkcdiC3<=H^>ldO%W>e0!5(0;$iymdx(#oB({m_{bU%7-2X~c0T=yPs|C8 z-|9LZ-OHzMhsf8qd?mBN7N47-4w|$6n`qq<|@pezdg@o4hKZU)BFH6mvl|w zj7tFVY`|T|84zEV{N^pkbRb`zQd4HNau@%sz90h^vjv;;=b zS2vuroNhAP{Y~x)UB&wZsN3Qx8JSXj$6*~MxYDv_Nx!!s*xUl?XEPtr0JizLx9h*& z*x?mRu~PVR1wRJI&{T4XT;jDPZFvNWD+ysV!)V6$(7SR(AUE?`#vg_}A{hDwc zSdX;3+eXGOhUKk{Uy*bE&hyoj+zPrBWl7X89-Llqe4WQ(oq%(us+pZ7Z9(2GKvthD zYkKsq0s~~ZvcL4iLHH{WUxxebDn79%!Ykxq!{tYdzl2{Sw(WZHV=fSbIhz*&HvTk>sgboda%b=4;+g0s zLMtQsJ@8R>pt+N02Pq#F2o9!Z6RrQIV!s=e1(Gofu@uVGxc~nhQKSzs57@n)bU_7a zL(t8QIcd-o4kZS>^+XS-r`pvqAl9fdGFvrC;v-8wvfG02tUP8 zlNpy|-`}i-l-4Vlt25mvUjJ2`nwAlWgY!oeyepOtLM#(nvvKbM?504^IHz8gcpEtAVSC7l8*lswwl;S zh&=e`L_Zg#O#Q&Wh37Vz6Uc=yWxN5HnOke@$kH+3RnYjp zdUc7E6y33S)vpFdUjTLzFzk7ca@e$3z_K$zkb2}2EYTMnZ)Oz>%?n;^8sO@3{nD_bfuYzig0a;3$O z@G6FY%{azXV~8QBV`;?P;*gyKRe+v+V|i#tOQO}D=KjjuwK>}(j_H&puU+dS2g0=U z05l?t(yK;Y_;|t8U}CB$&z72e<;OKtELQ~$2n0glkm#ZbddBh#3I;$CyE5=hM@NSZ zTI_e0hsfZUn^3j`v7 zU`;&fgra*M$Ari#8z_DHUH@cL1(M$mKA%ABFCBYF?;jwvt-@y#g+v^*4>U+2Ysi)z zQUq!#Ta|loKFD>Wt^A;}o{z6yFrH~T@edf1=K!1izs}A)n#%QW z z4BPNtk521%&ROqT?^^FaEvv=0_dPw={rz6oN1^R^))zkB%s<2B0bs4%8u|w4h)b-- zrV82}1NsGEL~fk$WErufUi@Kqel7EmZAlABBoMD(O6{&JC?@gxqS6xQNtmDxTV%Z4 z8Cqgq9cRs{ant{cYiYXOWi;#dN|@mXIJQY5XHuQP?`-u;xr)y0pa2&|XA_5C>J`7j zmrq|wOP3lHZX9{uTA8$hP=0Y!lpmF)SyYxH(V3NcLuetsQTO#E&y6npgrhedlf}&i z{lWHh%f9<-^*1n`Hl!^_iiyZ;jGxI+YxI^mr?iabHzB?hEEio0mP?`0*CSxjcbs3z zLsCC-e}4*xGkkVslh>R5OC;lU>@pRhE8Q^go8m6vdEIHncM zeJYZ8H}cy*`^P_t|J6LleoaxH$h|rC)K*;R#346k{8ydO$5w)oBt}cp!7>T6FGg-1#5%vR z!HP(edw$@m6_!*)d*fCvFmNgd_SiKB3RSx+-LnMwm!$hnA%cg)1O> z6G8oVl8U{iMr_SP_>jK?agR@XV$+_9*v}vyrO6Wo!2}p?IwG+}>eI7{D-Z0BNw&Y&u*g$wOHz(>75%H># zu)7?coY&~FzQd~s`!OV*So2Jfbqu2xv9X@4?R(PstwG+9aQu;_8b9%p<^Xf4N#VSKTvnPSzldUOI%Ec!B-jQ7Xr1MB5IW{E0jH>1=6F5wL+EwA#7p zA3B5ivCzSrcW&RR89>|(e5~HA!QLgK5BbYc!c07~7T5nF%9xJe()C}0>FyQ@2T;8t z*H!W#llX~4IS?SI;CgN{b^f^MqKsl;owrcKy}A+^ge-{4uVy%phxV=udL&+iQ~QPp z2eP8Z4>NHVJTTr{+uBRQ+&hNP5OrT&Gtp$r-Iu5+D-Vn`<-9m~f=HTW^ozi6q}G;k z+QDD=*)aPB@nPI-h{A6;pR{zlx|!zIrYrMqj|wqOpG9qL-XrMr*n2% zM?I2_40JrMbZO)T?OaEJQc+RSGB!5Ya$tvxR(36?(I{Zz?6!Kp&C$`3>Q-!77xPd% zcHgpP%YNbJE_->I^`Ms4#g`j295PWjaLN`cHM?9{n6Rz4*A`B2iSvK%fr7QV$aG=r zoFYr#YTqF4XLl-96;p*QEG&q$`39dkbb7K+ra6zc-$yZyD3V&ndV!j@n-6&{9(p!@ z+3<%KfvB)%+IRh`pKe?O?3!@KD&51P4=uTN*DdgVkK=7Re^MQfEZLiOCkEy@pZoB% zlR#8JiCbt9+TM{X&{XleN+E%6d#|T`D?Hq}a#D5v+d88>=Pqc(Ykqz#G8R?bF&?8z zNWovHP-qrYFQE7ao1VNu_cs^DL+0ZJZn6l4E5O=I@a67r`e|uJWoo+t^(`u1D_5-8 zmZZXCFxehuGncdF@}DI|Z}~q6iD(yIIA-|pVM(Vn>zmN41jy(Bb({BYIISeUqT6I+ za_tf8OEWxgsx^OT#-t=s6jz0()cmdjO7wBX>eU6qv+GSf>(9MUsTZROlic1h1tBHY z<8Fd(_-=&jrE;Z|mD}uHT^0Ijqa*G7Pze<9mC74P2*f|StEJf22yL?$kyz1KYkmaX zbgwr9c0SVLqM|+dT1X>F=hl{%UInSBFP~ElHij+apbDcSnwkmF*GTs$Wx3}?6brf@ z^mucakv1>2@_FY6`t48jO6}In5ET-P)#p&#EcjY3Xkdu-p>lwn*F1I1-NU1MWW=j= z5;h32L6N3T78aK0onkk>=bx$frtA>ASp2bF$RpG1a#cMc#5#)?d1#M~3uom%8h{rl zC~uw9lLxm(d)s(hUr*&7iXoVXrLE5_Cq9x9R7={(ag0D@tysBIBAnf}Ih8-X@VkJx zcFbGhyE~2Y!hL<2FnbibJWL+eD3+rL&+^oB#?e|{u)ez1eOTrJS7D75yp zWSBD%8M6>!L)v@4!3AL}Z0A1h&>P|@2d4d@j3mGX5uryL&5H+xf-eXtvG zJs3CdGVHB9d~5-bt%+94SR0uzeXU0>gbSb`!sJu_3EZlb#NaD=bF|2$_J ziu?_av;@}(?>&GkA2Y*W4YlkjFtwN!6co@BDFH|`u(-H*i_34sr{nYYsU;Ym8afGd z{dFkR|C{MawC#Zdy=8VH#Mom*?ty|`NP4<73jOZXb*NGI*G7MxoP3B3Wsrbe0Qe7* z9dwNUm&W9^$nD{jkcB&dA7?Wsq4NjJdK9Q2rcp*p zudQ51&Cw#0m!meFh-St#gVC7yduaRGtvfmJA>QI3d90r%@KEz^0y$U!BX%z}HC58q zfIF5BPN**+l7xTW+4-A=$To&HZev?_?fQ?1h=_o^bwz@DU{v^XdxC#)$~O0U!^1;* zMV{_}hLqzDLCvYbSt8|O?B(eh6`o^HKpXIWnu;#Rr>N4xriLi5%}mi)a;KUciycBt z(Wy>l>X!{0Lh#=Ub2F57TfXJy9E^xA~LSKqgqE_pSSSR z`(d!kJtOjew5>XF&`&XY z)*7+*;&$-fK96K~o<(DTv^Y0m@G)zfN@u4xV<$E@VGOfw&Ag7Gu15u;dY{Uo9TC+7 zk7BiuVwmc}^i{a%38bpaX#1C*9-1B2+y54RJ(U011#5vqO2@Kw(Ea>Muh@J3(09|N z6zD0TmgG`6YpsLo=V>?*l5Y4f3`(NW-N1P{mzqT&|lzRxpHML%?sCjvYMJNIuiH$y+%3; z+n9pz3;T?x8nspVc>`Z7x(pwWw{*RRC(9O5(K5H*y9U%8V`MLb#A7`hl;VYwaKe=% zTH#eQBrYb#k6UgzZ0JtuZO<%2nfZpA)11_P?T=7&NYH`pN|LJgK8AkEuCR$u-un1x zW|Ng1Sh&IH8usTd%ujXN;UPA2dnh3>F?iE&eu{gNw?vcN8<>L7$?VNP;+^iJUWpSU z7^7}9G5h*!uKem!H@LWhF&KREkvr?!0!y7Z`EUoWHp*(X1~oN8_IyK9`w%)*tAStb z9!f8+o$}_GoehgMo2jjDN<}*eClR6v4?GCmjK;x(rZlP%_=4Qr&XvkiSc9bqMNAIS zlu1se)4<+>AhH^Lpq#-x6Ym)@P+s?(d*>Sw!Pn5(7#;T1UMoW8GC(Bt2)Kfp=lnY3 z3$D-vtq(cjT$(zWtefj-fy1&tC}+*Bs3=dZPGh5EF?5Wsyj_Q9Y1a*JB9NHsJxa$vPw0`l(d?4P(~EHbVaN7t8>A`Dv+WVKO8JPwN5 z=H`X%eI~}n;;_JHY`d*+@RKn%DaRf+@X$O4;{8)lzUk`fvhFO3?vL>ZK|@Z~b<|K? ztk8j=1Lb~s6uIqG)(&h3;A#A@I>(w%+4bgn1LBJ60Yx~GS3uz8nV3$WfZ*U>^eN5Z z95XOX$L9JG6zQ9p$j3e+WmnSs3sd%`BP5d?b1498EE=xKo_yoKh>AA@0yYCs44QEx zh>AE@E;iAa47h}aiSsH&FL@0RFrQE~d!!!7JKUao2gjO8mbZfkmAS7jR$EuMfv5Oe zp(2U4_-)EbKkTpZI8#NmR{v`nq+WVz>|n3rvmUBt$BE2q=>Hi_E=cbS`4hAzg4&#A z(?$?FL1CM4Vl z33-G)_x6EY;AK|!2N7@Gi3vg=gE~DQkGXb{Q-35BETl9ZP{SX0X>yR}Y+`C^N)awx zm^yI~U(MJ~)UoD4i-NRlUDT#nH92Q=7~n=MTL*gK6z}v`Y(Hj(GS}IK%z|4!ta#Y> z^z_)n8$0;^u~X{^UILcbB?*}SJK`lre7qMQ$1%L-rX2`#AvWL4Kw>DzoEvrAvtLY6 zk<^s^;^H=1(Wue%ecZ|Y z0>hoEd02of#ep~lhl*pL0j*46iafl`%r@hQs&$GSa`&n*xEykHyBXC*%>{+a(TjS? zN93TAK)((m(TC`)nF=-^!aY9T7CRJB#@s3&S(Bol_COYtfuRrHIAWKdhB8SDyQ5V1 z_Wo{8Xn<~7#AN3uco_0%wy`dZw>~k0lLz-94?1a})TDCx` z|JpjEtdnWv*8x1~ZfY(RDI=*|D&|mqaHCOV%~_oJZ&$2ctFSOPQ8$zqitagqi7LnG zYERy{Y;@uXJv`wnA~_Zw4)1B3m{ z`ku*6og}uC`8O0Ddv4&d>B9&3b7mKvZigI@NV$m5oN1J*PlwEEhH4ac3?GD;0yLS` z4&#Crs6AOC*iJW}pPeLQCk27J+&%>R@Hxyx83^Kq8E0z*h)+w#hmS7uVS8cSx{Fl? z89b*}8|;FmAHs(M(bmYgp?1oGFY`K&ng&26S zuE}j#Ho^G1yX@w=TuLBKVz6!sUJG;3NCk1pk#V7S*bri11qVl!3gg?Y-#5r2P#2xQ z05N&i&CQJuK5Kb=0(0o1=CNjNXDU*@Ou9G~~j_;vpS#yR_tPg0v2)~8NLe@dp__tk(P{?PMfy~9)M_oS%_H)67g$3eCFNWonOH-pZd+a($b#3@I z=gLkkL&KHM;@vvmN0Fn^z-Lw0n`T(_<>0w)ro`^lh1bai)|L$uS}<|k>= z?gnE^)9BFkimlsZah9U<=rDgNjYi9%7crzHc&WA^ySXpq7f*BI0p(eYB0Cw%oD=Pm zZaf#{ycg%E+S|Y#w*VWQetXig=7Gg~s!`k6`1r0tTDslbba&{HBcA5t9>#b)#N^ki zPB9)Q$5hQLb8vFXjTSL%&9T^O*ZQz-aQnoZ2$ktap-^-(%+$Ltvu}`rt=q{?I;3v0 z^WKgVW=w>jmC8@cA<=vmW9IvN>0XH9l?O@}ox>GY09OrSrAadwc*F(BVv!u8<~IzL zz5t}dl-v3jafp3g&$|`yK;SY^8Hx_p-vIxAT?YO?e;Z(Y(SP|d;mAgAQT*`(ri1D* K*!_C?%KrdYf>ECU literal 0 HcmV?d00001 diff --git a/output_50_4.png b/output_50_4.png new file mode 100644 index 0000000000000000000000000000000000000000..fe5dc3d01b27531cab3b5194b43aa397fffd7631 GIT binary patch literal 19898 zcmZU*1yoh*_C8Fih=8<8DIiElONYWnLP|jdr5kBPLRt|vAt@mp3MdFjcS{P0h;(gQ z8kCN2EXD^+_!ong_kVoCa!op$4!op5E za|-@OoLXxd{v+ZftL3C_XXfN$=xB{4y)bWX>oh?6?5EmckWeX=K z`zNB@+&2F{z-8xX&dsJf>kTg@$x)mOQ@IQ0k*q|Lz<64}1qp-N$z)QqY5yKT4lZ z2BCAY@rZ0wpZnoSxFZ`WH6?qkTto*F}I~VvWBzi=89JFFg zuP`z)VqQoqojy-WN-9E6NeTbi&}L^x{<=s*1BF60o4?OS!#_Ru?!s@RDeuzZH%7@j zva;}_hi2R&mU+jl<6U^x!$X`npvj3Ap0dR2EEKk%#Cr4Qjh`Q_cU|BFb#!_~zsP*cs4a7@p^gQjh z)~SmXLNhpQe<`9b3tq!oBzCT{i@xp&jm9$XCAnrlx122pZJvc(3eg*V8}67o4Gm_V zB$v}~Q*ck;nM$%W(9R?ebbVFyAx22@I$p7m>|sh!5ME}%8TYf-n9m8;5a}O{I5Cpu zyLswjQ}#bijHYVcTTxeTB^6;}XD2IjokC66 zFLM#aNN=o7#Z4=DbzZw$UE3;c4t9;? zL?R5Y=uDKoTNGxrO-pBNFs#>TTgJX`T3`{B>BD@PPJ43YL-KX`&|rbY+szW<4>ioX z;$_#yYXZZKii%EOGs?9s;w11X zE@4m9kkIJ!C&@Q|EM56HlcBtAKCg`Hq*#bY97Yvw+8M)Z`HlHUu67gVbMX6*A59m& zrfFzu3R?3&{i#94rPG#RSKD4_+Ifwg9n-;)|I37vK+`hGVBN|6a9nqilP^K8`PE$B zsK050EM1>PES0%vD0)Pgv(x>cerI_|=HbIjoiW#^tGBu{s;d*ff7j6S{C(eRyC?;_ zz-`M+^yyEOtu2@5!M4QW6VW6UGIDY@Ztj8psM(pHO9rcIgB94ry5|OJ2t+-%Ufu1x<3gDo@4Y%YSm`&`=;-XkwiqsE!=e$i zPAx5sxgz5)VBPo0Sngq|wSukfDsM_gW#y%;KDY16Z+kCg`Y;-H8topM_64H42XmIr zW`B6<;B1C-G|Ze3%7oF><6!5C4Q5l%K2)&#R>`z4n(6bv#~8^+w}GIv2k%p z&TV~(zY*Nr-0c5IQ!^$j<4&r=3KsQoFMXX9UB}t3IZ_ea{-?jcJW3+5@D(CZf_K7^ zVRG_oF~0}&r84Hz97R>NgGVt~cEqfWWM`gk4fyYa=Jd7Fq&-Br-aFivEO z52l@%9{p&$uwoaBmo)9LFpSDIs-9x5oi#`vQVO3tU(LzHsBEHc~uH!sps`Iq}exl2` zn~90ZddkURYt$#yF$XinZ7E#C-U1sD>o_aX2>A?;2aZ0b6Dti z`R~0O#h0*3q6;Re>?@R5$wcxbPJeJ)+DgJ2^+=BCjI9UPfwS$vmSHC2dTu7)M|D0< zh1pT(M5`z%{u%XHQKWF0DS4j*N?cJ^b_SjKaSC&=vLUzASjzz3O2q%e@H0KVB08Uh z({U_U!eTiw!-{mf3o1;h&Ub3+B=aQS5Lqf-My- zd`*kUDh1rZTi;GoUh{V~S!Si>r-Z^J5GBOf*vyxDeb z$1Ru_D{^DbrmNVUe5V`VE6xT{f^_ZfT~d*VC*Jrr+|TzP$4T8%ziEVWaHAv?qQd6! z3I{WrgmC1@CZn3^~zFtK03MP9GJHX%O{a@DW+ku z-F{;UU2_qs_q26ebF5b2B9MF^ry!7o=>MwsDAxW5PjR0WG((!5Vh6eZXu>zW&jnGB5rCaU=zK_kD?y`UE^yO3DcJ-rtuN>)&A)E&+4nab2C6+U zhWUs86P|sjT*;BQ&=H^3*~UW&y^Q2G{H(9U8i~bc_f(RL@KouYH1#4pWH88!M06c2 z?H8w>7h-zUUYiSq;+-HK^e07l`z6YP@Tz%um21bk_W6l(ie>e!B=IUtlG&Ac$&grKUtec& z6o>sxCL6=MecVq!-|fFr0lvFOyWD}=ome9(`Fy*nE!-l7Qxj1em@_AFz;yP=`c#v|MTO>r^r*?rCiR4!s%)pP z^CZ+@;7O3HUS+TO=;rOb~V4LGUUP}R|TaG*Kut| zN@p{|Br)m1T%vP={r&wK4;~14tT>6bcXXsf66WWJ=h8~$Q1=se-P-#aN5P%W2oA1; zhz>=xn1@1q&{=fS7~S$x#hVOc6Kr6 z<<#Qh*O1S?31!4+f9!c7Sy$Rh$RZORT5{HjEB13@^fp_&5RtXAR<^3=VbCsT*m0(Y zhDLa7tel=6J=RF64HGwa*z@N&?Ck92)1hKoMP@{MdwZPPg?@K4ZujQtiun`K%(ZJV z)*7~@q$&ssyVM7G3nbkZUyfRH-fBu##4t7Oy5&`&0V|uypy{waeHNi-*!|OQla)BN)B{L2qeO!6X!_@Gm<~GrX10g zdYA}?xqjd3Tv3nA@3K_zcnvPpk~1tXgU@x{K*cF{^)!RWWP2?2hUXCOWpkWd&mYM+ z@o`r9CLGwaIZ3lK$7+fe=oh?4MTntt#4}U!uB2c5T1-TH?Kz16J_TA&%W_S*qWBJf zJgY2?3KK>jVwqAf+PAj{hq%rCVr^e?%guW_dY>C#$s*ocgbwa*ZK|pMf)HXv9JIrB zf??%d)%|(OyZ50Qo6p+=^fkV-Em>LToC1wwrI$8uzNTZ=Su<>(v1uKLhyM~Q1 zO9p(`13$T@h533?92)%>U2E|w%;pPSzh4UH{A^PRHI&bCf=F-}2~L%}{U^~8>&W!W zx)(1FzRX4RX|5Hmt)<5$}*BY$L_duO&#Jf_8yNJc)@do>4z6OWAfxR?Bt z(x=woOli~iy~2)X!n%@=`{YKvYY3Pwdt#z3Yy1pXCh27m@1v zk=e2MsF?Gn;9k7d?~-oZH;l0VTr_#+W&R1Sex0dkgn;x^?ThN2S+1Mlean%s!QHux z{UUQ{+Qs%okc8P*n?l#4q_EECzAN_@zH>GJ{I3H@i&^TfBLCLo`{Lbtw}5cNOUcii z{|$-gD)7#`l?7)m9G&y?Ysf5HvAn#YV3*7BHoY>m=o?13&hrCI8v7PZnn7Uc)C*z; zwS#UO`_yJ@`n^B^tK4~oBQ0+S42j>eUhS~aqS6`UedTQFfQ$yY3aNMhiA%T}mqv6`xY9)^Y5H6Bse1U@XV%0$(HvuL z-?E|{wFi{I&T(Rpl@SuWyxVirg4tRZC*^3&Dc#3hTeFF+-FV*|iH!G1ReSAXyKeeq13SG*rXo+319=%3uzc!*7-^wn>Kqnlxvct4dM6XR zjvn`t%e*Y3z>pwlf$UnS681~krc%=aue?PR_ToV#uE*vIJ*0vP5L{d#hmyanV0l_* zwFICT?!nfp76KGELdN_Xz?j$J+Tq1Z*7?R9rImh5#&HB_a`u8d$A`V1`E9nz>C={W zL1-bcOgzY3FG$cd8ejIt&-HGArEP?bu6+Mqv5*{%>d{nIY9%E&3mfj6ZAnwU>*ZeU zdTRNg!8#dB?f#>lPODN}2>HzkU~oA1^Buw^&O9b*JXDCs5tXs?td08CaS8kv|KajE zSp0K;WbtPSeD8X{Sl0qvvUHrXi1O;3ExbgWUgL06&@gR(fntLy?6~y0er;j|lU(GR zH-Sx42FHhcauT-MRN$jiwTsM9a&r78ZRcxGj@=;*AmCCiG+e;l-px2jb;{`#K7Ksp z;yzed^?bLDCvP#yR5VmxZR7t*CE~)Q_7^e^f9HG8R?H_GuMC$ox3utC5AuBY@In0I z9p>_1l?21*{3~U6ycx@X0ss_yqB-2Udzh|D^#|%SCqRO8JLE#c3lhmT$_F|dQLUVv z7=XPqt5s`e-?Q&Jtqe!kogA&fwK+2B2}UPk2jFsfUt+|h*%Rfu{cvKe+kARgB&YNb zELz4&isZ!Dw6HuZvl+SV;J_>6f6lU;o0m5tF_G5s$rI(zWCThI*9`|>Z0}B=Ht2CN z+uDs_YR%Lces>YVEKwFIfn-aNBK(h7i;IhLV=2kWilxIp5J2k9# z=IQ-{o9Z`T-Nob@O|>v0{w)sU5|G#PFO3mHY)x+Yno0d;1VO>HdfQRLB1&@Y9R!dc zkA7K>z0SKHiI{>SjCI?;hWM6(Li^pF*w?QG#GN_&vQ)FGtE;CpwX_y`6B)6ue!@pE zmsB!Al~6+0bQAH9?;9P%I9M%9m=}yK7dY5IJ}P5jVtR4)PK?0lypyPQmGkwZ{oi7% zJO8p5D3x0~OOv^2YWhT5tT#QAU^0tczs0UeY20ykJSQXiF6EF0)yxDZ0XaciXD1{G zBn2d?U7ej7si{~2O%1Qv)LqvbPP-kfl&6nI}JWsh&I-I^7%kA1r627{{980n^g4Z@?$gS4|Kk^5HdZ;jtSRU#;F! zVdvo30~1o#*1m{)nt0}DXM&ZTy#v?=<}2j>QaD@Qgel_ZR^)CzGw*xv(Sos49MpRj z{x;4&@8?h>5Q?dD1)QCHbQmS!e`zp*@V55_oUSVmcUL7We$cgeO3ElF@!p@4%#Q_@l} zEUb-#bGq;F$S*+jLLc`CGAu+ZvM(6^$;j5_jY7H9U5+9*kNQN)ZO6S>7b}&A&ok3x zl^`?{IP2#5hsOHm{E#$zR|_U{O&f#i;#5q& z1m|qNchNp)9V?w>COW6wOb!0!OmkM#RqxW)PKFn{`f**xK7V-J66$c;EXXz_A=^M% z&+FhPah-mU1o2Au)gnso_kUqy!yhI$q6r*Kv$M(BYb+NPYoE`C#jDKRc>0@5PaJ~! z?yZjw!o~Fo=zIug5hp=+Ufv;L$SA}(T-zVDrssCs$uSD*$dL~WHqh9ag8Rj2te^|ClF;KjF$wy>7DC#gy2|mKa;#- zth6SYb6f*w@PPsq=|lz$)hdL!i@p<3GttOO@+9McN4=bAv#mt`c@pmR?Jd3Q@LMn_a}&mZq?71&fv-DE8*OOHSCs3rH=crkoIg^BSMQVPnN&0ye~srW54 ztj`&T*MIuUDbYah8QZMPZrQS2=4U03jewRAKr-XRQZXtiAC9!EuPN&TcH%;x=-e;) zU0rP^X22br4@*4^`14Ruyz7U6ldfZbnm$E<%9w?&*i{f@}m}DR%jd}rd59!|0F}X1Cs~adWlu88hvWhn03r8Um$IDj-Hz5U+;)BzwAK`vxPRc-u zVDChBNWmP!mVLvw9=RWGe^k3~D@d~bKQYS(A)aOgVCT>WIs&-y#i!;~b|*C-!Iv!+Yl#q}fQz=sm`I_@zZe{sFL*Ozka*EA*k^9R%q`aYqW>9}^8-WCT0k-465 z4aOaGF4^xhJr8=NWE*bNO0O-xJ#M(^FbrzA&4>SEbTccPaoZj;A1bw>d2xyeQ}2u0 zI_d?5Apre?qlJY|5xk@+)Kr$-c=Lddj)^8X?GNrO4|<0K4R^}m@Frv}WY=h8Otmv* z4z(Z%etcMh*=S`j2ZCS9t-7)@{^!r1{`pBNtlHYzuVZ7Q!ow%KvKepX{5PBlZqmex zV{sgx<7MNqyxv@C7r)aWJHcZ9e(%O;aK~IAeVG|W}?9M5@ef|Aat`7Glv8GR#vY;Tf z!lRg$HEj*0({W!Zaa#E53x$YzW>(fBv#v|`)PH-+GGbeOwF&RVCti6Wt3Gv(INE(J z$H+N`j!{JLd9Or#74KX0F3xn$m73%IrA#I?y6mOwAYsGNgu!5STQbhi%_4QLOPz(6 zR1|7!?KsjKWyWZM9pJB(lSMt(xJ@m5va`LLG%|T}gH7r)AmgF(j6`(7dE147jxKE3 zKT#Pif}15>WUF@n6k%54CdF4EG62pcjU>JM>0WKDCqlJKcxXr*VVO2%~5;?!y*7 zg!`exaB59O6ko%+z+Y%!4GZqSd@6GPx1^hv*;2or**(T>bD#A~r~@1)Q}WyCam>w= z(ssSGY>X_3pRto)IzxTf@Tb7$LjR;FUX+^qWB2K0{Bc@hPwp7LC@6q;$8XM&Yc41@1d#z5~4ihEaD*3_zUJvrn3XCcN%qf*kFY$rYNK0 zBpXpUNnV|@&1G*(1AT2YOa;nL>YS<9 zt+Ue>B*Bboh<w3e@jtp z?KA~x{#SY!P~@KwVQ`o#C^eQkuVwKB`}_TdLxOl5G6Dl+qn_wJOj5O}kzHG6aq3ar zUpxhci(>&)b5rQkaIul4i?YpPh&g1@=DwefF2RQajcZ5^n;f%g!+OB-Mk`5UvRzHM z3aa|gMs?H)E~g%uQi*yir05QOxY!~e>x)nq| z38#u#1ZMCEYkei~1vc}~zd0i&baS;&Po53V2{u=9Iz##DOe{U~750!E_Y#Xyp{s%c zQ$@=g-vSJFSbFebnaFOZY&4#Ax9fQ7`G}O<;cO18)5$x}ct=m7>fevD^M9*JlWqti zyH7wv*r^p;7q+f;+W5dcWmrgzmS>X~xgR`64Sgqebr99b&s7ZDHZjyBsjz+5El zlQRpvAPpOuR;BmFAzLplu}1~bO(g3WV`%3@AY8c2}|xYKaoeV6kxRF-zd zU^rge@eelNt2n^}XFf4&T$GAv!j6@|?p03RCDhs|KY-0Z*cYSkz8@ay=|4D=I5qy7 z3DY+fDK#=Z8`hY|-F+w`+k63e)6Z9`gd%FXa#h8`-F7KIlUXI^*%t)Jbe_Vt>b`PM zet@d(W)13C9x7_@?q*?U4+6aVIb0Fur;ufRw=E2WGq5!zes*Q z>fBZRhRxQ|EeH%x!AaBDRW|^ETfQ^yzPDV|v+(01O_M*7@y_a4W=0@7pyuQ$uUIE> z1T9SiC3w}H_UU_5-|7aZDZPEu#djp@(5^3=3OPGXd|>EjJF8t2$J;_!I$YEcvXqj= z-&CzuF1?*ta}tHZ_1o-hVAA=8�m_SoH{KdCYJ{&R$`5h{Al* z=jN@EDxn#}2)nSW%Ohp>@0{ko5~bYKdMl>~+1IPSMP`2fh|Nv%lOxHO?-<7NGc$p@ z7Uc2V|K)!mEiHY4&*V%+MMdjj^3R`-Kjh@l)H;hMVVRgc6U;%=KH68vqj43F=-P>L z@Vuz0d&Wg~EJ%!`QfPpbjn{i_DUd^cnkKn=lXUgi)!$rC9wpwm@V#fe#{GSMKI@UU z!c1+ z8SWY?t-lug-U!+}Y#M;DoSVxT6m*kcigDZ_Q(X%GfW5-RnSiR`SH+Lwr+w{`twKSS zvQkXeeRW#y11RF7#~1yQT7H%>Vgyypr_E$SsG?uLrjVAAfwF?g&*R8QGCn@O&^?KW zhzQi}<6kGWu(@{0I;ie1i-)T<$Gw7_2KE6Om1eE(%mb<+9_P-+kl(9(Gx)S<5_3?! zRmte6^!xX#k?w`>swfnmg!{Hhd*oH3oeCYU7*1{JIDPZ&;t)f<bv%2}%ou=G)58T_T^0^tazU=a{59mB0a^GGyYzetY zK~3FP@@me4yAx~65t5`Y#6 zQl+3ICGdzb-8c;TPh@KdOCfGb8{x+8Ovd@J@s*K_(Xj<_9UP8jF@=_~Q48y8d7YM) zqQvJ?@He^)CNy_Bur*XUgHel*c zz&D~>ZH7F3-c786tOA^*Al-ajcjbj=I$_`^NguN-vyw%eK>d`Fey36KVDNRY*t@7C zj4=m4vHKaa_@-l<^$03o@{JpagTIR~l{@BQ*yVfT++6EFwC)C;B;h>VIl1ip4pa(` z2qV3b9XnwC2YOKj{(9Ws?38G1A_MYnNlhqN{;ga&bbsO&_{q;WJ+)akJgquEm@^QB zc0isYMT%8TKoYH_K&^_wW3;#i>)ETKRzh3fpSVy|MFZY(Z7E#aDKK@xcZe|5>0|A5 zN^Ggx^^$)~FpIxFB>@BCNg$I)iv&=+9>}h7lBG8iWr^TNIPmwrKu?$-?B%Bax&mq3GNAe{t8G08s@s0?CN~ zpg`1fguyPqA6OIw`4HB@Ym+)ksAHvI)2&;*#b?%9qaw! z;oQxWM=)ktW7-kyC>|+nmP2ruV05_tAJ~<*+7JBMPSs>s_&0i}VbxSA0R?&qSpXIH zAGHwQKLQHZo36zY_%mmGx%C3N)3X{>uJ*(gI7vXWvW8aiLRfPZ9H z(n^?B-{1+hjE4(DiWtjrNeUNQu`CkY_3v{XL_ifOyGv7*OPmVR9~I6_2t_o*-*9TH zX4Pa_eObIi?@Tx8S^XozT5SVR86ink1pj77B@$8h%arGqzo7aYsx#bFF9?4IkasHD z{Z$JofeFmrahR60IyZT82>?-yjX6KR40HUU_NVwGb zN8q@TSJ2jEj{UMxXlp9x1X*A>vcO-$I?TU1PA>C!luzr#vKLnzA;iYGQ_jrMiWF(2Q>VAK@jzo`IpO+pkcjivCbunPi2e3ir0oH_#c)o(J|g06=#%f#LC>Ydt>oeQ+P0%xdPt#ZHG zA8@9I+wX4E?P5}p5%G`{x{4?&aENV`-<1lCJJC)=IuM^bu95IsQ?XwKogy<9WNq>p z(G0n>DN8O`lZOIr$h)xB)3jZ(*#UQfK*iA?qR{fPH7#-L-Le1%uR#-LQW4(=KWygJ zY$R6tFz<(xtwlra&Jw-gNPYnjWz}{I{)3&=g`C7!Jh8i(C|@W7>UB_}7x zK{QEj4Aor33Har#yKfng1c7I69QRHg0HlH=V)|F-co^BMn()Z3CVD{MI|=lIn+X$# z{sHvQ&|+)VTYeM#RzEmFi%DY(iI1Kl2U#^lgv~B4*50W!o!Gu_PP8Wx!`NJh84|~n zBx;%#f?;R|N39t59l7zR1G?gyZA`4AW__8;PRoNEtUEnPVzCp4b3%Z*&tG&~mVFCp z%=^4N+uh+sr^x7NSvNNk5I>t!>7hawTc`&<{Th)N{aQvz5+WG@nuOpYhMa7yuEAuV z9Qrxp7j!Ao351jWW%X&(?x;i+*1*6()}sTuxmD`gmC}(5pe!ILv+SE2%(^i*Go$w4 zft;6@B%P>}@SI>oL`3U#ULcMhIWrh6mbu#tgTuPM?%W|Qy~36{f2xt>&Qwt>fQ!EO zs6+peV8zFe+26l^pY^-O&CSiv&o4YCW^PV{(XkRL@eB!$4p~lx>cvYl#eXG`S>BSn zOvN?lBL!Zve7j)F&HgGnA)#})#HwQQIUyPpyFx;-@71#$kA4sIy;UGr|Ad;6Q~W2S zU67I|tWJtZoM;rXlbO1t#Y14Lg>^;rn)ZxI$WaVvD>nC+@}C^<%|8KphX2W&Ql?5$ z$H~#e$(tZ%#*^tk!jSp&N5QCP=1bm}yXEDtg?OE6Og9{H9OM}QA#|OAbyx>fwmO0C zP^zg$C!+4#NSw5d5!aXBvaw&l`pO?WO67k@Fn%K8A&fgrk(E|gq&|M1d7BA;PJEqlUp9k_hE2q@emhy|mYdSTJJ-NT|pSY4qi zeu2{mAZXD>^D52TIZhTlmn4mQVHUKmr-{R z1J>?;f+2xgP0OwA%h?hZDfn;ME=L$640?u#`ix0`%sput+7P;M8&Q=>Q9giDr|~Na zwnae7>w&PYw5HvPfT_?=_$+#vTkPYp2HsMh^Q@=mt{~aAx0%8PS3Zc;fbW4|AO5y%X zBGC&=SWCT?!-^18Uuy2^)$DA9{$0hb3{q#@Ye5gx900F6gLN`o@M2S@1Y|{1nC`{Q zX}pwwb&V&0^AMdjEArrPuHXtt2&yb^T1m?k>(mYa-~lP+KiCr4cEsmR{evudMH2y8 z^3bumBG8g#X!;#V!)h1eVz7{>UQ%w4zt*2CW@c#|EK$TyJ$P#WLoGYMmm>TO_~2W1 z#)cP{Hg`xtLTHVMGMlG-B2;f_Fj9CD=OhcjjIM!N@UqJc<^@xgS!6Pzm%s`SCt#v4 zX@#2BRsDo6CZlku<(?nWc1D9#9v=+rBT-gFhEvTcQ5~GThwfL(_aDNUgaGkDV6>%a zlQC}ETW7;(Zq5Q_11YGznX2B@AX^?j!$B_u=t1%9P zdvD+>=pjWlRB5c{=9JJ?pe(ZS#}Dt#-`y4nzwf=vnfe$u6wwGXqY)OO^LYc^JrNEG z2z(;Cv4a+S)d1ohm5&{e_?Tx&59#>(#~ssDu}0u*`3b-;zx1Sio{`;QLiZ((Ra zGS%q<_E;W%F311_Amwo2@H7gWASY8>jJOgf8NS@!Si+)r$f@*pg&Gva_fdEgb`p5%hFv2j(=r{c4 z-|D=*jf{-s6%|2b2b8r9%rK_8i#TbYe{VnM6@zxtCrgXh1u79Kk zG)*UoD)vWDs?7(;q)yRuu-~|GL&x)Xzfv5}R9x7=z`&Emcd_@>)ti3y=eWTi-n&x)9$Q^P)rXs%PHW>yAb(u1$0gx$-?o1I_^~+U9p-DG_1g-&u?Mm-LPZ${ zzh=(C6cUD`cBe}b{6@?VE=%1oySu=TrJU9UTu11?)?;T+lGFx&vDMe;X#` zo&@bCFo4Rn)EiVEqGpoUN&rZWnS@a*J^urw5;N8J@v4^cs_cbnS*vZvtB2IJvE%-2 znrM^`t4&7N?afq4c+^!rFGr*v8H^0yxoR0AA4+RubN<-y#-uc=m`;z_R=xUU+?s3; zK>m`8^R3&rPc8kR^VAKBjEwYe4Q1uyi)?FayItci&+}|*ef+i6GxLb^ND=G;By(|b@_&-K;Uu<(rB5V+{O*gI&&-9Ux+b=F7ObFuM<-DtFWX1!WA_@v zcvYv~Cqc=+WSk%sz9jkQTE-_{OVzRwSoQ^(p|JxLSUk3=+nH?+NHwwaC9dqcZ>CSP z6huZmA8)(CTYG5_A6{*>cbNYb<^2LL3w;5^bdx^Su~StfNXrEqL_MhoYk!19|B0Z9 zH#=*;+C@ru9cT&{PXMHjg4@3Fq2!jgT4Wt6sWZArS?ily2lMhrA*HnO82}LAoswUuSZx6KY{6`15Ne;fu>+xS^_Fo*?tY5M~fSWluEvueZ_}zjw;spFYCV*I@e{;W5 z`ex^BFwMFDl|Z6G0bF4M#&?Uup*N{m`PJ;<_G(3X1>UCu`Erc5yR~Hr7(9$zQO3Hj;dbj2H62<}mBQ z+LTu>O;LU??PcmTGpFS*KmI{SxP%wO(Bid9XP%mzf2 zfFbMCJh$08p+fKid7^pyo1)}y<^>RT z&IO!#20hJ_v5~2ppJ1?J90Gn|(c`oK@LwGyuQW`Xq`ETC=f#cR zPG8XGH>*tg9GJEI{6RkpWv#XG7u@4KVDAuc(P267pYYn1c%EO`g+v^YthnBNW?pVk z`3JL7z3E~?*puegnk`e(tKE;kVVEkaA7w5IlZEV`5cBoC{NSjyD+ZYG0b-;)orSJm z6*WSp&{xCQ_=|(%l%M|)kO8+FcNnC{IiUIGd~a4Vnxyk6?X{h=NFXuEY-J*-Ipulo z{7)e*4#q?TzX3@5;lIHYujV)^P1Y{kxp5@w20pVM()5r~x|}yT-BslvJjnvvPDL|O0e}kzA=PYOWI=%a014CMFy)`|7E9|>ub}=HY zFk`^A-?|L1lFVGgYx_xfgAzKZV0CiH>QccasOiq9TOlY%2x(TexRS=RfALJPzfGsX zkq-3e_#n^4L3`BkCl&^18o@M0jx>h5uWSVD)E|3fI56A)c>v!{Z0ONl88ah_zj}(9 z-TlK;54Qt`72VIa&4RV#AV)*;i8E*F^$gAFVis|Yx^zsFw6wu5>oZ}#hm-}!_%IsQ zqPkjh0Ox@%$;4XTWiGxDt9_Fh2&=Pg4ak)XBp!8h3$UW>#0`RZ$V2y`~T(|ej_!z znBe8%lAI~QXTL0v7id={-REo@A*gqS)}`YQ(BQT2ku8R|#riyF+=-C@%P{#F=3upm zBrjgbZk(VDS_~PPWU>qt?GM~nogXh<2fd4QSPbYt4_`MKs$xs@kwCpK-aPH(I^f9^ zey@-Yh*k0m3Tdh-l3$XZxcODZonGH{eG5APKzy%`mMDd z=X=fth}J`ARNI~UDi#PHfq>IDbUVhou#;A^T-#{$8YS_Ns3kkyz+g@_wO2z z8cIaJtgaT17qFBzF`02F3k(SnpPFVop4p?^W=|gYZ6j;_w)c$|>CTcvjRbzN>BbaW z>gV$xyyqPsi*IvhLiZ*#+}>4FyXomE0o(>wvDH8*bPiK->A=|#z;9Qf`1U!Ndh4qU zi37+b-Pt42s(X%dB1@$!Oq|UPab81^dX}d^CGdpOZ0BWqkHK$so&~|a_su=7x!GUh zcwfZoJ$pa31pE|Mfz#r>QzZ0C&_G&b-eU%NsaA|^mGg@0;YMr4-dutNr2>>?hZ6V- zAF*5v1ZoxSDlg3fh+^)9O49AZaG1}pZm=E(2Q6T73ZPsDLfFksM=~-pP@h`9PA`-> z_soe6(6WmyUE9!`z)Ys3$Un4ED<$Q58Y}1%6YhLIkoOWCui2R4q1^coR@(SgEr@y~ zG)SH&zDzXbS*$Dw3%nlOL#ez$I{N&wnFpg!bEF6)$Q=fOFNmef{xDlof)5FD)Mc_1 z>{wboFQXwQwL_>pV1U*_RWAdfXrEdcTKfLeIolL7(0uJURa`=V=tCeX5$M}Y0)D{t zu5L|^p>LT3?#TIcXd;XQY1$C^`LXZgpibmQ%m&Fw(n)H$49$mtiM?$XQ1HlE=&!{aa`L$@nNiwhSsA6xV zg7RZalR})kYSrxb|j;u zZ{$8e;Apc{i0cImU#b(K$6@NC00u#};wHer+I93x6j_kb031c9fG#%npsLqB8(h=nW7~{z+ZLCtpSbdvhh}n`IK26}*Yz z()Rggb7%)PX!nHb(Jgq9t>(kKUEY!-*!8X}%A_I^y$T5Ua$R{6UiZy{mY4O5lMlbC zHWijiR-Zi?=?Gzp^{kpHKCmxec||xcpV(+>9=j|%Nqg2*aFW%3JGj}ZU*9q?`D&t3 znL*klaZv-qA}2``c1R~hAMmvBy2ofJomg8(2Opgbd;~*9#?bJ}^@qj6tJ7Zk8c-}p zdL3I^559az`CAe`OGpT!EFQX6t6#OhYhU<|myNsdthXGLat4D?I{eKW1^Kp(Fx1Au z`;_qTaB@N3D7f6ue==;7KAUKeT@x!`@H|beTDOLXzHBpISi+Y#{^zS48$NAq@~bsF zdW=j=%5od*HFh;?2B|wAcj(S}EP5UsH54;4GLn@SgA@ur*nw2O(CA%GFfY>o{nE#% z_1u>?zt$#F;^Hm<5Dcw&)ikx+z5+OR$5u_q>dOIuvdM3ExUWJ0DlQgSEuSU^Ia@W& z_ol+4BJa&2Pe9qqt()kfBJ-%EBxMZ^3K0>J+(%{IPRwEZpdkDem0|<(FXdLps@cw1 ze#aSk5bQY!(|$>jI>~MYy%7|J1+0FAEG$^~pS#$&GvRH=l1r1c>={NUw#_PaGSw82 zK(NFDda-nuwQ<J*`#4c<&^TUTAg(wzi5Kz+5p?#qHloC{NdR_0+F=qcm zF8rT>zlQfKJgR1GfBzX*&98gF1!&bgyMa`=As8CNbo5kyy1_h7?n;fcN3kY^&N$mu zZ=3>Fe|p?~ZMLXKG6Om>&(R2mj8(ZLgwEYHhcEvPm+I@)RJ$1B(lhOG@b z2G7@Z$G`K%cSfHeHS57aEzmgJzJEVDHmY)IzYqr_v*HXt@M-@yx@Zo#^2s5 zKu4rML?QJ@k2=4m$-F=8y)Tyq#CPLMLO0+uv`eiof~D!W%|?$CJr0zshGa(5$OyyB zfSU_xL1&Iz^{ngK0RZF@kWu7fFc|-XWcW}3$CWD$AM*0Hjih@X_kW1~-At|;7dqtt zdW%mi%JJXVpL%-MM8A1s3G76t0eep+C`mrrj#a)1ow|Q=pgrqYksA_nZs}7iy;XUB zZtj<$kdR`e{}h)%Vp=Pu7dGzG?N^sfnZwGK$7@D#a^d?L+A*dl)=f=KAB847iVPE! z69lz=pg6EpqBERf)b{^mL_2R|E4E!g?*ZJ+%U{1h0s%e4(0~D7&jI92&~Ez{#?ygJhk}A4 zE_CKTv`%J}m+xk$cp4eO7ehp_Pl`Y!9i=LN=T3%905OnIzTdvx>x&ruP+d*y17Bsp zL00=^fSOPY~ulsWz@O$n%Ij;wEsD+}HqU=Jq*aqTl#v8Fz7KSIeJ- zp*#A4p2E_Pk3*GDIlOn97%uP{;lVb7LNh+pr3IXldZvPc;$Y%R=o`%MysnQW!}q0a7g07 z*g^l!!FL9Jm)bR`7N#UpI?l9hz@Pd$=C7M?PF!JS4XCUX-Q3z*{F?US^fxzsMa8pe zX=zd-n{{vBHqU#Izd^@#k@OcnkC{#JGjVr?!V6cLzxmm7U@$F6$tD3zbKC5&rHZwa*N=Ei= zJsJ1b|EP1!bNp~vZ* zz~6r2U)hawc2N4~XQ}*nV~^h;IJ*e#z8_oIIS#|M`T;^{k+v1WF2u z0=o&xvuDp{gDwjChJ3&>NvWw@!PS5kDa~%879}hD$#uhs{@KD6+qxs?qK2NY?c+P( zmKH}V_=QI8al<6{uYLafdDL@fOetQVeg5q5Vn$kc^mpC7m*>*|njLMjqWlnH^vQOU`E4EaJ zW;99U>p-BY8iZ>CpG0AW=@}0e7@ks3c?0od<7ZBOp+N%kQUu*EO-Ve;)uOTBeZZ(0K^G0(rc zw|BRwxOn=}W5=TI?ke3pulk+k>V5m}<$N$M+4Ma(a@y4S^YeQp3=ehn^=$*DxHZ6G z*|V$Gt~C|Eb=EBBMglPVM*usyVId(?uC5GLf4#6>ZWC}fo{#(Ij^*>~Ze`uvv=mr_ zCw_f-`FPakwBDBw*Nhx(_^o0kXNToxrBTQc!0FtBIwzGYLdy3fupx226wHf!m!Wl;|wJ`7tO zwssBh1f-uUo{IgsxbdET0;to>dt1h;e2>QZDp0F%O4j+ z0E-5}`HM>lpC5*+IRb2|AT@Eo#(`Gp0+*7${?BYsF_qoO*yKC#95n_{S3j3^P6&S literal 0 HcmV?d00001 diff --git a/output_53_0.png b/output_53_0.png new file mode 100644 index 0000000000000000000000000000000000000000..ecc65ab03316f501301f422dd8c6d3927650f792 GIT binary patch literal 16381 zcmdtJXH-;Mv^7|WVnE=cf=Ik7ieylNfPjjCWXTx>Bo-7oNH%~00m(?tnL=_-A|N>z zl0lH11d1GboqPLx-LL!g81L(!&oP91tyAahv-e(W%{kZHAD+oel3bv^fI^{2q@F%e zLZMDcqEG}$=ZN56R&E$-!!H2`aSaD$YZC`&13P1soPmRlrL}{lx#8bV#&-7R)|h)7 z{2X`L{x)-Pu(229Kkx zEXTHg>H6}LLH_RMFL#kSdp2JKs#7SGH)BilGW^f zZ*Omrd0!gkFd+)njVm&{pOumE?Bw_e-$Y~Ge{kr>S(Blz@1bg4jSuI;jAnfP{Fgs9 zuk>7JEP9<+ba#?aE?z{p(4?cc#A>9!*2@d|P%@C-Dsv28$Lf7*G3Eg}Ut_Dw>sZ;S zIUr2M4R?o|Tk)Prd$+aMfwq*ArskJlzkU_jOg$cRTdT&`$ZKguVale6s*m@Vf*C8v zuqi2w!u#{dQ3CcR=w;X->xP~t)qjqU4pen?a)NG33J&_bd&kPoE+-%$fcH&qZI!kf zt5E&&TafL)56ogKA1XLQHy=#E);%hD0YjTtF%aq$+ze4ajf0+e_73o2jv zc#+)i-=FO57U|4Im``Ptm1zWDxq4OI)I&!nX0x1_PSjI}mzNihDYTxbA(~)iWtAy3 z?W$@02;UdF?=b&a&~dTfFwa`+zJ(k-J4(c(V$&AhP0)EYN9-LbGaFm`_f~ITxyV|@ zkqgrJ=6nx_=DGlrh-q>bmXz<`hvNfjgC0L_&uvzoq15JG?V$BJz0cw{dv0&vMuKj& z#iE#nnOQ0^F_C>=B+Vyzch^NqNlNO&rAwD$mSm)*d7jsKyOw?k2nf&1%afLtUd-WS zX11--^EgFFNI^yA(zE~dE7v#jQQTx)Y*BKGQh9pTo^Z8nO^xUwEv3Z$3Z01+_ArI# zU$IN{sifpnCJ}@>N-|_0xUJ%nvAUHkA|iU(YPojULap54GTY?dzP_cg+kgN4@C^}3 zR-ykGW-v=Nn|hRJU4<~@2BXvnv9w$+;kdP1J+oAAT?*-K^;2ci^DKYdbxZG_*Q4qPJh+I{1?HJ=DiTl``gr)X%HwE2-wikjQ-?P}Ggyj(P& zTriKvzJpxMeZ@h2uWBMP`W$t=m*Nx@6cs1O2ikV(-fH|`?N_c2)coobRMyO$^ycd! zCcSJas=^{g{ZrsuzaYxFCn>%}yTr0*eX1cgkZ#)ZwtP&65AoGS=h}l<78aJRZZWdV zq9PTDjpT4neQZL)-*bF>dwYVOhh>|8gm*@hVFND=nZ~Qy+U65oq)PbR7NO7clxE%G z&(x!jWW-AO_!uXOaAx*ft;@laKCPW<%xh-ljOKNFg<%i12Q4;f%P(gSWUa5;goTB1 zhZAB}g2c7)d#i@V0rCTR@0{*c(w3?#UN5%RKd^r(U=+a7eB$9OTN_m?6?^jyeqha4 z-<7cLNiP1Vqj~_vKRZABe3V@4Rtj1)AurSnsFuxddO$oqSjSlYEx) zR2lg<^2w%sM&Gus=A`6wD;5^?Zrq!?Fs_RY#$0^rSp=lWH;akaRrB5sdpcI&x<^T4 z?kD%&Q@yahX?q+;@HZ_1#@gGyCRrKomN&f{yBI>1h7zqIMV&pSM)A*4-Km^*-#Oc@ z)bD3=x=f(?>L9kkI4h?lT8E_SJUjz`6K;Z)QTck~^^tLQ30gmYVA*c+R;L=y z%vy0}?Xqcrcf~nL@907ewoy}(4$Mx_UDXkiMqeTp?g#U|G$^ZcQ|H!E0VhNE?$C5J z3e+mjy{D{g5STQFFP*i~%Wq1sOf9ayj1jUU_RaKniMJO}%(`^dd2u4ZaaerNG zm9QVOJ$AmsDI}n)X5E z8!WF*;^?ow0@V=;%9-@g`M;2XT!Ml8-DxYSlkdwqv#hi<`bb1X_V`@?JDbxke_=Hm z2JFTy!~aM;e1lBHHJjtbq|x9$mQvMd?TZgC!Nf;M!0?`0ntc|OC<-xnDpVeJE^1yy zJawBP@ALOCi-$(=y?3^Uf$;}9iJ4AU!li?ilEki%(>}*=d(*(8(fhXiZJQdyADt>g zVs-@v!xeB(QiwD**nsOABS-wSH190`DQZc0NPF=IgA42Uof;!r(F`lCmqv1#Faly-G=pQcIfw zuuDhBd=D=d&?pVg|JC^J>=#|q$!%n2sC(J9fIP<2s6;WCozebch{px=PX7dOXEMPtU&S2>`gs-|YqlO*ms`RXjSFb$H8^WUPJdxVuPT- zxLho~AlVkqu550ed0Q^3|9LdrVR6iPVnC9?BSqYgvISGhdh@23kB<)tCL}B@74qg> zaA;`%sR6>-ANReaL?LuPPv`VNg}Fe=Rh^7lr@~MK%yz}+^(0HOa&za`^DQhaL~$9s zMsjtc*gK1b-qepDKJ<)O*N#o{L6K%*WwqycM@nb$VS_;Vep4{l9h$3JUY=Eo63!L< z-f1?`C(^VJT%NJ2WBYqkWul8>YinzXNNF>ws;Y=aP7@KaaB;0$$ebQk(vnVbXX`zl zrVvzeRr^4`(#~-nQ-|RXwHM*K2a`u#Dqvsqy#7>UQ=WR-D*1zCOInBp({DKNg~S z`L^sc6O**fKQRLKTWek?+7n(U)qua!^p7_p1YOn>=-t=raU3)@H0{oBi3K>O7)E)O z2s|-=6v<%Pcl|WW?NTpXxUf}6NT#!;^XSp5j~_qA1S-S|rZOw1WvJ)rRjibZyeQTR zi;c}4uXZanY4O&+_UrDQ5w43N*{_6b#_y)k=vq8fE^mxX*2a{l){|}VqH+B%A6Sn+ z=!oXeqsTh-pxLp7?#ldJGSr+_Q8nypexgal>C37EKVwTn4Y>Ha9Wb`D=jsN|Z|n@< zbp@a9PiFP7EsEQl=-w-?1&nnWsY=;UIyMLJ^AN8<)oSEhLteyG|2FJ z-)zgbeb*E+nmWspOFr%SduJn;KA8xZxQ_7F}2FchV-T47pE+W?5Wx{A89slkpsK?gJ#}-Vp1YcqttHXvj)!dym`n z+E@~G^(%gFU*!A0sGN)T>ZD?`v$)HtBkOH(pS68a>H(0EgI4obC}^nfXcy~_bOs7N z8c}pjQ*sN?xHS+baLUFQa>mts4Yp2B@e15Z3R)WLB! zHzi{^r$$uoI)h(m_~ZMhute}8j~#N0g#)yGw^ptst~(vyRwr~pQl}5?y_@&$RIb>x zTl2hyJ7ys-7V3FSe7AI_C?K}viw=oalmXSnCZZ^ESiMi42_+2ddo=PcEm;1I9JPL&3Byk_Tz zI%RgDNJkOFeGLhNZ}fLgs57y!glXFiFWYsuTMqCJyC-Z@awG3ahFnA7DMAgQa!D6G zZZ=Y{6q{YZdYk8&u;EBFtPn4%{;HXo3xy z)r5g(%XjYiSM;P3@i4)3|8`}1n<@6S7Qk0g;n#k6wyb=7cJH8%ad65-A|t|%kFa|L z7#RFEC5o2H!`=`6EILWCSoRH0emwx+8~TmX^RYQyM6l5AJmX0FC_*#;)hra}2(|3i+q0PkO{+0i&&Dmel*=7_M9<~^YA5eL zJSX{(=6Sw`XIa>}9nDRb0P|}~(_$0@BHhT#KpYL9Yj&6XB(&i^6d<$vg@VS6{O!#I z|FV3^A~s6%9fRzE&^X>oTAf5#xiGgt>0rzv%z)OZsdHvG4aMF#c-Wnl>fIP?ysiF* zwfJ|P6dh+NGuw~A`kxPpxrJ!~N!u4_usMeJ_xDSbY8Jfsprou!apg)%jmN=aVV4Lx z)q*yiUs+{&YfWmCkFJ#*YMD4(NCnsovQ)Opg7ooii5QDo&MC7fX`67-Uc# zUF_e2;^X6gO;5+lI5;$~ZUsGY}YTMvXNh-B(jyDsd_#Sc0T>ZT)3TQJP0(_FJYT|`xSPIAIyC-&0i%VEL6Ne8Qy3TMuo zAt~u-Y3cb9baN?(hSwq#p`)WsCWS!iaGKsFizPM1rnDmI=#FW&30+1h>K<0LN5?ft zsB!{806I*`p_2hzW2u9Gq91s#W1k%V!q!3`zJ!y5Lrq6VC)Ux{)|Q0>v-?H_XzA3{ zROc;b=1k2Uf_26KTS=N4(ZtKY`9iYmf8V_*7QbTWka;Uohh%b0mP|5PG7twPH`nuM z-@HFVaeuk6OGQg7tI_W&|A^ZQ6O*i*oc3~BL5GYXJ(_hMsi6ABK5khjvHczXTP6{2 z+KQHJzK}-5sS0`NlT_bsf_$B4;(EX0*^?)4vE{SWzkmN8IB<7&uL45qnGg{gdPk&Y zs{X^PSFbJ*6K5BqtiDXQH<(s_l*OKoXtTx5H)rNsTzv>IC3uvBHY_57Ra8{}{CRvl zpS*$sLNOO}wDS#pfPHEwKd589k9BBm5l!s97Y5r*hWlcJz_^)%K30iPD{5hCzO?oz z7l+l&COk`eM@UH9dHiL%yN3s_=OOHdx92a1e)+OsdGgaJ(0p&>_kLgeaf-*m_Conw zTwgf5HjmXXPoWdR`h8~Zl`v|CEQ`uS3WwbC>T2XMd_yaGz(Uo(^&-eL50{=KdRjs`FuP zL}tr~(m)uQR$NmnCu)DXj#l{B;{oB4YAAfUB3?I@%i`Ch>=(WHwG{73j`dcC6wh`l~hlRi@ts)x@d**BA^0Y=8;TcV~ zw+tk9%*0Qhh0WRRgxsi;`})kHhooakLDP)IWNS|_hB&4o$@z^j|q*1)pM8KD{$>fhQjIWXBDIj)hz4S;P%0c`V4;d z?!<8SIX~gXyBE!$&z-yVwiG~3f*e#*n~IggYTWUWTz(dMUhCeQn~{P6XS{Jx7bbbi z&?$hS92RB6_*O;Dodm2p|JX&te_sEd1}!DvO{t^+(ww9|b|>n_4+^tg2GdChac9Y00aq zun5(b$XM}A`=gYROQzPAlH+4)dzg2$(88?S;TcVs4E4v66%y|v;Q?uIiO$SBnjXp) z`9ZDh-NQqwypee&LRlESO%Sjs3hMdvOWATGWU+TEY4g;bN~D)IESSb$z}&dQ@UNcV z+8lVVmmeJYR{?L%xO!3+wHQ?CY&XjcD3(_AQ|BI5OT^a>4$oEk8B+lUO6lr6`>eTE z;NS71=Xtp=kgg9*^%epbH*pfs%N|wBEuNqc*=o?>M9sqNW~hIz&GSviIprStoxiT# zo>hGd1dVL8!+TdK{X}Ji-^jg*#(G2*gNt0+uE*x)02o}`+KG7+oDz>$2yHZk|3?9o ze0Wo0>!Y&L3!$*M%wEw_20nP5O?;w~m9UHSaSi3zPI4!N=Hvt9c6<98JlxfOjOO+G zM;F^MCd9b42*#r#{UoTV0ROxR;daTMo?^j|Pr2jAdhF(O9+bJ>!rAXTn67AG58gQd z=0ai5NusDhLddJkQwV0PuEf-~47dcIMA$zYa1wh{`6SEwAB|)3waw|t;M>LyL5(*& zzPQOwFt7r?3UtP1Nvv73d}bUIP4O#lM3sT^Qg_So18L9u%?Lbay9g))dXvd??;Hz~ zl;~~_3s`Ru*LeUa(+NM@8R)lXgH8n9>x+*69MqaMtkBAVcAj{EZ{S;Okg@@!&2K-!{Z1ktNlGUJ=qyO0G>j(Xn zbDR?=fsbOZjCW1|PU&ynvIzxVNP{VR1j6V?fB%7>`9@*U(IfMG#8)|B2{H>$pW&7~ z*WJ5H)vX8+R#3-PjkSguFlV6sq>GQ*iV#a?i42Li+g)MWT-{1F<#hQ0UlN)k!^R7$ zs;Ud&+89NUiIYcwf@Wr9{3r)9_%)1$Xc+sqm;RBV&5CR%F^++&l!~l~>%jY>81?u) z38)wV#UBzPBpoV?BR!{1*|Yro{NW16Y)sAGEKw#8ca z44@oiKZOARqjm@3q4j9pOFW7t^5GP`4$Ge)>gqgP%ILkP2Jfg`)X-|Br z`wk)+$i)h(0vN+pI4)6JMa0Enx3(PSrlBC>7YAglYmZ9eypH$$hR^;(r@sy@of*zL zmLjJP9et!t7T23Zawh6H1l`WjlAAlKog~K8#d71PzBB2vnUesDqu#2M7LkVIJ@+$f z4mV^#g3pv1**`cyPu9I^ZEHg(E~0dPa5K-i(U30cr~*bV<8KyT@Z>Hl96qxfr9PRNzG$1F{DND>z84yup4g3sR3%nf@pFKB*KMSpi@-yYk z&7o&Y@p8`|y9n9)5!h$~bhED6OM}h8WBHTo79->R2r`k~x}mg$gom(YJDbzxV|zoH zmHV^RImetvtO~SpTRS_|*2b$lex6C_sMzskEZ*E17{8It=kC?JY&Y7O-^b@smAsuZ zOej_nseRGA&1BzuxovM^Hi{R$_#lqoI&QWjdhjs?L75JDJwe4%MS!cd(W`OYTK$Ew zBxHH2O8+FVpqHsXUrBrwD+Ed2yY0pPmz$`#mE%p*Cu*zgiuE7v%~DQF0PE5!N_==J zMC4SQFC?KXhd`2nZnWVGs^Ze-hq(&19KBGiel@)2sp$IMF-uk_jHDOd=Aq<9ZPJCU zau$0(TS8xh`LWHycPA{un#VQn{iovI)@q>CS7zzC7b!0%*=ZMxjB1_8;;mX{3Db+_ z-mAXy6zQbFpIWDd;-TKr-2AI5^~bkm!mRw#m9~Al5Rq|5T_(qK=eZz(%7Iwf&9+*B zP5$=!5Ydox$DM()$=c7)Tsu05Hk1-|;6JsFROpTy_v;j<`z$IyQ^qh@_fZ}R&v`HV zIw%L4>0Z7HiY5w+f{b1G<@30BjR>XjTzvOxgE63q#nw)h1%_xcsb4wdlP!?1qvSv+ ztf zg~rhO9&WNSC6uj(K?SRetiU6OZV~)@Eei+RQ-ujVxA+Fpyj``u=2kgu#&1N8E_aAv zG&gj;sylJ3cjhBXhXe|ciStf^d_|^Y5li+;)LyNS@y>?Kfxb?S!aJF+Eai7ju68O4 zfO>7hkRiu58Y<#+Jt!_sW_O&GUpTS4Z{{S$ZUR~aRKek+Xg76HpVLvEqSh$&4>qS0 z#2ps@%K4J4d`pUxZ6aNasd_D~$dnbm)qk=Y$~fjG7K~XYx3UvQMIlAbubh)z^G&71 zqO7t1-H6p-0~ht3;i|BS#kvpoJ`xl6uQhKWg`(pv+_-UfS7Ym2ndgPA&7O*?X|1Z? zpNDSoMgv&GPn_&jGcMGwE@uNq4q-jjtpfwsQUPMzQTCf!s+ZxoSiRABP8K`A2omyE zC0T9w*ymNM&l%*^zd*u!cn@%ZnQe%*tl~+^xmXeP-1LZ-o;$-d`m;+T!FJ+4r_FE* zdBB5F9iNbaK>6P4_1X%l%@b$cp&w}0XW*_(VcqT^&pzHaj$<_6rW<6r%UB1q&BG6~ zt!68ylR+nkUsvI1O&;1G{uO-kM*FuTbuW2SK7=i4L4OS= zm-#1AP*X8elVOd!GUoQd$+2}UYy)N34RN)}fozl*@>4E1k(*Bg{)#wGu66fd19%Wr z^HbTxFeu!Ty?@v`@Qbd}8`9VZ$yX!hq=QYyaWViTzUYv9 zheNmG`Nu~sK~bSS;=x-7sg)|2Y`)S2S1RAcFEY-Hma6`}6%vaz^|2kWI;;Q_xH>|T zU0Ik5Vi6XKGj$uo*!|eyr!eyvKYwQLVBW{}Xl7c>nYx=2Qb^=&h*tZxMJ6dEbER<} zYnifih`xDIO0(bAy0*1dFczFLG2W}Jnoy9d1AHd9}xNdwYBXpFbZzLWW+Z zSqgJ58ZB~_S5vX*{nimxx}kl|m&em4c$J}dpvVAWR%j{0VwI&G-iOQ4C7n?9XEsjIcpo6&r{PX~ zrM2}uDve}~Lu%ix^U={^E-jtl%e2PvO~{)^b8aI%bA8q-R{T6^`maTz_?~3`F<{@0 zLygh^8Pfg(FIk%GYEhp;bA^04FORs*;Q+l<-?*#C z;X@yyJ^lkXf`8H~#@xjsN5o@G0?l{`Dd3e1pu)K^?iy(+C)>VIeD;yS*pjVrknhIrH&c8(ezfhE<35rTUuoT`Y zMB|5dUtKuAJ^$we{la1wnM9ECt*y%?h;NT2kX|QXes8q&c=q#F3|O4C!RM%DU%K3&s)j3=n1H5E zQ4!CWO#_MR5q|KNlvAayl$4Y!061Rz*>=C-3HvT#Fm-gN$9pd7>?AWBJtZW%*sX0{ zt-9v+^FL5%78ot0jDtbsWXj)FXWa-NvzVA$r?B!`eRh`aWLIz?^enHvF-j{=RjKXW z&00#g-)+w{H8XRyOIhyS>nrbUZkD_$8K5FBFJC<}Gc#ib;)Wv*af3jU2fgkAv%=%H zy=;)i)iewx>xKtPQ2!NiH!B+H@yYck;JDhHh$!1P@|!lQ}erjrn53L6%lm{ z59-!%skMIf2pBR3M{3H-%IbGo+S_w3XV97k1keV}s}ep45?A^zj%H0U=&&u50vnZaQH{09a zhZ$I%!9YXnV_;yObM)@+?(O2UD3sX+-_)f%2AH6ANnzkgr+K~yD&_VBtl1h45$45{mX%+J1WJ+BDQ^1R%5;kYua zx-wj>T#6avLF3qYOMBCxpCN82Nd@;4W3r9O%C(a?` z)&Smj1wiz`w3H*YcDBw#Rpsf*$l$S#9*57{NNqCjS>s|Y3VQnS zUlS7@p0j36pRPsmm@6e)DJdz%h%yM+J!yDHrY<4jJN|Mm_I9m4NZ5?L)B*o`k$%n$ zf~U_)p%CdrQ#F47uA?>rm!o&rr>J?%K2x%3{LK)bM)qnr-{>79^Y!bAEhAuz)A>2ekpS$tN*j8d&#U4xrlqIvK}i*>IE_rYAm zYw+##nEPhO;$U99W+mLL>b*H(fqITcBDj%2qs|20?-*x)@l94%mJ-rFwwh4yf5{ii&2+VYmAku~)svLL#mPM2aU>+2z z49eR7fS+8vw2lkC;*@@=op+sAMzH9|#KckKBHtT!y5G*lo5tc;wTD#S@xNJ!tL6JNBPT6S?KEc-JCC<;^+(_!&FDtuGarG+yu85|lW|Xj-lYKZT zyrW8CyZ|^6XT{&-aOyz2iAf4^`hjSa1}&6@sdo&x_~R|6YUofE3|V$)DMObYNP0{g z*bk!cc-T5SX50595%*(?R0y?INN}*y+CCI-Rdw|x*shC1g>&Lv&CSi(1qDg~XdFA~ z!$L!O1ToB9T+g6y5}_&zlQ0q`ObdZ?=l1Q{k0oOeC(vWLLPMjywh4y3U@$4DzGMv8?(S#5XJ+P+RpRv8lX0ByeiZDm zyKdl5#r@dpEy!!$xOtO;k}?ha87ffwbTT21qkPP#?!eeicAG`F zM(w*=ObRp6gIL#JAD9rko@sPe7R&G1*~RuR_c|THwGt8-7}(@b!xY_-rkE_Tkmq%j zeXSCrrt0(mtJiUbk`k0zRFu?zlq;pD@5}KhGd-}tS?&K5Y^%TkQ7A;q{2%c1TaitX zNe8tiTexckxG4C`kSfJtakAb(R%-YgRxf(*3%=>vwQG=)vIv5{xZR8A%iOB&2?aFAmvVt%^6n0** z!$L1nX-jKs@A6P#bma?JA|J%>+_Crio@r-4K;v$+=xVne7GBnwT<$m@1TtTA$KKC>t+2+%#?VAW_Z|Ry_|L5`!i1NaxoWU& zOLupik#OZU@zx1p}|LX(T}QI$AarMQ`%j(3d^_=k{$ef-kkaOyub8-%vK%{lNoC3jLWzWX;|1oI?_ z&zyy}f>^tP<4EXM7WE{s_~ zH2seXi+_VVsqtG6!^y6s@rxIC?%&rSCnv|3FyFb;9m#EUg_btw=T8mcy_t|KEEcon zs1Wxc6KTC07#Mtf|Gs;sB}7$EZ~T-S%*=2SC9xzxn+o_G|Knz0|AD)loId~<#5WH0 zUK3H|R zo)nuamoFpMN0XP+(11Al6X?|sHo;h3V^+1CXBrxjt~;w>3WRikbZUU0Hc{(os7-6AtOyP|JWJ0kJGZSm`{}ldn)fmutyp_injJ;xduAFmfT5O@{y~N$ z{mUn4T#n+?r|%J4d%68wYggX(TO7#uJnp+TD-*T)aNZ+GMdWlYyoNw*L6>3>eOh8#flMlmTOK z8#N(;3B4}YjTRbn1s@A+epGVgP=R-JXH14{>=yp z4c~Io_CG{S%@Yq|j$MyPd#q4tk5y-^P&$BfD0k8@zQHov>6ptQuCKw;VFrj~akw~p zxEP&|*jRBnnqXD2bP!T_F#ewF-y8Rm+6a8;HwAE3NNUST$cp zbmmO4Qe($7ctR@87&siy5-Et{l#b%{p)m=BA-A+Toqp+m>>r$~P@YlEV(aVpq# zF~S=^ZsJAsm6elW>M{WD4Gj(Lk4zk=Ax9G6l!4Wj<67mK$jVTmBjFei(!&V>nJg`C@2RN+{)S=XgljEI;QCvvC&RGWc zgoVCzSUAn$607L_owYoGZ@N5gHDXRqB~5`0d9b$VgY6Y+A*YuJ7 zj}mmuLO?tPt6ByibR<$>MXAR)fL(Ul3IoJsRULK50%jIG_zH_jG~(KjAD#jTXmDr_ zzVtNsUvu-H??$?ciiuEZm;Cw1Gj{f_>bon#jAV_wF0osUmMLDpew`ZZRj_LYC((TP z&BRCSuG-om;GC^HM@Cj_b_6-y1VkOG#>U1@N2Gs74iNLFWr?f)QnYmqH{-QverqS} z0VHq|zeYn^5%;nowDozY780_upSWQ%B}Pc-1p8f<^P9EOGbn>&Vl3OE`PT|YBErL| zkB^U=f^W&hEJ02~KfMbkFRg@cxIeHG)Vh^URz?2lbZhl*&e9-cQv{ot$qkv_KPM;0 zb>!r5PLv-?kg};RFy%i>`X?3QOO{e_h>Dl-8h~l5uX1AXUU4sA@+IJ07H4HOKRvpE z>r*qmTl+jNH`<_dWXWTkCZL#c8tGwf=8s|cL3r?w&~t4m#}*a!pSyUG=XlQRIK6(* zd~r@ptZJjZClw^R3B7bEdpI) z@7q4!0jKe;k(!-xw~qk@II)(RUkN~3>BI#rA1?USH~(TsHt5Q-K>Rh!9|us zcVQCvT>G4@@8ho8(H5rBcCqfco4s#-oBZXT>7vh7J+q@9^SLB z^*jm<4^IOr42Gfsj!(Y)0^B{XV|Rag;fkJvcaS)o_~|bPn6yXsnAwG=0N`(P&4rNn zlgJaoN`tIxZ4*s=)&XJLfC@=4eM;Dw2}1x($iD6J+%EiAtx6fbM{eS&sn@ag5F#=w zJKJ%xjsU+rw3#$FJw2@o8x~N3plKkSw9`7;)yv2{@PKSe!XTmp>}trU6uk`yiKAcL@=_@B)Kkrz7O^%`$=^u)jzI(hGkAfHIhY#nvPZ+U!gtdE02X z$h@-|PDM(w69?*jw*0hvZYRM4Y&x&A(Y5OKmnTvz5049USh z{Tg?>c>6CfOz@OgPhi^Pgh$LKYO3=+4xEf$7ANE$MZ8sT@KZ5w+jm5|di7o6wA zeEZjF~*vE6TJ zvEY2?wQ;{VRyH;s*X?C<E#Wd(ed~iV2GDoj^_-BE!Ur<~eCM7*R zI-giQ1;#cH8Z@`z_jAZN@364gabT?;9J!oKGn{aNmg)~UfqKGy)Bg{gTf7EYyE9wC z3!klj4brhg3FL?Bsku4RDiBJWAeQ|#3r(&eH408xwh#N%0bjJWC=nDQMda~Em1W42W%~>*P&;ekZ z@&bJP6ezO)<7c^jx-Hn4sGwHzcE$-Wx%&g#Yi>g4RnNM+XLh}7`yDoA_Urox-xR-a z5aWA?W+8N%=6jO;omPggAtU&7?cQR_Ci2KLaX>KEYpzK&KuZGY3c06Rv|>0EN2x|L^CCsPkPy V79XaGEVu_sN?iU4_VM%A{|Br;FOdKM literal 0 HcmV?d00001 diff --git a/output_59_3.png b/output_59_3.png new file mode 100644 index 0000000000000000000000000000000000000000..94fed1ccce8cfcaf62f167f69a6f83bf893f8073 GIT binary patch literal 14747 zcmdsecTiOCwq;`kNhUxtDu`s1oH1e(l?)ODBxh)XWbr4cfC!Q#HK61qIfICRg3x4y zCW=U=$vMnE{_eeRrrw*XTQ&2?%(KdaHs^fb`O?~Juf6)^ePucFQ*@_LC=@yR-fdMB z>WDN7MU+5%0zNsb`os}_h+*z%W7O=;Fm6UprYI#NjDw9m#>Uc^#nsfw+0x!lfLDa~ zIyZ|22IJr?&c|o_uN!#noy_?-^e26x5fX=cI?gB*r4jO%C_^UQ5*j8(-@c*l9=|Z` z>3)84e{&gkR#BqF)In{W49s+LcdF! zsq04KFyZmn#b(b%&nDvw0TB`w{PE0kt`e3DRvykrled-{qSL{iVTJ7Ad-8{@L;soyJlnO z28|ay$R>2~(?&QBn@uE+lac1?x^+l!4q50|^Nkg0AD!INGfj<%AKG$$5O$t+X4FGh zV6%5&@SU%&f<03z;RD-l6$8s7(FA2^-@UfEhHctEbaySP&Fu0POGYrmqpM#$?#XeI zs~zAe$fb6R+WK6c;lfUFd>OnIO>s|f((wpyR9Rpqe>pAj>1RLb>tb2)Vx1W)I3=U?EUG+I0UNXUs_=w88SJT9G?x$l%F&d1EK?%aPv1v+ieLtODtMupka;-}jE2a{=%N-}w@83`I+21KK zxUU^^_S`uMUFy?40UZ4Jd7nc$ykLinT ziBeTr;V;VOa>D+WFO}ne zPdfd%dZ&MeLTY<^duOSE67PL2KPKh^IlZuAMMXt!X@PETp>8hCL(bFu0atF%SPam5 z>*(fjo&2&>#UQxdSqFd_f>K3>}slg)iP*x5;J{8Z6`3E;{Je{4LU8^B@ zt4O%ccUb4wqy+?=h>VEH`0(L&Nr`zgn_{A*4o+$_erg%#d*Ez4RQ@24lDRL6=OLzB zNrXdCP`$_;x46Z06PCP7j#?H zliHbnzk?q=xPqn=FjFjAklvZTtQ0T$ARIH@aWO&E@$;&lkx{Z4E;08ly9%eYw87}! zZ;=w0InBoAX18KRmTA~GLKV-ZPn%(g^mPND;l8{)XL{joHm+uh{vM4(FP?hMP6iK(r#W*@9&ma#nO{mT0ghAif>}w*;@5CcTv)LS- zRas6W&7NoMRQk3-j5aqvUoYbnxA-o~BIr#Bt-fru+!E1|o;PW!u#-17i#DwA^gL^OrqIp&F3o9TWEAwDQRa0{ zCzWA}pFV@x_-LePxyglVLsu9JoaRUFaK^F1lfLEYh20ZJk5NFEpN0fpiuO)2F9y*# z!RY=>+V6wUJdT>#Iaz(U-WUZPjoep^i=G(AEK=h0Fb=;vau_vv8#i;e0#14Ht>BpoGrGc+qxyKlf8!FfkiC zZGO~8ZbnAwu*ej+A3wXo0sHUMZTK+0s`=uk_VZafJ)gWL2KbTq4g+xU^f`>GyjH4; zYmhE&@I*8Pqq%Ms-`v}^D55~5 zhZlCqbmvFiM|th^$MqLS37^XExlmHBBX1A{zbD~+JWWq#bK(d+%)nW5bJuI12I4OK zAUh@uJ+QVLv^I}V$@|l9P9OREjzzwo)#oC!@~oGfh3Yda^KKkkR*DNtNy|REw1v8n z;#RCtbE#qS`iJ56bo9T9N-jlHKZE$J@TIn|f`fZ{GSxKn^@nGzYqx*L z>6SYrQ}Y?*K=9(=;ZagcSMDt^X%^SL@`!Vhs2#Q}1@1ZNIkC3m$FiVp%kH$9{D zt(QV$==DI#W33}QzjmT%WZ{eM z4$gZFOO{c6)=OSqo)t|(Lekd9&dTbZxLbLST{$B;IawcnPgPShYTmWV9F0a-e4Tyz zNk~*$emwaiXMU#E_>8~-FMG!MMCtb{vmP#_B^D0d8ihp168*5fk?-Dd1U8K8yk-#l zNeD;P%}~>&T&$t5i`b;<+#Pr~G?5mt_FB_j`;#x`NZMp%-N=_Ox6!JWmX<~9uq267 zwYd;?CjP}!L*6CS5y*n;_NEXn?uf_ ztd`@SpT|nL<>i(CJQYGOqKvFBCl{AXGou^Ei<0QABW1Ozyyuh?ZW{La)7*x7^XAu# zv4WQ2Q_G*9ld_?mr`mg8QE{z}9`283<>d5)`tF%TMn=xWjqar(ECO~gPB@T)vFqhI zcF9olw%F8(=Fqt?Ii?4&`0zUKORW171;%J)=XjM06|5M7A8Kl3$1siiZ<#p`A4eW|O^NCYaF2{mVqUe#b7Waw z*SPZ>cxu(=L4Wm#;KXcz^T5sy!-c*lT^it>+jEamXV5W%SP4y?2Il#MFzU z6VtV>htx;LQXu@WMD(p4-?vO|z(pQAxk+$Tln?eLC35IQFiGBe$NwPb_BYl9|Sh=%PB@ zrLZb9>lIfQm!)ob%4N&B2eN-YGJOe}f8#{?WfIfhxSeC^MR_#t>6q*ik$;4zWQ#eO zL+#Z?rlL-OEPo^psahJo>tcEwJ-0&Jz%N;UErf}gb6+naCC4Z$&l%z9zR~CIJB4aZE9yVH)No7as&vcfBx;%!5dX#VzqBRGbjC1R zyIy^QyjG8yt8U)n_Q^XTYmPM2?%mKOMdn}^Ev0lLOrr2;JraN_1W$;%5hHU0p~^pg zmq|^GZSrqiewqxpeDYN*n`0<1%MWBS`q|T}JnjT!kC;ve8K*<2Al?m1$a1576+)&p znmD|#PvNKhrlaNz-eCl(*^YO*ypMl`&sLtmQN=Zrvu>g4 zUyL1%xeY{t?MF_QHGgs7+;*`AF6?@*(1lq>TaCIOOc1L5Xij^f-hR~Pt~5qXcnuc5 zpV@Sp^wZ|mBRfhh9iA-*U5Qhw7N?K%gGj6 z>`zJmb8^CZzF6Fm`zy1s^u})7qV(&#$Yf_^Y84A9Hk`9X`iqAC&XJH8SlApkb&D!m z+qZk~5LOPPsOUa#G5zV{ts{1Ehc$F;Rbz3iLC}?@9J+n$=vyE%5?c?USO1yOg~7z; z=cGgeOIAy?{Ez&&sawTb{g0FC+SD00zH%PCd;7L~(d|!|yPG9klH9l1IjthyQn~;f zNVeItF_26G?9;U|4m?ew{@q4%`0K4oPlvA91m*HbyBNoTXwJ$v!CdQ z%zYxxA2-{Zt)Z!zhPSV)=@rh*%=B3A)mmSyA|S0gRp`;l_*9=FC4D%2g^NqUwQ9KN z1LW$-9xUa-3!`e(3KKt~OxmsBowS-;vSGed;UjfdRDGLy{ZyouL1(dLcSL;rkX2l8 zFj?C>0XdVV;Lg8D&aJge5UxVD!B?}UnvH*KX4W$9;2w2Z?zQ`SFP4lSmnxs|cA0O? zZO>a&D&4WVSv)^nwOv7n8u|Tp>@60XzdqMLmshoD)$cl7>C$Z)t)DhDG^B~w&ea^S zDK#VYTcz*E$Z!@J;>sbEL)7U<~c)`0eKad3Q7h$Q+w z$uzZ!RtpW(sc05++-Lg4P|f6}#~U5RXP8&vJjKbKv&~uvS^rf5f$mlJZ{ch^W6vnp zu!nncRjvzNl)hWHCa0##s?v!+ZC9LJS>$v4TZLGrl+#G4y=oPI`bH?_BMJjbX(WAw z6mYS6wcR<9>+03}j*bOW%QM~SLcRxHAs4RQ>^JnSiC0c9wHZiJ;H~(AH$9Tpji*jF zB6)C~%+h(01SXm$&RONF={>-Ij{2rXRoKq6E?%rNgVy=B>xEm)zI%>E%_=hc#fd&U zmiE!dlD-Munpiird@k($L{H>HiS#myw(ZVJIqOWU(ejif35&KvKJTY5Lxx*%6igz+ z-c@7`9cj-1I&1)fUWU+L;Ih_!A)g?$Q&{{N1ReFof>TryS*GNq55y-tQQa&6WYnEJ z>NC$g(BTKYJ-bHK^l{40@LcPD1?n7t@fEkW4pFrEGd~?0@gJf|o=4IvP-@8MQwKjs z6W!!{UC1F>5XqXOD_)RcXG3dIvTdQv5CFBiN4Uy1a9LfA&?WpDjby{WwLZ%GMgJ7G=oW#y_co*UPb^WAnwX-N&#^%TjPuz5}zD9c4J1 zemV%Vr2YIAqxqixYpqDptVlIo-k?;+I-(fT`jdXf9)DS5MlYbd>T1ar@ml44x}ue# z`cju0_Vvh7hL^WcZ!jChxF(jmM9Q*E)b|i*G+fX~d%_aic2Xsyo+`d9-@<`5k-qS( z7s?qh{tavDddLIJ?HGuoYdS{n>ROjy;X=jLH8s*LtYex!eA%jEK>0wZWl((G1*w@;2>XWqZv(<4Fo!n<3Td8jRYJHVk6vT^{Z5+>A5b4wYl zs_CmFeh~4q`&0Uv?QFj4N&O})R8Ce?m;VK!QIxT;_V)@cAL)IlYb6?!JI0KfA};OL zKXkzUri+}Ol1FVp+Vn|mD7~tb;nZHYemdj}V_d}2sP=0tysFWxLWzqzET2@|yqE4w zSmuqt?4&!-JV|guZPC`Blnojx!XBI%ORqXueq!Pfr)*D&0+28MxsxBiD9)IaUInqV zBy}e3L%%=>qaQS?dySu0^)hr;OZ>fCpLw23!@JuuuO9db3%tK@x%rI>6`JF8o0j4y zgpNAE`dUOzVYC)WA~lZp&Eyqk>F(pbVIX;@fAsvvEB5?l zK|a%F$%_hs{sw;~l2cg}RrNW-6ix+-9yUVvY1uv3L(RA!MT?6{|HT$bonQ+ za?IZ9)Iq5O*S)rugv)eFtRe#_ne%|0htLVhgBrJN_7cV0kvp^hxZvJlyHw_o2^I8s z=TOWb*_ToBV$hvR7d?nsN0UfbJVJ4)(FR#Re;VTopRE4Y#M=!N-T^tQulmVqvFD~; zTgPUDLLuTTprAYq8mu11-5BCZ4sCgAb7{tViyb_jRtG zotsrTqn}=V>Tsw z!&*~QbYG)n{eb7Ub(Ym!iIw?8jsWZci;(_jILM46EmfFJGC1(Ze-gQ6%`4Y zwnUiCr70(5&ClD|N0W>l(UW3TKI*Z4|A|Y@$gtWkf>Z4FZu%Y0{5-8g11U^fhdVOr zpcShnw2DeUWIDyJ3%WH+pGjLFXdk5PC1!1ONG6qAHZohh`L(4beAsT2n}dTRVPg>0zFt${4e;FwD$oL_=mNos z6iR8mlbeS}!`OH(Iv)2g@%30! zr0G*xs_x5rqe==`Pmjy-{W_39L(IOZN2&10y}efjb& zdSM%jQagy>EnmM{tPAD-Bgyr1YqO;LwHJyDiu5h)$}eFM(@5QvwywUIxqGS`)q!kD z2)t8+<&N(un5A=g9+pn0#o4J^SY&{R$%Bp+Fn@hrKtO7NP(_f=)vwa5+Z`rg#y$}t zLg-+DNg#;iO!iSENeOq?OXg;i9f9Jmec2WB$(?+;>8y?)>k*0Jdhgz{HGK~f9Nq0IRZx%K(#_6obYy4E)E z_SWmOy>wzuA4FP@br98+`~1aCJ;RKp+O^HWC0;h&fsInAO*cp6w_0#P-&FT5yQ6qQ zA%4M0lp%iONcDWZ2G**#{ic3rUApFQ!o{FQ&!S9DuGEZ-CM*}{2PP@9HV@0}QfBE? zLdZh4sX%x2#t5n!r!_hXGOKJLPo=QNncrkKNTEa{v`%WjH-<95%$4dY;dbiJl+P}kU+SfwsG#bhI5C!TTc=^|QyIOA(7sQ@ z4YBr~C+qv%<1RZBO?+(VO%>X-tJX1Eqm;4^5P-@pit_FO#yt?%*GQM~8Cp3mFA=n# zb&FF%Exmp@Y^Od_FOyMr7s$U}@yCwSrpolZXb%_X#L}sRm6l!Y-S}|ZAzxPXyY9PJ zxg$dPQ40;}C;XI`bH{6hyfNXkbY#OdPU)}Xvu1nxWpp)Dx8ht|&RR_mo_QH7nc|jS zD~)o7cshL^iXg4E(P?4cHsTsO*;NO{x2S~H6IKS{S~=Cmcq$}EL+Pbb-L_q=x?l=@8D zL6&3!@jzT7yr#eL~>5Z`Fm7K(6gV?r^4BHb~= zJJ+wK;$vUTI@1^uxVF*$If`Cb@E)@-_x>bb$f2!;#m1UM)v5K*&4H}w&{2Nfl18Z- zZ6TBZ!V+H5H?MX2qeEzD_O`QBN~UvFT&k;o+dOj{2|Gdd=896dT}{by-O&^G2-WY; zQ3>g;^`+}>^`(b@IE)q59;NMV-jpC>nRZBF@ayN^an0hirdvy&Z`kpL{_1JicD740 zD|6kWKb!fe>y`&ObsW28gW{fY8j-~GKo^#rkrP$|@Dn{o*WR6btc zK{vFzN(Ia8axa`$Oe0C6XjId^VL->QB-uz;dZTJETJ(0f;PrttHi5gdD?TCVWwkzT z8(;5@E*?b@R(dx@fTXEF_PB5A`808_*+6WtJo|ZWDL7>B8<(&33@*^#?*JMPbH*4giE z&y6?lZ@n}B*Dq?~?4w3}9?q_oSg)=v;L8tw$L*`p_$4)8U`8D{uC{fBh{zxAM62r! ziKb1>X3xwJjcEW;IygtisT4m=;6%j`r&pp-ewMK9|1VzMg|;4>n$EOv<*Q>b#U7iB zxwHaiSJ~Oq+iW#+v;kzgY+k;2v1IlRh5Ez_$R}(!lyRJt+5&2ex@C3=P`AP?l=Np6 z78bTGK$eRjpMsB1Eg&2Ub>$4C#D-O_wnfccnmP9gBQ+(?Q_A|zZ9=(rAm~TL#7wt! z!C*+XF~Ok?<8N3So0>`o@={W6?(c4D$;-d8t6sjlfG^AMEfo?HauQEyqlUYqwz#*- z^>~MU5BGPPL~4`6F3Xh;@(KxQhHE$d>P@my_S|%`kBjjEjH!{Joc8GaZhT~ z((XdviOtICY7i>{iVFv95>zEnhuJw1DJgWmc^PjmUEY64>DNAq5jQQv*BtCG^j?#; zL)6d_PlA-~U~#5?vRrtj%UoJ3ZxvEt
7(KRj6m3Xg+LY@9q?UB{WPc{r(WM|Is zFpE-V?>=a(Hk;Ohf`ZelI2kQf)o>b4m`<~wy-Zk``|0(5!~QBlZT9rE1r!PIg@Y1Z z=|S$cF-WturUZ;1bt5_fGZF6#PJb;3wkn6m*EikiaJ*Sr< z3ddn_$BOFPYJXB`KN|;2tfL|L z3%bmzGfKGTG;TaBwdtH6C=#+Ckz5$5d5AFEU|NAdO% zzgiV3`m%nTbmCxRyR$jsna||2HSRo!ixpA;F6Tk0*_52itDNNwp%u8xSG)D|$tZ3H z(_&Yao$>WzTwC80i6fu#fg=3%R})r2A@%FM!@i?Q&SDA5Z0z_+2lvfgiSO3=+?l1N zni6h{>SktX=KA;Uy?`1@%AeZFxAyivQ03!t%=U zKvv84c(K{;^iV)IR`lku8}^D~Ow#E7qFb!Acjbut1o^^`f?Ei`D??7ijrO^E^S&G% zai6_%rYFD7z}d9;9&=5%$~D&<vn!2s$0Thf`z1dpU zzrKcz@WRPFCYEp5+}uCZzr4KRfwo>fLg_bKJzs@6kjy!G5t9dQ*hL=YN}P z16Tdj(s)Cxh<)M-3Wkiu;VNqoJ$0+y3#_cI@k4e$zq|zNO$@dPEhpW07V-A&d$5#@SJ$V@g)+%2Dz4qtfk^kuOSq|d+~KOQ@J985f#-ryV`HNw zEKtk$@9G*F8gUE%QcqDRo@Mz^T>s?n-?IbeSSfpZ9AsEo2m8BRVq!X2?~Qke9cJ>^ zujvH05lfdiz-Fn9A0`R<*HI|qo74^b!KAi(;6a%~#Ns&H4Z>(X7$`iMn58__&s|aM z0B6N|-QjNC0_S1_rA*JSZ*L>x;<6zfE&Gx7U&W>c4;hrc)<3rlQn(uRKw)^(yE&?c z7uN{{*Yz!K-Qs&?qduN-wkOExer;D|WZZjuMX76Rd14)s;iU4D13*K>&^K>3DB1ruv~X}_4&z~Yyb`odi2NA> zyRv$n&wjDZz;#9$A3ZiUHi##deP#figSFmZy6Q;2g+y9}7%)nEY5VTtM+ME>84!{{ zC*@Hr(t_}aiOBjkARKCTc6mve3l9GC$qV@~mB;Okl8MqaNCI^7(En*hdhhY=^2ol8LOr@}u&}HHrvqVZtu>n? zc(dJ;OzyJ2hr6RCR=u2v#|Y~1l~CfZ(Ls(*7{7h3J5WTxV7`pphVc#vPbo-#JG#?X z#)?Mx14t{yU=q@I>DBlr$ME!u;?>VGsPUL7Y~}q!LUwj`H1Uf=6>2UnF0t25UzrcX z!SBsClrc3oFRRr5r@0J;N@6pZTizbP`J}b-)#()!6bu%c20<1NM!1~xM31b-4cJYm zC@HlR6%~utp-zwNtaWd|>a`yxp)O`KC=|=RlI-TG@jzy2^G_@N(Lk&2g(G+m#bc|r z>CVdC#j5qH(S2o{^lpxom6f>5Noar4K~%C8NTvAtIuS~C$wDg>mvScvv%64MHel9~ zbb}{PMMXu++q(u)8hUzqoD)?P71eERb6Z+kV%K*fqM}O0l)qY)v{-@HZXdv8XpqY5 z=fngRGxKP&2y#wt-n`jU1}}5CjiVE>iw8FNyDcsq2neUJ zu%>XF62cpL!; z{=ql4XLsW~U4VEab%FmcuEeWuLaoHc?gYANd1V_z-Qr-#akk_g(C^ix)joujAcLOAu(EMHzW=sEIe zbSG@C$3+8BYruURoiC&Pa}i~rfch0~Rcet3JhV4&(gpGiEV!!eKXWV^u$eD=`Em63 zXP>wrolX3{6tuiKn+?$)a}hE`)FV200_-4Q!{N^Eoh7Jxz1lacYxDd2va#s%kjx%O z54TTW^3Q7qxJwfH`?3G|N<{1Bvl=&QvA4B6+xb4w*w|RtM(zInBq&2=Lu5pXWK3R5 zH+uW~%eE`il@q#b%Z9JSwWWa^*cK%-8AJ2j|mz$YejSGs)y;i=l=h}%l{`}%R zIO@GQESo<>uNtSIJ6_{AVkZZK>gZ)}J4wCR~Qnq?W;xRPZDBR=L?DIx_5R zTe~8puKU{h_U*qyITsm1!TTt-%l}8mCRsD#DcRcw^KS8@dVgyC$=QODV#~L7<>M#7 z?E>Sn0R65lQH1PPsN~8EFnRXWc)BUQyME^+C6gp!u5@!XnGNOnkG`l`MJ?hd(rBz(9u(!P$XS@03oXS?lYtw2r1R2w)f4|4 zL0~1@&D8d3o0+w%-sCq?^78D~h48!E9h{f_cnoWY zKH?Xqatw>iLe88$YYaJtdmkdH2eg?90IKVHyUrwmq^-_z7UL%Z-x&s9Am3xD?xHI>mh)HjjMxx8^CP9Ri zc3@z@AfrPh(fuch$=Ii-wxuM+6H<0Vq9(Ab6PwA&$?rNj6^2Dd_8RXJAf`60&2-1* zDyXQ4_^iCex|b;1!`#MP{Pv^V(IneecXytYHHd~!7>3SU?#<6+4ZIM76Yhef`^Ryo z3SBSh3$II9C%}W1Jyp;;c^!gq2s_rRt0*rg=le(9+$O_=m1s@F^cpN>F3DFW>?)GF zL0%g1=FOOn2qd47^ZgN0Y~f(Xu16`troDLa;$W$5T)%bgAJ&Cg`Gp>KY-XIY-G!<# z2N=zu@Q&n!5DUES8%^m}V!#D3n~I1SD$?7JUZ5gtxJW04&&y4n7GEQBZT z2YFhe46jKm-x($`5C#Wz7ltZ|1{_b3kaR|HsOd^6!`!tEDunpXJq1RXu=zt%T|LA1 z@Bo3v5Rs7|v*r)AT$jdfAPzH#x0MT}crdSbSm7T@_Q7iDRyd_Xtz21$J4zFOyrJMA ztGZeeaxFoLMDVg@o9; z#O3`$+z3z{K`5m#ei;1Yv!iu&;CNpLEWqoIc%L$_7G@$HstpiOoQvF#dSgvh?4{ zvF;vT%3(}42w%KW#+1?AJL&YtT_;kzOdi4@R@m$M53>bgZ5LypfJ%lU06~AP_ipPOm0Lc*9L|#22F?{^>bZr5*N1&}7jjEU0!;Q@ z7ESsRCkDcBfqj^FW2^s5w&6QcZ~rv!a$Vr(&o^rh4|ZV+%G!5#3>k|At$MD)>{+h- z`i6MgPf#)qEq~@y_1y3Tk6)q-BmtU`Xd~PCDi;^m81M2(*o61m^aFjjVV77j=d|BA z?C9@O{dM>Erli!|Nc|4aFn0+J+y-hpOOi}rA-NlTAsNA>P?>}Bvexs#ILkDYkeJm#GyFi45jOeq>CH zd;2~6O|rx;sRS^4?>kbFhP#(K1`LirGaj)snoPLTn&t4kHjgpVqAs|$MdO3<>470Kcu@pq~k z&Cg~aM15&&1Q-5V{D7-1V>)#1T0&?+YD%~duQm>_US)Q}m;uvh4iS-lh2AHIii*Jj zB(#N_BqCS8smupy8J6w}r?~pUxoKsw^4w^|K;`l_|`9XNhuhnFY1-dgmjq&yl z&LD%B4@1uT_=k<~`^w77#(pPCyAh~inGf$0>P9C|id5g3<3hL!dnWEk2@Ab6z@R0anJ`_V1UI#mRNEO`OGAJY_V=rfSqpOK$0 zqN=7A0trRZ+w9eZl@+J==D5Tr1PQ6Jl&~c=5VS*33`XE;OY@>xH84244yku;FW4n@|+Dj`94Df`+fHtpbR`Yyz;WPVB*Lw zU%uSHT-9;$`Sa&ZZ!X>n{`Qug9{zn7&b9frRh+EMh<){PfKiEV2o;y+1w*gp=gSk! zhd*Ate7XF+W3MyR=dmOR2Z2C+f$k8}7(_!46;uJ~!#!u;g_~6f z5fK88z6|6{L?RFLi$r0=Q9?75=XdwR{ml@V2U^ho1ph4inKNga0BrUONEr()IxkI3 zgvtm*O*$CK3!4DGgUicBCw>%|1Q;EgDsZ*7u;53=B?;e!nv$g9Zmz7Z9$Fpd{^mZL znI4R+8hphj!019#SE@n?P{oO1w^1SK-Fblt@Ouk_)MF7Z=G?SOhvbmK=2-8()h#b9 zB@HLbGu%*xGdX&So7sCUEWHg*WeAWXT4+(^=g*(PcY>&e6#9_gUHk@%vYI0SJp39| zWG{1awtO70X<~F68YfZH?}bGPS)OPv+tM>IFen;T02R)$O{o6@q>}-?Rze^f8B1=B zJqv&@3>h`jm`}AQ+y#l(s0<$hW(JclFU~X_?%@sv=f3Uk_|OL!A#b~tf4IYkZ0EZm zD+Pn|Ia9}CdKQF`k)L(j`L2T}S|L&ln1_IIns$7Aya`0bV2~U=665%d{E?VxwlL~3 z$7Ay2qtRUeP{*0nXu3nltGx7<8!Z>gd4bP#|DN0RhNbcJk%PRp3G{yZ`N5Lb%|^q& zbc)Pq0UnSiJJVH|O+atF3$n=6HUvjILfv64OvtxyVpA25#QGKqKl1q&y`3xcnh?kK z<%<{V5v~9l5^mcYp*Pyq?v6z+w%*cuSD_?wcUSo}QXWZ5s(ww0LdhyXX%h8G@c-m` aAmg@?A0tT8=>v%$3VlcUcHYfL{{I8{Ztp4p literal 0 HcmV?d00001 diff --git a/output_62_2.png b/output_62_2.png new file mode 100644 index 0000000000000000000000000000000000000000..00de59c6dc51d245421f38f5b07c7c2d32f27129 GIT binary patch literal 16752 zcmbV!by$>NwC(^3sDKzKF@!%t1pyI|l2DXTL1_Ugk?!tL6ch<16(p37p`>F_k&vOg z21F!>kgfsl`uLr5?tSia{y6tOkHyUQ?Qie>?e(tpzH2RCKU9{dKF)X?g+fs)D%@5@ zp-AOXD3Z^V=m?~P^gne$ZwKN=?n`LN(QfZ`=+}4 z#|6BHxB7a`!Sd$)n4hGIO}B1w%%6QIGxF-S*CZpxCT-m@x{LH&p-usJ56`UZoxd9m z*}SFA8oTa~%vt-a*7xnR`rjPoePp8cLg!)TO|~P7{xYW{-YQ;m^7Z2|i+KC;il9?l zOLby+;|-RU4^F1oixgaTQe%^%RCQO6z|<5Yy62GP4jdb&M4^(Yzn_AsF}+|%q5Q8? z!fv2!Xv5&oAvQD#3RQelloW+B53q+jJID`j2=xz4*&OpT7~AP9i%Lk~4XXRpZ{Syh zCj=VJj0dsyy}clNmX$T%qC0)|4L??tu$%X|LX}-E3b~*De1Go5Tw*&DDOU;{r9axRBwJ zown%l^zYwq@#+*eZB}Pz->nOz?*1ej6crWq)Ch;#QnSHCCE$tE`PhilXD~J=Q3u(1 zd78?~VdOMu`i}O(D`*oF6UB&T98UOY6Ybc>%8H}Xhihrw#$DarbaZrSD=RCm!#Ety zXQ`hd7RMQj>oxLHRXsgUNy)CFg7H(n`wyCAoV!Ez$rasc^FK}Rnwy)us+O>XVNE?f z3`Vz%o1Z_w+xUsGu}kNj^Cc1ug!MVR+t|ViJ-n(>O7qFg^mMuU`g-j2?&eZ|TY^M% zTwJzMUEu7f*HW(^vC+?bexQ(1%rTY4bLN7Hnc1#sv0_(Azkbe=_q2pgx&0>&i_Xt? z;snjY_^?|~loG@>9!Rc7Sz1}S4BM0)T~UWK{ese5bZ2WK+@)2xe=9M5!gs3WLrQOs z7GdmQZ%jj1H%DTzTo!h}lDL8^ab3`X*=&ammf0nRu}Uv``QmuXW(Eq4J-5b#G&D8S zFRP`SFASA1lUtCXP-}NO`oxMN=jJRqFJ8>a&JGrkm!Z$XM3YmQ?>i|`8;AMZpUE8? z8_}iy|FN+DXOsLN-M~HsW-p_#?4DY?rzGxpoAKK1%HPK?b2ravlKf={6j7j_hw!)~H*TPn*etZ2J-xMNfSZznKrlG-*t@@&Fu>e%GP1*So9tl|DuBOTc#ch(&t^mB)UzZQta+5}t%88Qt ze_^=xqjs01Kp39>v6W6ssQs>!sJI_~{H>$o|Gq&*rL}uKEsW%+_kNFBuG^6p$NI!b z{rRl7i*ET1>hWoXs4f4D6!P5`tel^fk9IF^DGQh2(M`K|ptg7~QDRq> zmCep;aG^@&;lax8HG$`_#j=f7BQ~Wpu}*EPaXOW{0anU$GyXS+uCLwj*pyeSwMfW{ z5#d%k@M%o@W+#NI1w@p&D8--Cx6D}f+xWAP)7;er+qEYAOy{gzxblOhu1@$%#8bHR zlZUPk&MIRrzIYpVoH_3X#!2-zMv5BcW9T8uDDdP34anqA})iMN!=bawtoO zZLP{$Cmpk}SSdrBBeWh;TffUWX1i3fJhybGH@3=`i2XrBDyms0--Hv!_}Y%CucD5; zogAM@373kHk<8G3oeAaF{IEhwzTg&B# zRarY%x<;v6o&j6djtNQ$3E42X5iYs$UM`#klap7OjWb5m1Qit(k>Z6=r?Rn~DK@(g z6e9A_@uNA${7jK~X8St1CxdyO(vu%}kllKVNna5W5}K($Z_snnZ>!F>_MxSvrI7cQ z{p6oNGwJcRU5ogtDj$QgVa(jzoa;%{OmicJax?yqhH1n-WAc+Ty@ls#9;iGHQG>U! zW9FgcuS3c9)|xI%-*3+aEYEUrq(W~|&~`+0Z_%x`o5`;F(|H4L75#jz?d@&ug(I#fJ% zta!X<^N&BJeRTr{Zy@YeV{kp)ZoKJ+EiRVMa?PFYj7iQx5UJ>iVd5LT63b}vlPtNg zz(TD?j~gs|6RZavw67AVMF8x2R zhA0~h7Z}M_P4j5xb_CP$Jn!H}y)zvv)M3ub*0PRLQ`0s5xZZ1G+{K|NL6e}4sZxB+ zr|XR;ogvXx4?}&Wk=pv~ar~g3o&2)Y^=yMB;VZ&7Whv@&I*rYTpPkt^XYpsd0Jiz2 zkFNw9E^oUxy@i2j(lO7J41r22l! z|CQP3wI5>|?231t?+~7Uycv;t@(lyvASv?QW?9U#T?rPRf%|3QSLJPuOP=>>oLs-QNLe6(+-8~=EXjHCj-rDA$#%$3Sv8@rbeKq& z(4Bb&7a1us{{x5tZwrmNr=VQ26jkp>sa3GY+daM4&uHj}OdK~Myf%)VDsa4mA~!BG z36t3Iw?8rfpfB@dXip=Wo4_axhhA zudftr>==IAi#}iZFnD>HF*@;5{so)CM$Bzg6$CS{6sDqfcp6NPtUI;Nb#i?_WvGih zaC#=obK$ZCXHbf8?h%}caU6xom(f#(2FQ1fA9-E%T_aS_7zgYOdZcts+AGw{Td8Ym zu=cc*cL*NdZg(JL$8dUtPgwD;@~h52P7$2KW3SHn?;#s}w(jash{$o<*tp9{@bVC! zNUO51t)G&TG2(bf!lm=?&6whE)jt=4>Kjey137I_9pEbcU#*n!hbcy+huznBd_RiQ zrrdmst>SY6cfPCDSRv!RAyl#z^62_GcxdpO*Io7OaXFf-=LFMO3z(4G$8A^439%PB zv<2y_FgSX*BLnAs|noiRRimMiYOHYfZykeAXxQQtZd z%EuJRmmw%xMm5{)G5GUt@SDENZjt*A<;`8CDD!YQfKRp-GtT|dD3mxe>3qr0nUE`t z+5jR!dkPN5n#H}BTmzeGgk}?CIK%^|;L*1Sit}#;UI=BlA*21%K~qFN!g+9JYBv`S zglY!UjdNw>{;y%!f2{Y4JesSSD|_y&OX#wxxQi@A08}pS=z#OH`-q7k%jNqawbdAx`r3tDNNlS8&_xE|k z62>uGz1r6Oj$Ph6{G`-YGR{ZDW+?T8pqb@pwZ~AQaZvh$q`cYg46FV;y_?no{tumI zZaaxKD=HO~b1r-+ySiOHA63swVpw!XG&n3wQ&Tf$>0RQe%iwN*?S4sK?Y<}8?_duB zP8Odv6+QRym!4A}%$^TCL4Eo$A*}9MB!;GbaId&rc!Bz!6^)gtJDH)R?u!(D?AEQp z!9hl0%P7;&sX$`%lBm?Cg>KNGdqnl zb1O&ZrciIGzjsoLj3hG%nwqct`N@6hQpd1eEvC8oZp}(FkMC{>P! zMz_p10hrD6&Ksx;Gs*Zm70Y{*uK>E9Lm-tQy_a>}b|jOGg2uc%U1_Jy4V#jgd8zfI zm|BF8*M>F1^EPUy6TOOoEbOhs*7g8FTWewupP2}k?)(1o1V;QQ>bjZc)0PiLuEv4a z0YOf7YKkNm7pn`JwW;5^^YYrYYtGw~u~xVk-sUEA?52vM;_HuXeN?eYN%^t*o{Gq+ z^WFH8WC7gAb8o$0*x~o>9Ay&!)n^xwUHeH6YflYL9eJDj*@^Nm(q$tw~vO=cEX+m+<3tmz>EUZ&2Ix-4a_8mcHBqv zQl>2K_T+zj=lb_HhQq=g$KB(4N0f9P!~!;JVbAKF?4oVcJl7>nfZoH~O2gFqz;m2s zTIl)pj4vm?oA=9b{@M=f$UfGA@0U!MW^YFO*>4`8@6|w|f)1zGK-%nY= zjAa0MN;Ag*og>cZ_*fPuxQgRW_ujWn}G9V98 z*I{53`6zh?WBK*jd9&PE&ARQ6Wu*ZuB8y+fdJ z{&q$&O@pf_`dnGMTVU#s%gwXkadV7?ZFAzuZgU`WG7e06NKlPTeSayVNbNUAX9@Wu zBv_dLk@{kk^sUWy1G5JBBp&$vBB2y-`RUcoLH`nDE@AxWm*$hNO2SZ9$XXZznos%r zLcB%E)AoW~%vjPSt*!~*CQw4}8c_fe{_d(IY@s7OqNE}w6uCr6kHo^AqqY*~7 z6=Zlir*xgRX0`vJ)UHGsBf~cP|cR+&W@-KYI&NVfIQ)^x4@AZaf(xM zAHLbc*Gy-CSZs1QGPS$q>S2!vlm%gvIj7D@+&=92qsA5cVuuMi-bV#8x~0~gl`e#y zfq_gyUX?NkRCtzHAXDtXTUjVhvQVkMAsL7k`+_5cY2Nh?smIJFm5w)ErFx@Fc00yA zhpE7IVaT;zD_PFkR{Usir9QmYi*Q!a^Dxdb8oSfahN2pRwok4V1 z9QPTBbFSDb9X!qWft!6h$5bP(Innp)nR??h!@_Du=k)AsZben#Rb{)qJw4`If5)4D z{_Io|!KdP@+}tYcR8-!9H02Wx3RZ0?gTEx&G7BxN8Mxujt{5EZYN_D3dVDNIg7i5~ zbG!+Z7(`?-iPcL7b;`A3tlVK@t!ivf*{*syP~Us`jz^9DhI!SC6a%FZN7H`dan2B+Rg55j`eqZlJ#=2 zzJEW2ulyG&-TCtrnJ%bXHwQGry1`6f0$ph5eEyA3`L6-^)HPtyRQMG zmX!^pIwo_1(0k6_!ccDzzl?9dSG9RV8$dyl(-=ofK z=i)?sE+FqO3|_TeYB!f-b}lF1w#=tDTO&@wEsrBBHTAZ#nbkYOpP!L&(tcPF$%M>1 z*z}w`?+g`NM7Bw8ju;9v`M092kI^R1x&O5CP#NKGu~*mB%ioa;|NZ3i728v^3^2H) z_J}nId<%*Bj|y)AiK2Y?2KC}|MDX7a4R(xCv?(Nc=Dp?d>Ygjb4OA?KE|LDPXju+w zNNJZ_@-plh>^Ow^U2)~?Y+H!Y+!76BS7eMCy5Sq_ATRS5vB;waqS?pG?0+O%vkf4Z zJm*Iz+%GQY+z0G=jzn~SdWD5%2ePK(?*-|WF@nDJ3qYOHBS=|jOrQNSpN_s8Si*9C zX>>|r%i_@vgd|*OpLc9#II9maymMQ!yBJzkFF>BIgj!RC;uR(G{gUAwa2w`#-GO36 z08y8X_>K4*%5#8LZ{3=-#E#b>qXpQQD20$oxny!)O66*>G<*!3c`UcoIE<>Upj=qS9ocJb z&Wo0uFa5yXP&1$9SIl-0nSH940>0=w6F_d$3UvdBj%UxGNz09)`wD^e5d?{wf}<>m zT;wKX-;nUTh(_)!AbnxqDOxo00&rBv>b`r2vPb4Ss>AoBh$G)DSnR5M2DhG9pUgYg##dMzx&NB$bRIa^_M4PSJ;(ywA{g}y z8I(D=!~Tbk{2}{(!Qn*GG;ZK)^G^g*s->F>1I}ZcpWiWi6j8<0_|wYX|>9 zgP`_*B^zuv{nmT6gnfzb5Jy^cr7C)YB?t7VqFfEh1J+3R;PvXl#4W4tmKxDRTtxXG z#xI9B`@pa3^PM+qBTns?MMSg^aryZ1r>q|pMkBA20BO{OX9Di~m+<-$7L@qHgvC7@Ws*eZ`tsImp;hv-~|*lA|i;MQYccpuTcSac?Qxd z{Y>Wutj_D=KPF2|HxlS1J233EwfCt_E`vc*ezsKnnVp>t5%(`&KiwfrUq?ss!f=@t zpcK|dIYSNN;qIx{cnL|<)v4Bnjo8%Z&!6*c#->7Y0u=CFmey~SGMT}5t@qo*GWtv$ z?&Wr>_db>kRtDZqOBv&u!z}Ilm?d2P!-o$GrDmq4mhFj>2`p-wntikTkcQCnRW>sE zbdFc&kC&}x7WQB-?R8`83AFkfRmzA<%+TEaQT;YkZSq*V)Z>|IVHD# zfqc>Kn_g(#IJe$!u(Zwyn5E{EA}_qirKq~|wJ8@};+mr(MoRi^#hyd)#Cg6R@YfPP zHsFz%OM!vN3YxZ1+UKAKIt$fWdm{$SGsr8gm+8(q+wjN-8a0jEKY}A(J@9+u0;)sJ zR10EQtsjA;g6N9)YAiP+>HrBQFE_G#SHI(^Z9v47I2U^a)dR(_Ttl-D9g!fgFs35v=Fu;`s9FT88K$=4 zdVV|-OL*r&ppDcP6Q8tI^+{=jV0|13xu2r*O+wk#R38^VNr|idKC44UL=g7r)zI4L zy76QyYD!wf9eh(V8#aD;ot7S%VjUI9JE_pIr-8R&(unwUAz(MVq+dtuvo7`Di^%2U zC*;XyH6v4nDtrC?5emdGrM_Q$n_FIW*jAWZ-d`H=TvV04L%6?qgV5$vzaAi?e47w< z{+wr0%80j&(BUzkY92=s4^jPNrp;R;1)89!I2q9h9oc{Imi~Uo2uHr$;}yQ3*{R~~ zqKLu2xkzB_`LnD8p}qHCYBDyCtD~7IH;)xMigVPN=jD?8J&8>1tI&Sf=Z`dLTwNvP zTZp?-Fl6+bE`Le+>o8DwW?Rw*LmwbpcMKcf)`jU)*1_F+OXr+J;)`tl=}fds7|i(a z>Tkr!q?@9aja2fDl=A*#i0e4QEuS#4Z|Q#kqYNbWTWvM;T%F346uhGOP>hrqXn*AE z211X2S}8o?KKMZIbObp@{tF*!w<3RkrekXD*VHxT#C%S_IU0jHmh86`Lt^OF=$&J% zCM+IVamzKb{~_qOh(8N38J~gRF;2uTQ7#OfwYB9Q$|9+AFP2Y3R(3Pscs_Q=62xcM zaEYaAK?MxC;n6X7c5-94U%_Fj@U}UCsrtPxoeS8UA7qDg^K_D*zHviHXP#b_kl(&{ zZ(rZs&x=X(8w1;`(^e3LVyBNCJNC?$4|PHywAO2uOfNgnuB%Xuno)270PjBs?Z0Tf@0K z8KV)_rvCVGZbp*tPOe7ElFyPCqm*}f(U&jlvl&Tq&nQ?rMr*uEK&XQB2{(6FkqM57 ze~P;4_>p7~Z<)~6e(SBj^j3{yG2+e0(%Ze~2ft+C1%ghp_5twZBcc%`7x35vX19?~ z&!3Yj#R(~XF>UQ)-TzBbvoT}^ijF~SC*0G{ve@Yu%ADik7c3Tq`o#tT0yg*c1z z2NOqb^*W5r4G<+3?=zOsk`SAh#xJq6%Q7%9NDgiO9j~jLinD^i{k#Q4_m1LT22Dd1 zP8l2)O>ZyMNP(cs5ctiywH(IF*GB z25H~wQk!8eMMR)N#6X)dtR4jox+C5Wn}tx3W}f^WU>Iuwcegl$CCPoCE#gL(jy z`zC|_^DczGtn%_l5Y8})JDXSaQ>AzuBQ`Y1E#RyAMVNT6U)Ln`=l82UkW3pI(m|4N zQ}K3v0Vk#C*EYx~X};uK61aYMxlrX?Swmu%58l$2A@D*_osq*E{|-}aQQ$3$+KpVH z^a9_{M{!)fcu}57#Fok)2lXO?y=`r|=w1;|js9OMpK;gEynFWcX^u-6>ev0o2Omzz zoDQpum zPrUe#YeKW&L4ooBe*1tU1(aQhx$B@U@iNTd;RVRU#gAiaQeVWKWNtxJkNq z3mNJPYS4)$NY(=UlrIF&hPo~41m@Lg5XEL#VPV6TdK0f~OA@cvbqa9H%hVzdI+tU- zNz=VeascRD!25+XLQZt<)EM_5z}&xMV#pxeCL9AB^+T?Y5o41GXjTb-Z~O(K+rzo4 z%0_DSt}8{*JN2kpydE*2{!4-E;LFIUFNGdryIhmM0@p zH)!p}Ajb7`=}ne=BL^%04xo01_j1GVUReOwq8$01=(ngfYQRNaW_I+tj&qb+z-gWI z)$S7VHHO1aH!%)Bg!V_T#!4DKyxxH%{!5?kJDM^2ErHz~Qohn3?^Cdfu>E`BY7OsA zy=Sl$AC|z{3fo>F{dbTLcuVy#&mi0XI32HTORyFg^rzci*uRi^_O77xzP8dYE&&=I>vg*@iy zm^jKhXj#rDHfG?)ROYt{4Hq9ovbzQ8ZvO>vu}eU!g*xbXU&9g2zd|h!rAcq=#?3d~ z=L;JvCDXB3{S)V|Jk-&NBd4NI28-05oSeLADd2AiKI`DUo>k)mWV!{_j>X>Fj?7|? zKQ_xDKCi+bV0Rb0lMaYxH9K=TL*))B*qu2ZpUtW(eBV>5XJ!4l)AuUIT2#CUl zzrH>LF<`C}3+jsJ_{;N$+62MipppZD7bHtiYCZV*9)FF{TcxA49N_Bqe#f^N+=JtF z0>>kdr0cu7x}3iqJwF2i#X~i<|w?-n9k$MLzlc!JDW(N`^+?r>dE&u-dmVosIV86`8C5MFZw%Bb`#V&AU z8mg+FA(WRYWAOJ;Pq2+@9Ih^M()s5gYxYf_?yC+A`Pxep<1pCbTnO^#z{7Mxa8Tm0 zY6_K3K0EuHwfQ##$Q7YnMk?1TzeW>^BUpu8=G1{PSwTukr`Y@*_+Ut~rvhit1?j9s zo$UJy?FEIfa24y~Nhi5ms*IajWIOdm_J15J)>d%*gm>~R?}iupn%=RyjQMOLB~Vx& zMkb~b;H8lM*)GL^JOp%2WXu~WLIcLSW^k}>p!t#19|dv1gIFDd57JeY+Q=LD*r(}&>Q$R2k> zT5{5MB^zR;V_5*bBAMD`1$0h~(&L#+Xd3zWSt8&eqF5X9G|p-mM0*xfOA3^b# z!eK=AgqwphNl2I$tUY^m=}I_u`6WAIwv1q%n1^C3;X>!0AK3{3?A6pU%MqB$l=hBJ z(P=>cJ1A42QL*;)t7a9y_xK2a%^F|`hD;eFN|xp;P>{B+154r;e5y$s=C6Nvefr9-meu4dn2QLqCjrgx{D7|fi@QC-LRop=*nwi~NA#^Y z-DueB{r9e;PM>aR6|2GagVJ&1ee~gu(IB9Vw(3rsI#iC`o6H%iTmatn|AlwNC!N4r z5UCnAn4Df(hxd2<6wj8I0q{Z%Jhw~N`DY@O$jQ~56$N=8W`aQE30`>+n$3C)QD^eT(-{c*K*Sqf@?Kvzx*>`zD)RIU&z<-5P*@W^EY+Y8Q_Y z2omu|2T0`pikIS-UE_li^|1F1th5%qBCC`8mNMcOEhy2MS8(vdEPjbiync^h3xE2huPPE%=V@ zj&36LSWreu0Nm{*J9#4+YQrpB{X`L83|c;`_qR@VBkGGGMX<4C znAS!}at<-8>F8v;je5v~`XfQu9dl@8Ml!ppijhKAeOLCzPx^HLz@_`_Zn${d2Pp@_ zbMJ83Ae!~v8zfuuk&QW#E-zAKENfm;f^?kt*K5*z`FA};nzm)TA&kP=_*IP@&C9&J zN@M#QWnOz8kf4r8{r&q1kgLjWpT~T$kNL39BoaV>A}Z{i?vj?#96K`RZw)a{_?9FZ zz#QWAl*V1Az)vs^BAf)jp4~e?0ac}(ijWVOT`xrCYPnRZL`2aurM zI$Z5*B!#drR%-zD0bW7<2v#poG+GUp+C-$ndS>Bp^lmH+yZrh}QnNi3k5r50Rj=Gt zO1vR9phWSD!c_Ek;Fo8{nqiPt&9+;EB-hvdE39w#zMtT~BrR=#lp_4qF*Z&Caz=;` zJqK#hI-#GCm651wV}o&YbaaN-O!!8@O6B^6Wa~9USOld!N#xn{nD>{07$pOhd#+!S z;2fRfA}KZX5JgnRN^hGVuTCv2{*w?HnG(t*LY|_Hdj5k-9_mQYP>P*ePOs5(J#)^P zeVkJC1ZYgC+t(|5pVvXjmb4v84>1FE4V;kgcNIfUh+|lg56(uX{6YW=4OW;&DgVuA z-#h1+{8w$nScC1)qCrqfJiJbAI{>tSf3E{Vt@zpTtT{LVB#(MUV?lTNQs3{G7b4$J zbvPlG369*J<02qmA`;u(Pif3y6v115lY#Rs20(%ry zzk)TL&l<=->nU~Y*+`5=iT@s^^f#fmJ9}fQy}Z+S#`#c4*+B4#p-=R9;){VxcO;l2 zpp4}s61|$}@F0631QpjgEE;{V#zny8M-62SDmSdqN67^H{1Xu*4$=MwMq|%`Y{KEs z`MSK%?9Wmmi$#8>`qKOSP09cH1Hchd(i8K^@$6$*wHdN%S<&N=Px$xqEH3m>x^c=G z$N-~o>f3#w_a7xgR)!3B8^+_tW`D#P)Tghfr}(F%j(k_S3V8r~S7bq%sg6&N0ZM&A zUh_XxBOaqgh`mI~fkut{JrCI|eB_%v|36hKmNC;U_XJ7I=@WMbA_oOt@zHCVX##$Jy(Ixa@ zxt0nrJgSEb47v-S=tDp%|Ru*BGTPcV6csviyYqO)cd zcw6{2wtAS31?=@xJ|!dlF*7%+>>H0+w}pn*?(~60NeRX;FE8fC$c2;u^Ke~#w}h~y z%s&#e7aEBYOn<$|7)eSkd%4-g#474Gf>=D8M4*k%{vJ8H#-i%H&HvtCG*svK-< zl}%`9sGPcbR3W0N3>P@hs>+@|$#TOTf>w4a7Dz7>Tv%p9{Xv&W2YKO8U;ogKYi_Q* zVG5Tll-`k-=Mfez!5MR86%;&tbB=dKGCw!B2jmPSxc&3z4>s{uQ`Wzo0W{3wsi~

y_fu) z4oh8`OD}?6&||=@2Au-a%r`}sn!bC;$0$hJWe65TE_l&}o#WTft#F!lt!mFyN%36M z2a#&1)JC_;21pjRzfyc^rZZ)s6l!;7f4n}U#{#AH9ZWUHE zeqGSXdl6js-zO9DYxP&B+xtPoS%Z!j%kl3oD!@YY3e9jyvt$nbDOmXK0yn9djta)$V}affO7E6s>RBC5Rg24^5ip8!`sN> zb-%N-^(Y1keP$41vA?$~{Nx9vV(S|jKFEFh?XM_F>b^Xmv;ZfKSiZ z(*QwzRMyzj-*5Hp`O&-g?sfZW573m~9U zlJ9K(Ca?}aDEqd6Ajtf1ANOxC9a-XYAw8&&Vhc78fVwQweT%ctHTMdV9Tz z-@l*tJUMXx^G;s;W8L85SK7ILojKwzZrt7+W|gqWn%%#HR2-CH*CBUg2A|J>3~9Gn zX+)2-eISi7$owD)wgV}ewjFHEp6|^4M}aAUf#gWq!wv7Em67jtg9YzC5o&2}-T~}+ z4Gxe#Jio8*r1Z$bZd;u2y(+h*J}4Ke5P`c&% z^KM@A#O>8#=1oZMP-OM)e}MvS*J*nwUUREDfZn7G>4WWdWIIZrUIj?C)(#ZKGo|)z zj6t0CXWerhDlV)x7x6lUPhKW^EsE{Un@LL$3O_m59IRzXBZLvzYN_o%XA+>u9fG)- z0#7XTYAMBuIirWcajiybcV197 z0*U6gOZTA1Cu!VXGz5%xw`Sp4M@NU@)2C1Aaj_r})IzC$b2+5co_A-W7(l-+d{Q6G zvSgsGZSmvB4|-7Xv+agKoVQiD2HYO)e~!EnD*S9ipw492=hlMfg9P#3M+Jt@mMR)2 z1VH-^{rvf}^5#LA->%36ctGniUVxpg&T!we9j@eEohkAF>#&DaBN;hMwGWE`!zbV^ zEiLblyJM*9t^#_o7=sN2_7fJ?*6qvtB0~E0y;?U%28p)wfbNTHzr9jkI}46UR?Z z+KX0>@T2owbfHvL3$~<+@Zsaf+>wzHzI-zSENf*~j#tjhH_)--3e8DN9&kl$p2E4m44dVAE2vEB18q( z(n9rt;FS(UMRISg8wnDs@cdDEo4_9?m)*tpHml6q6P3ef=f=D;^|c`3K1hFb%86&10B)UZij`Yf9L*`FrjsQ9=9p0b&Ko&^3>7>nW^z z3XmVa;Ku(M`*;cL3Q0WmhcF02?uuv|UP4%xn+AuOtXJjgBC#Q7iB)ma*H2vXfTRoJ zG?8RixYUk$a{TOhkrDfVrFLi~(S#1nz>}0s?XNQ zftJg3JHOrGn*D01r%-H-rsVO{-k4sJf#-o^a|SX8`}+sw@Z8lm1yzJ7s6o!zTd)S_kNwG3 zgP{cIm;sx4=-}YsuXElVT_vA;Ox%)mrSIO3zLrDXxK4b3ZgurzAg0SU z{QUg=QJ2-kCDZxGPU_9|Ql`;5m68l1(U48M^g;DI=;j0`>b9dlz(Rs&@9ecB~i!X4Vgrky3&cA*#7w8{py z<$|z6KcEo^<5v;9L!u8K&+zngF5{7MhX!y<)6;!N+q2X%LO}3jsNG-Bm++B93>H$O z!eEyn4Gj(Y%;$sqb@Zs3eBq$`41+}ADa2MK0?RJV(DDj;1$|VE60Y-CV|aBPir1|WKnL5zZVptsO?y%%#b?P$+0>&rK=Q@949{whs=bW98*7@;7v8e7r_8l63V zo(cSeh}8a;u`x9L0+d%9fjrS%4yF=-pO+ejl09%0$Bn1k5*ol#LI9vTo0^)gnzkn{ z3{SVLUZ<)nUu}~Jg+5k>rJBve<>f|JCfGhXFa)}cj*9@R4etevLqIF(y993`3@!HC zs~CT=Cw~*iUuzBcZoEF%+Wlq+2DgAwR=P9T$4T025A$z-p` zqz{3n3dW2FNgFkd&Sb8(oA)?&=c$_m6yUW2ws;}Phj1B$s=P8s1x4nmy%W@JJ z%0l*Yv&1qZ`UYtA2!-r;V?*-IfDnj`CnUzUm8%Sm+;TKAb8AaJ!=w)7kCz}7K7{Pd zDJCYX`w$om6q&qPDnTNQ_kw21ReJ^=lXMeS2D@>{1s@?uZaCOqIv}s8-|OymL3;k| zk_6j#fv&9Yg+Ld0D8e@p5_p=}uvy1jHu8iDnq*&vh6;mCq9Z3Tkgyz$8onkczm z17|Ie!+2@5hFSkatd-4vqU5SkBGe!WBTdunf`Z-l6^|RBX?l2kS^)GvV`!aUD0SJ~ z>rkVqyBad;@&nrNU*x}fJdONE06ZWC{15*Nfd8i7nCPc`6V3mMSBeiv2ukse^6k7^ HhR^>Olz6H2 literal 0 HcmV?d00001 diff --git a/output_65_1.png b/output_65_1.png new file mode 100644 index 0000000000000000000000000000000000000000..fcc17b3bcaca6150ac545aea30dc9ffe36283d29 GIT binary patch literal 90185 zcmb5WV|1Nu7cCsyZrH}Q*@lg6G`4LuwvEQN8{4+k*l3LJPM>$2@%=huoFB#5N$$O` zbuG*_*IWselMzFN!-WF@0YMc1F023o0!9r20$K+H1-t@U!&?CS!{sQV=BQ|6?C7Fr zZv-N(=V)tb<7jE7|Jm8d-oebqnuVT&o|*QusiUK<12+SM)&KbhdK-Ha1}g16AK)Rd zw%^qqKtPc7KK_6f3ly1wfP#RC3x88`%{a|;aaB@&8WfnF@wkY@n)!U2`#H=X4vxBb z3GeRw_wVObr}bP5b&>ucZBz)QQbZ+)Ber~0!S5GNaZ=2$8=FMvqW)klQ)01 z_4e0zOyW{KI_~){p1m<^X-8oo!2G^`M#=D_eD(nQ_g@%@^)CToz-urN{w!Eul>YY( zH845Ez)N6$TM;5Km>)j_17SidSp44uI1Nw*MLu2v>;4puLjB)^Ce#AtQ2%}1c7XWf zkq-n69S_8zp`qX7<~9|%NQTD8MJiO{Gc(sW6;WZ{Z2!Fl_w>w64?II#SN8jhNy5k` zJt|zFf3(0`^E>$hqMe=H%P!G7=k{*r!w$S?1dd;NI$n2o_nO@x!QA4a3vPTuLf>BU zkBQCqxBK{vim#t-{~h5Q1^>&X5G@w`;twA$AKATxo4ZvThu6Q0=qM;%G*xXq+Aiz; z*grhGMXSd3?M{g!y+;XYf@A}9S*@#_BmAYPXLsOS?sgpbre zvp9!^g$<3386MA-wB!Dem+vNUS^Fj|3{hEG**7@oaM6CR&zvfAB_*46dTLp(LAR*m zK?fJu^Y#$&iRJS8dMBKr{@9`|3vfmbRRD!Fvx3~R*gT*d3 zebI3uMM2iq*M06YT3dOZ?=QsS@@3q(NyMTI{~piR*Vk|D?m9^9lcB(HlYCrkb$oI% z^jA;Mmy4`;qn6qCZ0{$t(z3GU76*zv(a2hXw@IJ38yACU3O>HfxHz=n8@K&b6MXU! zENpBZURhNHTvnJs!S00$&6cyq)zfGqZpV<{zqz}}i^0Ib&nC%8Nk5CDxw*LkC*Kdy zQT>d<8T{d6T{1#K;N}gu3=CC-gW_?0rOIU~Tn@$*vGxfDO$xtvZYBl9sup=NWCaEN zdzmOC zhT+39`F)*o`S*xZ2q-B18Z}cZtNzv1=Y)0{ZEfu;d!@FvHhfVR8K@sWeyCLGNSm2a z_4oJp4Gf^+;f)5sqQf8|4NOi}%{~+sl6PT60#Q^1{Vx)bNW)TL4DU=v4l&jO~w59NQ+`Z7tiX`n3Hi=CH;3uBDJ{=X+sL}F19p-g< zSYK?klTuLZo}75B9FU>B$jc8!&D=nObrXfn%_%7;Dyr8SibwBKQ&Z!xnPbq=(T!yb zWakJ4D<~`Xhhfqz)f$anG)l`*08#9_8}#AgasN>!8Z!B{Vc} zN0S*$CNj7>@t$X81*VslhUl8s?5PWBQDA<569#hMH;T0Mbn)-sw}9;MCyM9%@ZyM5 z+S;0aczC#6vngtnp|fprg2!Tk76T5FMz!*^&H)YrY%m1t3C!;odPheG@8h5NHsE7? zWV~6sv`9P-X785=eoQK8WJ1IB-%k3YVxJG8g@yl5@(lUEXH=OIx#c!D78a8UQet8- zAZP%m=jLM=W%hZ0-h@R)9$a6~EKw}7f4JOM5wGN&uSghpbQRnC9r82qa-%_fo7z_rZjGph#v|QGmvllz3yD1pC2Cng&XBs`DHx#7#h z)hip_|LlxX#409IG%GJBr~B>$obJ=7PY@6gDCp?DB+tY`$VP>P=mG&( zWUukRLW%Zqt#u~IiiJ`&@9#B(gy36An%3L9(E|I!6xsO|6_JlO2YK`6To-LO4{y&G z9_vE?bC{NK^^2^vnHhh;faBxi#6SMM?q3(MQMqZNJsDF8gA{xkCvL^x@DiG_(pd{l)r zw=;WFPICTR78XbrHQBCbd&;5Bv-p+0*j`tSGVmjx{{4syjCj)U^wIK6zCoGFAW{WV zW{M~e;em8pYq${2eTQh05!_0oV_OVQx0Z!J`LL z-z;JQ3OxWkLO+VaFV&%1DV=n`3JuLZLyuq(POKjdVX)o=vGAQNLLm5)DZTZf6BtD}!Mw;d@02x3y$tdbD@($A5V)nv8x=l%9 z;Bi@aSlEXlZqlDF(V(fg(ah;|>diZxdQRju-S+C9c;W0;EC9maArmnFKa=y24Z_Bo z$G6PhoJ&9&c(!v^k?6-cBaxP*k%mSjIX9X+S(?q%6cr%m%{|uQ9F-o0pe+YTCZtOW zjH`U+bV2z*Rh;=fy0zhP6)P$uh?#+*WeVNjiDb#2mixqiM?=$(IJB1ebyL?g6^y@m zEHBPPJvNUTX0%F*VGK7aV;q+r6)nR-m@s^N8vjjs3)Z>{68mc9Rf*V*xg)m*Fi}UC z_|P|Rd6AMKe&3bO6`bGo3^HQ#%-Ubqm!F1r>AzDIi1^l{D z|DCQYN$SZ;o24pwE~aGG#a#v#@Cx1BPC9+&l|^*f#8Mw}_oONFn%cUSNIK~XON*J< zf?05n!;EZf ze)BI0Z>$-#@ZfdQ!Ld=LgHM5GMZu#D~#P z-B>a{3Ol@Xd3^@Tw^d;{Q~ui;9=f2fC``hvc;@gJ9$AB@g1Su=G56$TIK^%+&hEkd zWF0!p6A@5V{RL2fDAA!T*B7gk{?$x{xrY0x@0IBbL~BS`!dw1`>CWFc4J=jmrLy2c z2-lmU2S(r+cQ>aH{%=A6rrtvC%Gzhwp)J*Sh(`j!4)jka0e530zm1?uZP18RtEhOr zUNLXrkSMU|Y`eQkz>{iIQRtm1g`y=;T@MHMdQkMlG20+~<>B)CMfBk~oWaAUW(WPb z)ZW(hupp6w-G8@1dC~ABgatTA;z>!y$3L;Mo&72?;~A%ejxmbg1(yYtD1h(aC%L>Q z3hsP&_4J&Pqkg`>SIp(OHn&5hF~>bKnn;FxycYJv5!X3?<>v6)a{K`Hwn%a7D-)9a z^Dk4|@_7nf4SMW;XuBH%vEbs&vomSSU!TaA3FYEG-NNITsdR}FZ$64t``$+!MwBm>rcB>Z6JZl8zDPNt#^v6 zF7~=Rcu}zjrW7*o1 zS|~BrP*8`2YQ6-t!gUjKKL2;@V%8Kjxes?2^{9%32XA{+^yEC^_hOK{eX?KmFK^gO z#fhBH%u=P+zWPgGwmEWjCnHkA%QBKFiydc}-$FK<6+XMx_UA>QXGQGuZr9ur zc>l=jY;Gm}(r9i)c33F^*(3~crCWX&OTyXu?``3WnbO?a^MfX-@fe*vF)1EBu8JOP zMW64qSs2wD6;zx2o`QY=p6Aysw{YYZ*aP`vbNdcL4fxwc>OGbPvTXjV!wtVjrHrH` zd9CFU>%cl67U201klNqnwi5W)kyd96>qM63Uo;oDSM&Uv8MuX)h+!rq{+V0%SQ-l} zY2i{_#EU{81xPljTbnLt^G52qjdwh7;W|a_?Okupf;l~dJmVdK+b29=i4wP$wou^( zk^B36ceSTU3zpR;7=FpBXs}nv=opUj*?SE`wPS@y-L+NyDrS4j+q;e~j*M?Te~g^k|15Xg~z-`HH_xY3tq zgI=`^?KJS@bK~GrAzg!;aQ$c3&kMj;x4IS5=u}?jsdaGC#(_BU`mM{xZk6Tw6TG=p(3L3fzR&zjp(njT`d`FI7|1fbW7KLdGH+{A(rlUdjIqXfG zQCqB_FuLNe^my^{!mbf4Iw(+lfdcrgQ_+CcLDrgSwV{zZk|)pq;n^2PE5S<4~C;O65%8ym1OkiI$GL7 z&wtotAnKN-+}yZCL_{z!G3Dju{Yb^5ka-b{m8f%bb3*|1O-~olkQ4kC`w(adj6e1S^Yim>rFK-i| z0aj8{l2cL=wzFdbx)HUC1sMZRFRzb=;PWq^#$U%LCsfqbxeX0<9I+Y|8M-5ea=uBB=V$8H3O=4=sx zlQi=&A4c5hq5VfVagLjgV-fPIncthXkk4gf2MKSx#lh>A(MRX@K+etEfLQX$_4F8{ z1E2N$oQZ<(Vne?{qolO7R!j=$vl!FIGY4GV+)#;#Y@)Ruo}cfZb4|+v%zrgEFVUB- ztZ;igH8(c{{fR-ghngDB2>(j%38Ix%AO>cqjPyA7VRbeFVoS!uL-6G-zOBN6b&Z-E zYt`I&o0m}t(K{YmWb)Hm?N^ixuMaGrA80?$j50epIXO=&XlX_0R9&zRjE_eyEvY?wz{A3F(e;QF@d(RLnJMSJ95Pspir6)xgZZJozD!oEN|}!Dli)uNr zxFW4#56#fFF45fEH|N&Y2HrAE%AzblW59qEYAlmdjDUWN{DG^BQrN>2DQ-p|OABFr zkG}D@CE@(MfK^dF{9Ay5Nta*hPS&|cqa`T#LgE!yWy>qpBphYE=ct?s(0TgNv;cdE zj*IKA(Ior?4v-v9P7Sa33K|+KdsvG#{&b(W{^XjhPtU}O>rI2<;Djs>q*5dd$M@@@r91ba(E>29Cy zrl?o@gpi1V$&g=qOw&57Ew>feN5LBr?IMvquAXF+mX>xJ`!hF}*pXYi2x#dG730hR z6LpfNW{CrFv`L1jNt-zisdX>4L*KR|& z*ZvrFo`f1RuG4P*$V56iZ>`LyF)=9Q(rLl~7nm*j3jjOvYV{xh*a7l4jeINz8XgZ( zGWucWjidqm{a(_PY2!|w%JsmMS|Q})-Lfa7f7ZXOXb=(C#{!w?simiRO7Y}&C1X$9 zO+Ueg#)5l7N#zzCHbVA&W}3cWS3JZALZDOLi~Waq+|cmwcJdGJoSYm`kOBp9C8dPd z2?1*A;|S9LXLbW1ebdm?iD?0>8>hQEA|m3RKRo?sCZ-zMGqkj{MtQXd>T$YfP&w-L z(5T<3OG~X&rWq%Tih7Jp0!1n91lD8sg8`S0o}A`-mXw_RAJ=^QrNEu!#zA7pv_X4} zC=_uIXq1XGv^+}zPRQl(y;{R+uco6T4=3i562P}lmX&}ZlamJrBJoPf%D}q-1`1$G zncZ(qwX{WC-<5I~Pd2hh41foj8+?;V|46x#7UTe;Ko%GJLCon| zs(8RGj`q&4(4T9+dSH}MMR7qshtk>-g!nR~IvHJKRe|ImgkVu zFo{lcsokS#-TX69m8ld9QSk6qO{x?Xp9!Fm`2*)md;7^k{``T2c!+j6#y?Z}07&X8 zRxIopxQD%XLI#)E13~`$|2jK}<;rO0H6 z#QJoHQxOrFDRH}<RKc)6l)7tNXg1{d>uZdpIcgv8Yz^$h+8^OuTQ*4Z# zsjaMr4~_gL(q8@Yb=WsxFeI`aFR+Izr#-*auhS6+Pqf9%m4PeEF&p5L;3vF4Ev;1@i?sW z0am^`5jz@}E$n832ifN0ZI~=ZN=1r{4kwz`fObxw+J_r@+)wL&3faV9%*T~!J^V#0`PbftFkpwDX;f%K7{Q1&@sT`By(lc36O3Fo71ax9Cf?N&L)t^U>|t`Wx2;2H!|Lc5E0^ zx;hmLFl71W=qk?A*E$dm7?z3@Tz_V|;_4AJ$+~?3vdt234UmwKz7=DxeIckBK5vf? zPgxrs*tP0CYAgOV)t`1z=?ZIAs+~I`iow=wr7!!fei2o|b`*O)70nFgvgz~YHoRi6 z8_YXfM@DP-Swuuj*CSl^la1g7KHb741CtMStCc=KaOhK`abRYs1q`|Z0s}K|A8BY* zZ7JVBkq(EXYm$~w!Czg8I~?QFVbMh6)9$Uhr`K$sq6p{^qD2;cL@2~ZMQtaoYsloO z3#VdRI>&kEql`<>XfsGKN}ZXx=TvxLuC?r+bwB|gCA*SdR9YGaL_%D4HnOi^&Szj^ z1?`98*G4o<`vUG4 z6lFzK(oi>?E11_uRw>j>`mlp`6e;NBP7DpCXv>xQ(6KS8X9IC@@qgzE;N0}OQv+Cx z;gJra_704|p1|&(ZxR4fm+=|cq$}I~L4Z2=jj*yU8*LJWf+Py8TmHlM@PV#BybSlD zvlkPGEER_XdqXnRAO*-g#t!f;(C>yEG4Sy1aeaM0c?y{iI^NRKh@CIj@WAK+!V-*( zjxKUIo&p`k)?E6JVOd0rLNE|H+uvCVcZ>}cP4seaXO{9%tYN*2!PX~!SAeJ|)yy58 zwXhBd(kW;j|HWqpPIs<83OEIp+wCi zz3R(hR#93-fMkHZ-Ts@y^uVP)KQ)skt+D`)gJ9IiGvDn)!o2f@u2bKtkq?yR<}H7C z8S~giy|foVevQLs$JV7L4fs!n> z+nn1wl>=-W*iBLR*iOZRRL^{Kb92=|?YO?SY?pr$EFYxZ`|2tikX`W zbag|rKj!_&vU^FF7V#C-=ScuyVxg39ti$9C{OHCwQbwe-_gaHxA(E;Ywok%1s%9??Gz{ue@%Y|Yawu3S=jU0m!#`!d!Swp#gd3w zR?WxC@tMu!qyN53mHKOVz$>9R%ML;Ph zismC!qI!vk*U~k6R=DW^o+mrQ_q&+|4Jpkt|H=vyxC9iEtA9#LYsR_k^xE1Oa1Nft zLL_|7n2);lX_=#4rK_>I@uDhcuSlU>dQhpYII(%)acRU6{lzx)S}^B0n|ZwsbD3C= z+M?ezpCq}czCiJBJogeocDTN+Ed06R^kOpEajj)R^`TQ(I5ybUS*C>fh~V0K=E=de zbY{{cSHGH3Gd-=ZDq5Zhg{Gg-zfasvJ<1!S*)yU+M-K-{R5-wMwy3Chg9v?-HDGQ9 zl-Cph1prj-$sCsyIl92>ExO0uX${A-#P{#IA9X-XjK`@mD~2rf4&15!P0hcc8)OMh zmv1m&n|+EXIc4@okVhp+dIgT81``(RbYs~{M`j_?-!2n#g!AEVUes!UKH($97ZemU zF3OjEfG2D%Tff<;rN4-sG4VH?Sm9U=D@}PnuLET=4VAPe$gu^i}AK?B^r|ufwwA~72(3Vzz z+9||#x#-(ATWjCsV-T<$HEGOV8+x*0%3$yNOw4Jm#X-HyzpJUK4FR)ZDG?D!T?g|l z9+%45y%Q)QGWBKTsTq3^-=!rF0Co3K8T0}ybhAJc#HVI9=8ywukt_%CMgNZ7ay056 z-j8GgZx4B|Obr_ACvYDldA={h%+Y&^S0YX%)R1lI7=sZgojOD|t*!#!B_*M3^|5Vy z0sRIr?fW@w*fTmB4v0ZI`ZQ4~jgrBWKC0iU+9&(%_2&9otFl(oii>O=blJNdp13fQoegh3m*iCb*Xl3;txW%4D%p+jl(R{J5;@yw3T)meyd% zBHu^|c7KGuYvH-~`Q>}tM7Zz~ImAe+Z^L-R`68U-D)lL!nU;RrRSPH9qMx@{V~jD zK+-+cf*;qR!TLKZFXE~?X&;d+WmE%Hb1!PK52kH0TKH&NE2^jD>*k7}n>D);be*Y< z^?5Rv>*F(eVuI-0l;Ilh^I|z_S1HT%?-Km=J8BP?AIYvno(xg_Y~59|I=ilR9}da3 zsI^M#ryP}f)9apqJ2MJMi*kSz zqHdC35^%!hvuzl71# z1qZIa-jcFgN&kjS!8E~DCZr4S80yJ4bjpD{_7UWLxg-bQnGD)viLfn%;dxccgn&Ne z&)i&zDSudrgUNSy_BU*9Y8q2aUkeb{E2*oOyu~WPUoBCSmO5IZ2s+nY$JrJ+Gm)KY z3m%9P7Oxh2*>m1pwJ3eUE?VO}x|b)_NtB|*%H}`hDIanvK&!NE+cqSRiXRT##L0I| zo5Xpr%aIt2j53G^SVFM+@TT??5(LY{a&d{y4gqkTwbA^i?b^nJ_ zX@mZQUSq;TQ2MhcmliLsEFCf;Uxk_oEIuC-pj!1KkLOpH#()JE~+krC9RB^ znWb2&6o7;yEM<>7J!~e7@F{Fy?-q|jBQ3Jtnl{hMrJ=ok*{NEf1AA}>&Fgyg=ik47 zX*C-o0CWOqG_bWDQPIhzzLuPN^(R-fY%^aY3wQ{QBLWy}FV$ZHBr6PgH?}#RLjxlN zFQY*aQum|7$mC80JaA)M4TyKKSfkW;Eae*waYPUXgs7dQ?}OsYwX}*Fcc5ZXZA;TC zo**S9Hr(qfT1B&0^Qu3VpEV-@jDIv+l&6xdl@(G`ADDzlhJ$QjgHB5`Zx zM8=*Tp|p1(pA;`{=1e{>b{$)u$FLv8*%tYDK~!h@|K5%S62h?glcp+w_Hex zZE?ZTU8g_=ou4xH@DHng+$;f@xiJT92|Ep_3Lw#IA!KH7#Np>(LQI z<{ImD?$+gPKns-0=fQq{J|U7IGeEDeCyw||Uk2h$S+)&Jwf6jCt)F|thn%@?>gY3ArB~)=Zh-&2T z{&LsP$IXR!(WSU6Hn+&SxUeK5X(mJddmu<=vP@em6er`mRG745AUT4dQ=ESthZ^o} z{fm;s^P9$DGjl5i^p1laZ5rbNfBYcvC^H}>*#%TW{pJlj2M2>0Tn-u5^rq|_@gA4M z1_+!cu_+H#I-hLmDJ%CoMdm?xc^Lg$^JFJbHEi!3fWk$Q%5+w*)5lRX-6R- zA(>px0j5soh1jyxybd;DEvjD;mXJj7s)Z5CsjCE?GHzZ%S`V~f8Jco*JaH<8JVZu@gu9K1?Na>>Ak{0-=jcs%S_zHqv5SpSNrdrj=K_MkBuD3sy+Wb3f z$vL8>aJ-SzXnvJY&Uf$WACRme?Ln-Xkq+(f)GG= zZ_iRLQ?Wao`T_!o(o(q`$m!`P_PE&C&WL#q^rQ+kl&EEc5T8MOI;Z&v9dcLe{2k)! zM2j;3IqOReSFCXRz(585P#XZzQE?bU|NK#%Hhsx(UoS1CPGa~Wqo_CwyO~PZ|6y<0 zfEWK zLk0<=^fc!fyDcQrVPHxkl3z$GTypxFnNK@Ca!{|GoL1iKuwU54og_cZ`)`ZLOU?xA!ZId1O~A< z-)Y5>YlqY#KkefeJhv6#%z00UT}wzvsMY90a%Un%iuPivYJD>|zbJK!(r>`!jB%ro zmR^-FY5Okwj`1T~kB^W9P_Z!-Z?#{$7iq%4Ob`GdIAhjRLw+)zU_75N40ih{z&6;W zTH}n68EGwOenm!i3o^f;V^7HkBYwD#W7D(O51gGL;oDCrCXYKyUfzswceONx`Zq1n z)eYPj%O3(wIiNsL^pn+Iq{XSzVcE04_C-~7{%Y7Dmz%4s6ec5g`J<7KhAU7li#;Pi ztP&o0OcH!H+>#iKq|cNNqKP^8V6h*|X{V6AUw>;vmLgNM3+Vsyo11Z}m9=Hk*~d!& z6=OqY1h~tu`E$XFyDxmNES_zO?!5aCg%LL7{q~9InR$>V0zlAAsLSN@xd5Z#JCn7r z`4!QxU5~&?!X@UP;oZHw_yAR6QDY+(Anyyr)*0#xMbA7Jo9-wIDx4QP)fRuQH5rg6 zEld2V>84pe<(ao|)DZ+s^HKKmO*5;6R_M8AtljWC45<+*d&12lzujpg>(bs8(AU z;3_HXxeRM?1_U+05Qo@=eu#a z3IRY4e@eRJr&hkW|Lb6Huh#C)Mjj6BJ3~O_>mA^jouXeOawjp=S z?$}12w1?OAF2&G3}3VYeSgeg>+s4etyiCNYUWyqsSt?=a`I~XK|9M=@GOIJWODKV08#_Gj9dHr1Int} z{Xhlu@M`Oy8F`CXH8op~7Dew0x$Sp#`@0sa9%n=-pfoT;oo;uS`-hVr`Od+7!@mw4 zDEWE9FU7Rj zF#GWMExoJ;%(Jk6n~w@Eur@lwfh@GQwXw#k9}Raz5>(Uv;4oD+mfs2rw@Go+L1c<= z;LiEZt2M2Cv%F`?T2coo6t63wg(HSh-*JOjBpXZd$Nj53S#W{x5V*k&r?7;Gr997kI}8!Nt{j#m!d8rIztp1AE^ z{$nSSru}_m0MCDOYoS9n-sua~a@`J;!GmiwS(v_^*E7t+EJzOWJwdm_+d7!z`YiAT}0~Un{E+S4)5fYLbtP zw4UGD%Q<00+lz##ma|c3E5wPWw9+4o63#i{#~ku{wzDW??m!4(S2V7r?BXwP!U%W0 z6-1GEpeveb%XQXd&z(OkY>Kg&NJB#%Y(A409GItW=$kQ5T|Ryr+iRqwxS*PT(851) z#9*MI31_od&}C1*y1v#26wZLQ{O(w-t|ip#*+#f%w0E8?0hJ^P7{o5#w2`HHI7q5# z7WFHaY{k#H(!-!E{&m3o@OKD-ISvOgXH=|Dm9T#g8giJ5@k0_C8^P|*(}S1Se4AXT zNoE9262HfihDxWi*O<+ccNtT1noQt>fn~Je&EuMB*`p|y(EaH0u*cv}?#q$OTqCHX z9ZfJas3f>W!F=P-4qrQIoP13>{>7L z>GSJoa2WN$K*87(`Gew<3-yf7KZLA$uegcZNwZQfeX4Uq2EE{8QiT>KBVp9Dh8Kdn z;?OT;6GMl#VgqNkYHbm8$laCfdxDn9UR_>RX7G5u=WNgmXr-C;dIEGre5DGZ?#?>> z8XJ3?e+RMH_bIHc=XvlB&5vIR!YkeUNMTL7z@Z<+DwCFTQjCrwIYKjkJd*yj_8!I z@G;3Xjz=`kymX_`aLmH>g^{i(^yS_~m~Oez6CX83klEzzibD&JC#DGk!Tb%pLU4D) z{^$*1R+ajJ*9rvv<(Wf)^3dbMP=K;)sfSKo1R$wDb$0*?nc$UgOTXLOQ@oz{ zficO}Ug8jteN9=TBnc!XCDm*61J~tj2O>Tp;O%R{=p-3xcvBbrJy3}GhQ1s-Jpn&>!0-F?$>>t+g?q#RHK0UbB7Swy(sGY71n8S6 z0-mL6J@7bER2-b4hDDu|`kY_NCb?JPLOAgCAg)n}y*2|N7-{Gi$@0p!Ay%UTMGsy4 zAPLlLCD_sir>9)5&>0#w7~#u60|LMI*hncXEe{{paAVX%F?5Ebw-bE;>nOs9ZfeEq z2!pN3A6Z#b2b(8RK}wq=)QoUN!8!q*7*EzYF{7o~3!tdaCbP0baTS{rzVf>%j3$I% z?D#11?*f1V|N6vu_Nj5-$6DMEV(e4I%y323ZX_Z@>nXEnglz_bC8JV}%_i?{5D;(% zpSbj?Dl7S(?T;$ZnhY^(Tf~EtC5CJDz;TXNU9{67UxDQ^|GKy{4T2jajND{WdZgR! zp9!2=_z5Do2#KfbE(B0Qkc5P=5#N9Kmsw0^k&(xTCeo z>ZgFRTuw)hflKDCirB;Q+Lsw`5f=54l;G}{OX(7*F^93GjMh#qu3-7EZteo+iRCrd z1VuWmYAWe1yUmlhBd@Mq8upwVX_q#NruthtV~kRh+|zBTChJ6^SJHV@X-c#c0+25o z;FDu;Y!XTpNwm^RX_l|{6p*Z!187&@2!9UB7`|k*h~rfMWEt*-=K4v~xUDcWK=uv6i4d zq*8%olNg8D3(dTCFjj1eo`L^?Gr673oV1eFzqcyuOZajS6%Fhj%jM&HBx4N@p-SR! z6r_$DC(&z5=;?itD2M|{3KsWzhgVudb~`1a;!NN&P}SS8e@%n z*^1R3JRop^arxrd%;(1^m+(%O^@j*?%DI(FCefrySf({8-0TVr*3bZ&m0>uXLy6#C&r}2+pAiww<564&`&Pz=S+5^~lm2U?Qt`Ov6tY zaA*`#`Y&w2jvlI$-~nr5(+p7N%B4l+XfD&aKqi^=WL_i5#PvTqq+7uGYNdePHi!K& zJGCAk;^|5DvP3*2jM}^wL|_4cAsG4dykR^8bs z8U98KA}6(R5#xC&U~vb_Ava!y*3<#aM;s(}u&r1^|IJfB%FMB0DoRS-qnQF=p)W2j zt{GSWBM3`GAEua9FW2(<6|+uf^-!klnaCeQ$}l+G=FfutVGqPlbZ2A3l)vVwnWiVh zCuh(uZAleme#Ld^*Hl|BGb0i4M`%>+58&C50)2EzOB%HktG73b>K0j`B?CP;$r?NLMEM71YF?*;Fv%LuOMjETrdI~A-kS@kDh8^SxEG@6f^1F<_)#_ z{czXU*K%d^W9b~x0T2gh=&N^1v-Km!l*QK$4QFROX5^-pHU_gML@}?U(RaebetCmT zdJ~8cgWLy1bLcAJece{dr>~Vb+VOPX=4iSS=Z58l$)3LBn6fX~3W>*({UJohg1}?X<$)tyWy1XGW+{ z_6ZoGy<0$S$1XTzEneXRE0e&|=@)S{Gc&WXG`3N_)z@7Q!UE)XjL5=+6W6-so(yoY zAlWj^Hse@xzuL-Bx-xCJU^i)lO>4GahAwPsAFrrM#Trj z1$eJqg_7pCr;|^d)%SZ@waXH-$0YR^C7@kaAp&m>!N2TlIlf!jeX;oAMQGJf0jk;) zGA)(j&?}ytMHp_FIJ7E1o@EnmX2l4yb#yRNENSqGn`tLOwH(G$O-iMfL$&%M7|lZ` z{6{f#9z(RjR`C=+W@sbYU4Mcx5y)po>L41z_wd&j04PaEW zwx$L2A%3)@2t@oDG?mRgIci61BJP|=y#mflziNgpx6>lP>>Z&L+Sb&0^kaG}^t)4m zWf6ZCT=k?DlGOz-<{sr<wk$a#rheE&KbQq%tXg=C}+kf@`)J*bRh|O>MxezYCu&KEp^mJG1}r`U~uF zv)KRnPT%=rAFSWMKk7t+72demp@j*Bo_so7)NQF}ogz?0HW1QQT8HrA^sF`sbC=mY z)LIyDDv>xtFxgoQ5`bdhnZ??9Bvv_&RHZ^g#Mqb|s0bES?MYvR+#53lu)Li4B5AID zfRodsHu-tC^AmPivR=*xU&P#uM*CLyEf(Ah1hu+sda4+S7wZ0?YhA=#Zms<7W`<)Y zPD_O?oXaIWJ_5mKFrzuNrY1TNZFC2*)#ktpZ)(uz>X2Xr$8x;X&=@ixk=_(l7Myk~ssFwGGaPo)+f@}8 zmV*=98IQ|MqX)-A(13U9Pi{_}XeNV8d>$yLY6mXtA~1v2)QId6&P&BqzAJXlfpjL8 z-B4-RQ}k|P^$JVvjuh=O6%Z7DTNoC?R~G(n6J#qIxQMK@M~v)BfIdm)ti480R1^wW zrUlbIU8(_^jrAHevtghqNw3y$0+u~Y)K)x-mG~$|>1j*0Hv^ST0Uszp#z5SjApWpb zEU;FjReOLEX-u;i2zhC)?--5E04x+lfHzG8D?AM=(Wpn^S9gRfyB6Q${&8-=p0PY7 zhL+dg`TYD_>-7E^%X~X=!ooN#kT!CWZ5}$T!1(9QN1mqZ-c@+Uqra{XPj-(&KF8=L zTIxwu6Xv>$D}u+PmJ`kN=jK7Ok;Y4b)6KW>-Gsgc9a)W;JZ76M;dhxlOo<7%t6IN% zjJiO02cxZ9_INAxB}G>y(8Ujcspz zcpFz`tUt27x!$jZ&i?HE@V#i_izaFP3D6Wy>sfM6Mf;uv{klHR6zS>kdj4<$5MV&G z1?<;5KWqR})Ea?ZmGT94u$M^^IxAFa<$Dfb4c5U#hG}z-4gI`S&x@fk7SaUj18i|3 zsD#qo6YYO3%VK44QQ`USTc@!)%xMd)aYjF9PBb$s&^y>_(haDZH@%8B5B<7221i{aPW;@pi+`v+zN}?wf^yh`-xK~N8 zq$umIZE&wo9wK0|KV@~k15>B!yZLtoMOPdQxPkGk(Fd*@IY1wYW;uDt$j&NB>BSv^ zxa)3W*=#aN2rTqNcex#84g$Yb;g4LoX@kcHlc-|B@f!V+qN6CTN7S_DeLFS!KQi>Jka!LtYx}yd&B|saR&cE^{ABX* za7)W+sJ{Pv(P?rZqv;b0P%%uN54OQKab&3r*^*|DCB1TtJ+sD?IEPw3K?_0d3v{l2 zBc7U?Z}KcvJ8dV{qIZ#-rIys^4bvBmoAc2wAipxcf z)xqgn=+#utCc|53sB08K_~23vV6J6`a358*28|Wxi$*bzh+t%w4|}saQW6>r?r>St zo|A~?UUPeC!dQ)q-o45RPV7sRW2Nhc;_pl@(V)Q)+1j5kVb!Jn;P=V~Kj{ShOm2je zEO1M~>-n0&9o*ReAf#`C!(%-b{4d3-=I3A$+!g>t=DRP|M zmh=Cg-+#Nw+BDvpX@9I&Cp(Ws+E4ZKT4a>BHUA)KMQieF{RWW|b3l@iB)9y1&)-#4 z%3{aLTg@zAFcU}OZ?}m6o-cRsX0&z;=sK1f#}^uIfZuqb+ZU1*4O-opYNq83W8jSr zl4a0ynSRvv{}FYTL0LEN+Xn+gQt6fyDd~<|It3Kz?(Xi8lJ4&A?vn2AF6p@FhU-~= z^UVBTFwXD_clWz{#&LYkOfBmjk2d!wipx^E1{Wu$<2F$o7MGTvyBujCs&y!(%OTZ7 z^peOX*Z)CIme;enVSDiQ&-ARwLz_EcryjO{3PA){{h}i-2h3RI)+r7*TsUAE*mL*b z(jp_*Ko<3viWV!;e_C7b!ct?NeEH%Of*-Iu&)ATkpKZr~720Db4R`IKDR2@e(fmPA z>IaOj0VNuqr_EgbOLhDyi@gFT)aef1>W<8llA3X$&{j-@Mp~0t#51F7o`EyM%k<@_ zf_|OH?FKx|iwGDjDF5g*^LBoue{F@q=B0j8$4%dtO^{(_=#*}F5_ z$GkUB{x9d$9~gPdmOXK@$uH#HaKgLoA?jq}B23jM*_j*IF%piG0iGf0YXwAOz^4Bq z(^0K6gVh4njS#$<3r3jUNfg139q^<4`ix+qT4o%gp&B)RcEwcZ-uOl@F`@x>*zK|q z-Ne`<=AhHyWj&8Fq27SBk@2CanYAOkEX!>+*7G2Mt;{i!Dg z@jU#02f|Ygr?bs+>Fci)R3|&jYK3F;mUw>0NW2yN?9Y5Y+3<5yfi_uckD1wcsWKY8 zITMC@pOV9wSAs*1$fa1c-AyB$@^q-nGu(H-FFGz{iN_rrfTdJZw%&$P$%rNQVpr1j|1G z;WoyfvI{d{EvtnOtN2x{>(xxN7LFHE?<*4J^Ze}{=C^j;Sp717tKTEiT$?NEw;unr z+*sAu5X7Srk5U2(iyvTfCu6mZAs^5fCN@k{`h{gYE4=-C*djO62m+zY9iW)6u(Mm~ z(BV13I-Tuct$&bu6UlQ&nm=kCbAPS?j$zi`f4ng7bA7t4wL_X{QPMNomMkLZu#grO zYL1tMA4UmlAWPw948Y@xf?P|H;6VGAUhebGs4G2q{&psRG-sGD)gqb#;|1e;R8$_3 zu$o_(p@addld>2nC7)8hsZNcS*$We_{(Q}p;pI&xh{H@qvr7zB8?t0q={t);gB4n@c2K@$+Rz`h zLYrC5R31s9X8w3Okuwv!CaotlXrymZA;)q#l+$eX^DTL_3&8sJ{boEk=XeyjAMMnb zJTz9Rit$I~`@1;bm>xvUFs@N`2p*B7c_r&_jzCY4@E-AaN$9xQL3_r8J5&xH9-YIJ z&tq=%c#4j6$uKX0?7;+f$EcXhsN+9i4{OA5_GeJiOb*Fdt>iR1oCj-$0K7P98% z*XiC2E0)F+8+_6LA8HDz$JehGdNORR>;Dt{CxiQkRp{}Zi<{f4M^Jgg<(#xmk55Xn z2NJpWVnQOLy8Y{(4iC7`HCbuEswMYo$RBzA(F=VH^5K#f1cUdXWXEuM#{;5;ExrPol&tzB9UTCE1O=VKJAkF$sB1Lk|5-kQox(h#XLv#u&ag`T6pf{VYJ(%uE zLqA^bLwj%^E}SRH<55JH;Y&?+zuVoR6+cpWqEL;e6N#hn(b-J6+nahLblKLe$fjBd zCCAqF#_}uvv(EjKuqhY>3oq?AP?Gjqt;Z-R(h#;dLH8Q=`py3V+fk-|*ORSs9M)3!9lv|0~JXL6BW227y zexdsQGE8F~M^(s_^C}o?flMVS0mlc@j+&0ke9sb)+fLt_~Aq>D+1A^<(GUIU~Nj=-0f zryyAnoP?b1kG8pZwW6!4O458Y+-oxPfzTb_7yc=|>jJXU9A9fX_o~&h&z#mc^V!!- zFB)^M%=97A7lY`?P~uj}*|9^|KzueINn$4gRN`GcD^~fv+mjXAB-1OZU+*b3 zm?NeUv+m7?gzJ=yG^*q7>sPDdXNr7%5n6UF9(RU0bMgX4aEp;G&9=!fK3MgOQTjsx5 z%gaq+;cLt5ffgv%~vMy~>(O zL&yw(FZ7N%vh44tU(I(TaN(x_n@5=OR34|=p0s}HbZfewSYpLR;LY1^vPnXcemcMZcJfWgiL)NrrYK@@(df|)A(Yt7 zt9D^lf8KulKOZ6|G)Qp%b)wc6{^{;}RGabogz<*LhSR)EB!c}El1#nYD*Xk+BaJ5t zm%pV^gye-bZ%Lc`b_h@dTVm(FYZF)^8L9xAs1mL zE;AP0&RzyeGo;M4C)FqInSG#^SBRcV#iu^bAZVWNA<2> z^M{7Arz%(`=@y!o*CIx%|7xb1vp+c~QYb>W+9S4>ol@`>K3P_0pZz>buOi|XO4{G* z*>tFqoNWB~4;_#H4x_LX8K!<(-iO!)Z44*_jX{x$!l4ZGz)^F(MpB&@)xUgaN1dLP zufCqyEu`am_5STvd0UvZqUIcpu3+Jc)C&AU0*xJ2E6ba;RDa3_Lu&x~14uD)8X81^ ztb0)&z6f=A@-jCRf#wUYA4%FREikZAJzX`fk+nGR3Yku*$wZ0YzQSTM#QdIFIP{6Ubx~T8N&X}G3T-=9##peUGla|I z{@*9c*0=0mk>i&mr7p)|Kyb`cMVq};6Ldef_BX;bIel^{*h|%dWPMgu);WDOY6#B# zb+f5Mb+ZY3bCILm@(Q-Hp5VwU7ntR#DFlzbZ#=!BU=x1WWrPv) zpWI5hm^9p8lj}sKE?rk7NSQtAeMsc@K>g25g)5%-R;c{Ew#3}vU~Q~ZZN`7H&oAQ6 zxPUN5R<%^2?f!tq#@1G@P+raR=?aN}qoPmu&!4rNic`!O32c!trP z(bvC#==h>b6^{Z=30>fj2osi&#N9Tb@~o07tgc7F?%s77Qy1?skdO%m6Dk-(Q1D0k$0MCg?mste1!Da~ zd@#ALtTy@FTH8_MyP(N|!8m;1Ouvy@;zcG>A-UlbkPhA|uA#cR{(df4C|B{+`&{ zHWbLxXBryp+@r0)-&WNcFd_L7wa@?Dt~1Eh7U4Sqh^z8bFlRz}oW|=IJd^OoD88w$ zsf$Mifd=QqWEJt(av_n>$B(f^58OqdyW9p?s^sFN6cm2NWle*XVuhyl!ar0-fOGa; z8`;}j(J_RkD)LI(ZJWAMB_CSJH+{V?S=Sk=E&bh(IX%56_yu{)`H$oQ(xC>AN3aFo zv))vh_kBNDb$b1@+6qIpynNcOP2}yk?9H|QkCY{BJkc&S3(Yyyx!@ijTAMk zYn{o1yY@sVz6zYU1xg_*$6b4J#iyr%#|~!SzQIby(*tpO6adx&n?UH`w{`@{*0e?8 zL@_!_;HZ4FlK5w^+AvaQvcB4)0}(@i{`Y@_F_I0Z*Ub|R9J}Au;^zAOU&4bVYwMrZ z8+3xW5hrSXJ(VEq7F{tdpK7!H4D%iv8$6$3f4Lz-gv-r;5c4&smcNUb!!;L~caqnW zU>BPmvrw+GxBb)*^;#;#lzb9yZCi~qor<*mIr(D}(BTB6C1l_0cAB>bYj<>6{Y+0f zpa%VmD@cp)b#eJdfmWg&A9!AWyPAyUHuG8=iDI_Xa{lfi-`F=S7D6OmUnVsNfBo|c zJ4emR>?_aH`5-CJb;f`-VpGWgrNTKNbf^x(TuTcFd=Nh^*d=dG-~VY2#*z7qDdv|+PKQ{D$CLJxAjxa$+pSQ}6Bm%as4jRE3Ivuj#w zvlGS=E1$ydFi`E+6)SMTzWG~GbK`0jt_l2KQ52FDO0?vZluSUQ)<>E<@!v{wqEd1w z=p(;tqrr^z9mI?NHa0iLFDR@*ZxV`#y`p`=ZVjg#weaB1*gT81;G!Vp%;@ehh~Rn& zDn*5^$M%bLi;EZ86YKnjDBg}^qUekDK?Nekk*{mvkAkfY+$pgNZ99!?9Bb4Qz$GJH z(O39E+>mR=e8yp;s@McO);u;f%~7t2fmScUy_kxQ3OTgMQawg`8*{q-f^CFG(R+sS zQ!9N-#5z3jU-N=3^Y}8Og6XrT<^?0uMLB9rsRox%#@JkQOMsroi%GLCsK{YdD z+CSiq;Z-wTkATvab9f=aG^dAA0nmLUX%=qWI%sK~#&NZr1&HJ#v4Cd;MY&8j6GxMQd2p4@`j^BhQA6mppY~BD&FJ{Fi%@kQw!t%;(a2 zV~u7ka#ewf8;W?e$Mx3@D0u%K?~t(A=tr})!jE~8#83?eM+B|y9qGMWfL^a0`hZF+ zLWV#l0&d0j3Cc<^8Sex(kmp7b7uAV%=C!=(?W>}dZ zjfBG*mKe^rU7=I0?@Cu|sym;`Ay0cixVwEg7F70FH zOqKVZ&`coTz*A%|dmiEsk~(TU)Ze`!kG_(8tJ=n`p(#tO%O!Justb*dXXTF+z@TghFerh1d`r{DWoPByI?oOyvwEK&Z=_Y^ZlamXr6 z=LXflYU)MDUhheKP`=vauS^<2BI1r5BKG*0n_apD*D767lQ90<8O=^Hsq2v`d!m1{ zC-@5uO&7qsaGx~zW@MDPZs3I4A1%7SrTj_vQr?exbg55&xEVTp;Sm&IoNj~k8kW-Qv=ca*fdkpk@dB zEZ{i`2+n>w)}?`e>Om_V%P|b54W;>kc zPwwDs>FmSg{+l&V{xXz%K@Q&m6CL5__p4(r=`O7!@4hZ_C%Fc!4CS81XDR&IQOJK? zt!H50VX`{n7JpD@^0%&)jo+M45vAp0={qbIFHYaO^g zv$L{%0JHm~<>I@VdUKodgvm{XB^0^8%J182sD#w;v3gjvej+?d-1#qQ^bSG|eeD&e zScH2xa1pqR00rMpn;Vd_h}=6>Fu8xCUx`7So3s1}jwTE_vU||!X>k+5XYr4cakQBk z88H0(`~deJ9^g9*QAiDH5>{3+S(3YR2*eO=#i7NTrMvz5w%IXbwt?ZH&@fOOcQ)A3 zJUdgM?8pg1hVI^vXYJ69w5a7nTaHdM*6J!PieM(}1=U$mClRZg zisnR4ErWFW5T8}us-)Zd)47)TyENW(ib0w`uKp`s+X(SDg;r*3_2GX$r~Un*?AJLH zThR_BY%gwpezp&w6L0ygZi?tB`LUg*2dH_-Tpg=+JjckC>5zCm-%mkYyS1@ZZOuhp zVbw)ly}5tNaW#AZB=zkT$2GuNj!a1z1{U0@tF-8Y5I5_axOYS?_N=w7j?eRg4O@y)G!O}Tzu2TxAluO+%7K8sm zmj6g(YtKe|ex@(Iai>B#F4&A8dr`~$`@TEGQQE{-1bt>#X?sF}ff!G{gO0V!IbTUD zEzl+^JL(Za4B8%+6nsVBIp(j79C=qiw7e3w(!rsHbIm!NFKu{P$;*cQ0+)%fHg=_? zq=LtbbmJv68vN_ld+N^TYxaC(YMHvD=hHIt68EciU@$xXS18rIOA?S5T<0H}C}xhO zmc`v9!EH3Jq@ps|N9-9wE-sbK777^fj-21)z^n@5{3Zid;1bd8E$JAkJ^X!^HTj2(7l!HYdb#Iex0zlcC}hRQ)D={YC67uetITu_%D!x zDpnma31k&5Mv*EHnn@Vx6Ek$Ffg#^0WL3eFXrp@?*up002$YU)?DN#mcPzoF9XSK=0d zzpBp7C+b_=*Ubl2hG3F^o~9N$+KjB5-m^Gg{EpB!;&>&ToS{ckGjlb@)6)6rgeQ=n z_;D*U{laE((iH+zdrRHDBvwFK-W|70=ON2@Qs{tYs=Og7SS|*?l+X%gz`{+# z1w=JQ^)Bvz*#LAkS?%(^Z{G)i) z`I9Ol$L*mAkajEbJhQwOaUeY4O#_X{wXcI!`0vAjs8BAxhjYcG#revlDD4ius>6$m zHl$xsle4faOEgk1i1?4^dTB`g5fL}61?+N~4fh;M<8=%x@gb&kk8BO@9}mAx&CJ>& z=*}c&+XR|pn{-WgDyoOOqWU(i`3_qgfm&xDC-Iby39Q+Q2L#`P7+XYho*iY7+d=m1 z7F`J+Pu9ix!}GG|X=Bcz2kDA-t;CVqul{HB8h?%kd-S!|Gk!f~o%x=4>j}aeE;h{4 zJqAoxC95C^1LiS_3?P8FJ>Q!G6T<1`f zVhYv<8q5-W&IG;k=d)t2_?Md7k7m2GZ_uN7p?%S%v2>cXwl4%TN%Uxt(^v z1Jnx|CT34*{pzAFZk1le|H`OU3NdLW$zs-8=wBs2^0!=YaVC2Rf!_DUL_Q8no?{zt z>hMwv*YHwQ3bSQ&h=|Ga1;OI>5bS9RM`U2U2G4%oO%&~!?fzIx;#uB`Y2VyT{8E(V z)_wP(jI-(uy)ivhItJtE{YY+Vx?Q_YZ(tGf`IAV7WYaB^HSa7q$_fde&j_>h zqmDHpQ)}FLGt+~c%RO#M4_~;dQM@u?1)V=V!H$OWKy%&(H|E9t=_9IEWqh;jLPHYH z@89`Nf933P)a>F~FDu&RCUJD-k$J84in^a^KYmniknVyoIJQdRV0BD@O~smUU2>gn zfcFn3@K6F7jf}Z@X_u*_`_mY3z#@79ybC%JU-OW)g7Qx9umBrd-N&T~=E3shG&vu1 zfZgjr(2djE0eM1pV`vAFg&TX-gGFd6^8xgQo%+A$49M@J5)=1N%i#ZGQYnNo;Qtgy zlt5+u=9stnal%$3fL7eh2`XLXaS!V!FtClvKM--Y%jwo01?oEo0@vmIE^~Wb6pnf8 z$DibGoTT*iWB4B#dY64OWYO%PPj6OSQQyP=LgfVo_T)kKGlSmbf2=#O>!oKqJO7d! zt@lEm8dG{d4$dZ_$W<*|Tk2}>?#7w~5*VXXTJH*8;*6(|IA-RtQLUUUJ<{BCS>ZR|Gi>@$UuUUlN)TSTMBb-}+o z!vu}%zw)_>*yn05p0dnbYpjPuoJ7>|0|Pp-uVakZOX_;~SCthBV? z@hQk@pQ2?nd2gCC3^-is6fCw!o-CtQB9OiEd!z9KR{KW=*tfQ9@c0hRk!7p4>yK0J zN56Mb#h~#m*H!e%`0QD)yTo0lG1UCGe;syHhg(#=&aovd5ao$ZXN}&m0*#R=o*3`% zTOh7xvHSv84D0oQgv<$?YLS4{6knUeaQ+{6mzrkj6J9W+njQ#a2&0X^Riy~;R8`IH zR2ju#rCNCr9N|M3VSvpwjCjox-HWk$$7rykt!WC`6LzUo=`)L?!zh~7pEo<5NHy%tPhNmQDQLweNe%g3 za+h5(9Q26Shc+q9>crtA!|nf~BooHFdgPdtjc>`}w;~NN%BX!HQauz+yF0%?a53~5 zQVD5h&5&hyS``&bbBpY{QSm4Ux+4CUVab>YiZv4>g18KwjbSlWJpwB}Z&_NPurMcG z0qA!JG)4sSj8~T$4hoQeFN-Y~ug#smnCcvK(ZG7A@VNZ=eXpfepxiIYyj@tzq$(Ug z!>b}DtTaj-jhkqB^h4jmwaAhyKc02r2(N|LtIjDdQu^pm20RU^O^4F0ZE2`gd|G#z z+YZgXmD;+E{7)W}g5P=O2IN&F?!fcPGymbrb=||~q;*a^>hSEJdAZJ1)Ef2X|5{u= zTVtKi#It7?0T37lVERbpxPc4k!$GW__Kfj0i?hPV`)?gt&=rHGwUp{;nfKw9e{SoX z`OVP_mnKE=&#PNnI`2Ynozi_ou(li{-%`_tu8Bmxiu2&0cWT1httB!+PusuHJiG%* z@kF-5=6>S%Hiw}LVZQ;82iP(Y&1PB2eXtXKUslNrmDX1_xY#AGG(4VzQL`Bn%=vDe z!jRD3oJ7n&TzmB=@Q4A!E=%!^S7Tk=U>{Mw`xp_-D~ra&h(2P`jSORT$D`7Pq0T47 zg`c|I>BWPwrU7b0$6xBv_fFKxq{vTGD2xweZiQ!{hwG5g@=d@I>({jWPPXqo@fG5C zseA2{$~*xz;fN6mRP0-_HVerh&EK+%C9`0})yIxe|)cyB`1=VU3jB zNhN-(M1kgI1`Gf_p)`vQVg>n+*)S5A2yA4L?_Fc4ZMn1wf~@4F(^U4W4)J7~8)68a zYA(0(x2~qjP!F~$Bp_n3=?D!nN@2k;1KO#VP+vted~z!KbT_TbFv%7ZQ*@wUWPK!r zeL=4FHB9J_u9Obj2Ii~LHhVg@L+)K;`J>khi_TK(e@C71G&(Qdc*PZs-f>FzfalTV zlgYH@hxmetjQ!^KCDiJe!Btq52dC7uRniqwVM)X8T@bP_6*mfKeOc;_e+~@OYZdc^ z>6|bf;Y(kI_2tx`ZuK={5Eh6QDp)P>8h7V$V9hkox%KRf@xNMsbgpOG88jsz((Sj* zdX6Tj7;MOg`(UL``u^A4T!C)01}Yv)An=V7>9fmauX42{lLsw4AkHsMey@th2j!UF z?D*V8pE3|;tYZKMR8>wDK3_Qqi6W5+Qo0tKV)eHV3v!36&9a zn5rDunzs^s`d>N`Cm?7X_&4|H)Y^ z*1j*2ALU3<{L-)Hs47Q^RTvX=qA$L52KLq3`^%4#k8N z6tG^*5-=}=)Bqdy*e1m+)<`KTfFvJw8Z5nZr+LN}+GSXIo7UlZ4~&}Ch5Cz4JD?9k zfA-?3Sy@aWkwmwv;WRGu`;};=Nv-_j-B^wJB9a&6XyNzMlO#@T!$uc>L#2U9Dr4<*1^Vj~;B`{8+^C!3AB2tgdZJ!WR{);omlob`0 zoG>t|t{v(ldpGKeA+oZXuPWFx($f-shq8v{5xgAvhKJ4q?*_R!{7rjVy>@d~(Ujbk zr)T!n0|fRojW6}o6FO9QGN4f0jT&6_g-bSEB3rNb$ykVjYn5`jP6uJBy@u5@#pcir z$S(Z4bT1o$Yk==vR7hVS+G9EHa;XwP_i4=({epQhJ9YTNgTydO>S%>MJTC4Dpvv{9 z`!NgT)ji8S&5SlcB#801>4PtDW!etC`F4}?OJEzQbN=PVYh;1Cn0A*xDB@c(7z`(9 z5Yqe}9GEbuWO8;S+J>gqDnaEb$+MK-dE6B_9zghDn zu3i{^QH_JSdCl(b$BSfpbqYQb-^S?%8ju}me>jvrM`^~pA^pw4x6r-BROIH#BX9P$ zTpJLo>PN!E?3`YT1}d`q5?XLX-`MKw2ZRr{LO~CjY*}-C)2lP_Yg}}A&pF{ z=PicKIKGvSTv@!GOYo~Z0h`3&Gn?k&JFvFEaq+$IkWZ(}+sTbL^N_c;7HYf3vk+|3 zm~ZYhiF{GmNL1m;Hd7_utuv6qT|K(T=_dlaceU*{6AXRR7N5VSO=8!a$yiao_5Qbr zzYkeBZeLF{tjfWpF)*3!rKtIMcY&~%mmk@oG*YIn2u2{FVQ~fL`w2C;zz{ zZIvIkL;K&YWFk?+$*X%FFh|lW*^>06T1GA)K$n_6?{?92qD*b((6(S&B5zEFgz^ha zu(-}~r&Q7V8Wc^(&06-w_C9|1Q>;XOcgSfi&kx_z_Cd-l6;EowpqM|N2Yy*}OicZD zwnQm)=*fy&mzcCOA*eywk5CWNU^%*udZPRx7t7wUYL0x{!-}#?!@+saoAn}A76~UB z>GVT{Rqb`Kvtt3b-zOQ~tC+4WVWI8r7b@zuhid$keis}AXT~AZy1&0BaFO7DicYvC zi2N|;0KQCefM4zfqxDX&uJoTD@0?s52(eg!c;UeS4)Av$e2m=k`#4h|ZIIcjvn@wh z9M2IR%HhP_(}eRDk=fS7pc&c^{Ir3_7e8H&f05SK%3a+U8r|*S!?b)&leo1V%RE16 zRJ(VoI;e7To7$4E{k2hKvt6zW9X$FLcC+Og+Vk##&rcJ2qq^kMu9Wa-DAqh%XZ8Lb zH5lRA6E0cPUm=;Hj~$K@ir}w~>aIudWr#`gJnr=TB)+mAOUGTudD}-3=Vh?u5W-&k zEmLce7d6`E+fC$rHcKgWhPf!_dv?}LR20Z;K}}<0qHr+Q#O$mH81PqZICjFO@&gPC zdHZ%OTebj~Q3t`JjjWlVzD!{#m9q!bsk{0+a-41i9rvnJs&x+g^q9aP%nkrt9{|Ox zqwqDGAv!QS6HIA*YSs-AArr}-c!q-cf?3(wezMjdTYu>soCp$t@g;mbUW(|=ZN+o{ zrwH1x#pSxZvlwf1zA*53zB2@fdEnjPj*L{_RTYCnthGGqo7DPipFs>XxExYOycHX& zFY-m0-qEz7Zd1bKhhIb%I>-3%6$#`zKVLW6c~BP-aj6moS7vyf2M~AI{d-p+|C{IR z4Q&1DrX9yqu%PDY<_UJC7*AFX*TM)wdc|cb z__+-IWD845$iX~F^QAibs$GxsfzK~hTrjNfafK0j+sE&8ymo!(FeE{(kojsHb_&tyGw%M6~Wx~Q@mw4&9!?9-#wr()QQ~D8mm3~xMx2fC2 zdsx3>|Lyo<(!~bhYUFEc=7NXvc3;{djOl}UjrqUVWXMNUW*LPm%a#|g@6K(s%>+K7 z!@XhRBZ;{EH1>>1pXV@tL1N~Nxp-(E{uadtG0o>+@x7jF*}!=BR6F0u>|iO38t`q`tc(@lh}11+VmpFP;hU*jRb&PYQn{+XlK`l1)) z+|k3t?V_2oHVc9>5ggh-09zAFm9c!+W*ceEDQo)e&*aE_{!fX zs!h1>cnpo@0`4SitWSh%z{ba!3qKkFs&Io|zlzWY1Re_PWw-n;;k>4TMAmYBEjFbf ziOb#dhe_F+ESW!gOmY{G7e?_OuwH$);3(J;9Bu?$TRaS@R)H7jRVSv<80b~djP-$)`Hwi;Vkn#;;p0e#vuX0f2cei zF;XZhLBkDDgf3wG3!!A0Oh% zW7nWUzr{i-5%-Frn9BVoXEZU`5Cyb#uDB_#O-ul&h-4fFMB(ztzM zD^TAmRr&yTHJJaI$nVLwx?;9nSBqKYI%WpQUK11b%ueH);1bPhiiAgv+boi=(4Izv zbG^>?y;JU0CXxTHcev{$6!ym!K(LKn&pGD}v=jn~A>@7boMl-$VA91is%#YBqwcF$ zO>MFXBL*+ynTv{w0s{lr>y|78r$*imN300}P4FjQ=r7+>f+^eb2;X*#e@pC|u*wFv zHMnX{ODibY4~tP)3SayG=G3Ec&W8^XOy$l{OhAiRPjQ3m!S%Pq`{mv!k69gKI1F zD!r)h$d_+e5cvcpMRD&07#w0E1M)g!+W$sK$}HNusBW{REk0sM_fod7Xgs=Zwl`AE zR`zsP_8TzQLS6lO!};OfJ-*AQQVD*14@NO|~1460eSI{Rq?BR8E@T@8_e8`$BNL z@Ga*B9sp(r3^IL<%JV78SOykKQ?!%2Y4VDNnk^i6QD3)yC+_vpiYsB2na+Qm>4Cw` z`9rn?RRBa_I^XUIW)qz(yWgzb-rd=A&Q2O-IBa<2I3T8Fcb&Go$cA4GFV!VlYI@=- z$B6;XL80R+L^fwSwyw&h!z1Jv3&4w*w!F0)8aTg`o3AuP4(6wcm;m4Ap=9^a*A4sU zyB9fN_Dp|pvxc7YvkeRoB5eCzXmT{p-c%tuA8Kt~$R_K$4v(Nx^1Rc9z|HZ^iyXXV zrGu*@Hm;z%_CtN&!0F8>tHE?6#x~%O3-eSO(-Dp; z0j4#~^EwNG!XLKV=$;hXLN~o3VD@eU3#z*TFW@r?5KD+|uhgar16E)#7G0+v6Qjj4 zN1jaj>ajCoSc{PO05?_aNeIyutA<9q%=a>egoG9v)YM;_ny<+kX_`>ECDOZ6SOxSK zs`QsZc+&#LmV?>a{%;YnD%|dD0Q2JAu^)0H8g=V##`iIhbTbYyfsrRn+?O}oe<^>y zZg$WNnott9I;F_TYndtiZyt=UJ)A8S%#^j-3T0=~`s+pCH()?h3(?al8_x_nC;fM# z&AV8;3t1j)dixc$*uMOv--x}<44&$Sa9m^K3v?d{Rol#aD2#8of zH_);A)-B2O5H6W0YE&{>gLHbTvE}_w>&lV&({U16>K8rktKBijTSC^FMCGdk54=Hp zr`slmhsqBqPql#GXu0Z?_;}o&^`kiPD!=^$d&`3xNqyRX zFO#Adm{g&0#pP{D)6-?G(RvFKBE9A;Z00>HykReb6b0xr<;MTm)0$zxxb{`oAC0EP zi@;{~9j2EbBK9JF8#2IS0Fg>+rEVX&zi1PDhZ0`3WJ>G6xxax3O`4FL@p-K^IY zz|f$rjSpjcax~440 zj>oV5Li3W}Jx!s5>-qV|HKOOjIkt*)>21^f`Pv0^$T@PC(;kJp3Q5$%KXmMy-$()) z_E#L&aOs>BQo;Ysn}Z1bLLIDa3i4{FE+pQPi{3J6|MzJNL_b{gFkk0vtN%6jXc;JK zXY;O6))!T8dkMe>Y4ZWt4kH5WZ9{6-0kt}znL14K8oXrRwaSr@>Tim&-IUO@+sc2U z&vjRpd&69>mR~t(Pa=jOLY!5%oydK?4?LfOcgoESGSZ?yf4CZ?p=vf3wZdo}?JiQh zo>E%yk8h``Cc^i&v>H=22l9MN4cAD3ddvhei^DO`&usQi^;;wM$J6w~|FNl@CE<9l z4VPJFz<4~KiPo7d_=se0lr^7_lII+jmgripgV{V$arf7dlsF3Ioum*lFa((cOq~UY zrxe^7149PGSXoZo-?ICJma((vV`Q=V>^^`YoY^Aoq49=u zOU&lx<}V+5O-)TiLc$9#Z0Q*LM}77C?4PfStD%TKblsqJ!`o`QbC~+ZmiAzy9H~)!mnu~ z8LyF2la1Tr|8x@AK>*9>@!u!i&DW>)5a^HH=ZwOU?$Ip&u+nlklsN~BtUUSuBy!5# zla1`uVA9;_HdTtvF$G-t-k6FeIzH+(oI*b}ITE&n=jY`9?(=XCdCYUepla~EeOiun zz?Sf{Z4_E8Z_B$+hYGRbo#F5%?FmD;YGRBm8Np5D4*suOnCpW_eWL4A($MH^B|3xI zmUA9ISI0~T>+Pa^=r_9`HzyNd{D5k*`=|AL5+|fX6)&LJ#`>xu1!jK3!oq^7_r&b= zWtKTADohL2H;Z9(XMI7z%@9Z3KUX4oM}vZ22U>W@lkmyDdmr9${syx`xc!br=$BIi zzC}6fi?LiZ-JVbXe`QY&dHZ*xy>0ch!}+fcT3VmLaCF6bO|zfM;C3Z|DGnLCHDvbE)rI0rA&MMvU&5g?{uCx|zzCg!TokbPp9NZt0e%emDen$9$<^pLYQsnumd<5k7j)_VRn)2mvujYYN{QG5Q@6^Jni}XN|+g*+G>F*EL%M0j6rh z__bb*sdK_5O$h|Q6_p1buL%>q)k^2b6e?lirT}|GjT>jDW~a4D>!Ps~lH(18c^Vq) zl+uQz-Xc%{Bc32W_6tQN}&;D+T&sYyw!{qy^`ve$o0Y-{UVWZ{pV zQE`1o|7dxpsjnSEK2P`D)&F~!pS}4eqBAmE=CgH9O;j4+Nr?#ss;COBJ^?QmPBdpc z+y?4o!Nd?scs(E#pb+sWSr$wyXj57a7@Or9s3qNPu(t*2QuN!lSM40nRjLekJM48< z6f(=19(d5ujg%XV`23W|NIpfj*PX6m!y&*JRfj6eD@3u~eJGMi6WRtK&0QL6YX;hh z4}G>_7e}jxUs$j$Y6Ey@`=2CYfb1ev~zp-7z5@3+rz8KX#rdROg=alQh>Pk$v$akcdi&57~rj8Xf76Gc_8r zpgM%!uZbxCDeri`S-)iew3q{(+hZHhMlg0B3V5J6!(QdNr=&~{(yG_mxk-{4@>1pg zK2tcABa;%?TJ*mDWCa0w>gy6~M)ODdv1%Pd|8B19Zv8~ zDwjnR^4FRm(k>Yao1&6GupVh{3j%2dj-(rQ@+mMCOx0f4WqRvH3YGbSx}+HITj^EaZ+N3TjBIOBNn|D$_Ue#&hk?8s74=FldM_EYHDwg7yOG?av$t1CJOp$J%tg{nZ zr45DuPS{$n-h(iAdMY%8B0pXW`?%YsuPWo_6`l)g%f2p*Y#JhdUgx&-q-Qb9xB<_l z6I_d>^jg+vIHQV^GefNY!%r%92^5JbG#R1;Ea7@3Pk~mb(@3o6>wV#01Y*=$J>JFS zGdV$SD|S4S%t;T;LQj^#VZlGNAk9|Su4twzWyvcjg4oM8yi?m*LsDzZsWs;;EY!$j zb)Ipqn~=s_c(a)x^c?A=5GD0c*K&>Dbjl$`X-Vbhq-5>G{KC$eA0VF;MWii#lNDD+ z|Mckni?7%G{M4yz2d8-A{6zRjmW5%Si=C%g8JlEfta8!$??2va&<-lmY;RlLfhn#{ zArpnyW!grY(0XNUU9HC!PZNs7;elICb*>%#uJ;XeZ94vG#hQ!yyBK@YzB{eAL~<(o zW@iEpy=5W|HCO+>CImjid=iX3eZwOU3GAY;w{VD18Cg+2(NEo5Syq<7G8+P_A@3&Nnq5py{6= zSfy-O=yCTttAvJuJYPmjobCBtnwv;rUsz;;hD})Q&-mujsR;3LG`Gn7HgUK#Hot)PnIdmG#J$@qpu4+9Td$?g&&*5B#+)7xBR@9#pi{!A7t%vOpw;mXrn*wE$Cu#_!LaY70XbED~hgs^9PvvV7Tc3?AUe>Cy8q2X5)l-@oh z-cz}r>)yccdwW%X#%ZIXa2N6v=DRS}PKf}SrUQY%*ss1DG>!ySPu2%U*_#uo7awve z`)IZ8B{-cDy8IsCsqtVj89(v!e}H3pQvCQaNr5MdCcIFkB?)XM;o;$}0RuS1Of*St z^Z{N?(4J1w6hU&xt)2&+IHz|S_0BKE*{-$PV{sN8HCbxFV1?_)ACPx}T7&T&{j5Qq z7AVy)f!P`0{sj0K?p>xtVs!?noQN745~(Wk#^Fnn)-dpZHG-U6ODrYmC>-9g*+u{l z2s+NZ?$RudN#;GZL|0#HpP8JLlzezNCLnuf_b_joVsews;RwJ%+Cqg2w!ost_IZ_s zF{>Ko>p!Br<)EruOl^PMMJr8qx0u}%FEHIH1KC|n?FXTSvY(9Rm=d^P=Ur|h(&mcR z!9FInG3=Hc=Z4z7O>cjj~63zdxIhpiBw)D~<`3Fs_D;I23+vf&}rK&CNr31DSbF> z0~&SE*L3SMdg{AU{E0H3xCBf~gwO#_Q?VcuE3WKR-nPRXIv%2H> zLkq2f$3uV0i0M<(Gx;h7U$jMgqoX-c?&0=%47a9-YhxCg)lrOsdo z5d;bePs$%^bRa8_LgBR!z2a%Ugxm2kGF()SnwR7YHb>Z?*1x2(>MDkM zt7+3P`!buGqzp9Kk2Z5bq42=J-zVj2?aBRQME#?A`YUh7VPT3A3K*<**;tA!glJ1r zr>&sEpJ{p(oxhk0%LnXIZ`Je5#gWbDNUhN!AimOu{t}N_#DWlmG2gK-C{96IELz9)O)%Z{!)Bhzbn90zB!FH{$68)Z!Tjz zsy<}>o!^Hpy3aqohY=nQRZmTa?FL9cgNp;n(J$VA4Jz>j`L>3rdF?ifUc~5SyG!5j zJfD%fY(Pzz5-N3M?<^`GXMHXO`)A0kUtunlJf2O{_IOnk#zd-@UUFN7r2f{A0PgZ zyhKS@#@f~WLk@1L6gE|ESEG|VOfmB2pqr?BBm++`%5*r1X_!kd4+yNl=6~g-;iY8~ z{Ka1g=v1_85#<1OJh0T`LlM?sHXnwFi!-@YvXm@-_aq?q<#A)Rf7=7W-Vyy|!yPre zHtn)#{MhwE&`~?QcBZ#YxLYAbEwns2N`7`_3ti5cNuWV}B<+c7f3=Cwq%pwz5!6bn zeWCS`m8H;P=RDFmUNcR~htLPzU*%Hw2HKi--k>TVo4jxEIF3zqHXdpUthg&UWXp{Ifma+j0N zRwakf+LNI=PRj@BvxlS2?3#xS@W!+m9WTPedDRm~l~;lF?^h1kw^mr!3S&z(d+k|^d6DFnLKr|3$Kf#>nGh?A%G4;^A>?Fs7DB*~e1d>?r(CJ1e=hfBKk_8JeMU^%* zEX>o|6{*ghc9GZi@@;6?uXDs~41>J-3Nu%*_hoDk+E#&lf^(HOM4&zqvq~)MBVm{z zt!<1L$#DNrTr%EhwV%}sw^D_Nbr8_#bpsgfWo0mMaQa76xrq1+g9RuO&6I8&Wx(MI>(7A)UZ69#vEQJoz7QIYH^j9 zjzwqElHe7thC&?2dCu)o55vs#nvl$ zov!X&3IiPD+;9-dxJBhxV0U{|auAE&roE?2j``e2lYjpReptCoA91Jt5^p{IB%)bF zGQXt0Hl(bFdl+H(L;amVRA2LZdha;?;0Hvf4hRHWD+&)bjIgTpF@siL+jZY1z6ttN zn4KiMqLZxNpApDk=tMBAJM1pVxz^nXROqCevY?CvB{mP6 z|G*xbW5M+Cw;ykinp|8X(&GAu#`v7C@PM2t7qkedTpita`!+j-XaX3(7YYto8yX!Q zeY_gNuca)gzI_J48t8=SnV%C@QYjj?;BaaE@na3&$C$2IQLmB{;h=!!GYIQg zS1>u*>zNgJOr@+_9n2J_hU7)|^yET7z$5xp^Wga8w4+>F>`EmMdk3&wdB9+K4K=9iLZOpl28KQfH?-R~L~f_ns*;X^wxJ z8B3_tKr&<2`*N^5T`ZgF4)T-wr>pJ_ctslx0(ttH-Op^qM>KDL?@o7f+jG%U3<6%z zHUI5D2ve4$-WmUDSA|)!$BZuXJf)t_nJAwUUE0l3+1au@C-3z1qfLtauaSDSs<%UV zYEQG5gG=9bFQ?4KhA9tYt7U$^`h%ZJ48Kj{VkBa@@zS%?K}{=a|I+vKOR8{_4V@k5YXS6!6cNF2<Kdm1Ikg@UKjuG>KC+7%s|WmWch9sUAlP@xpt@`YNr{RvFAQhn@i z6l3b9Iggb(tIR>x-o%}=9nH(HPWMicD3ZNMb`Ui0J9O8J4vmXO2x0N~sYW`ppY+K! zPrLQMXrnR{OOh;)SXAr^oILMgm&KFO&mj1F9;!r4UJ;fg3Nh)Xi#+IjeSITv*in3d zeP=tM7cj6pFw`BYekNjiO!@O?SKM+->HJ@7n)xTsEVZ8PIJneERKtv@QC^>)<&mk( zl-Z(K5K{|^c%CICExq$|NT4QY4{#ir9viZN&@VD%5MFUU}+Wk-;9;{3^p zox{WJSWiaZtJj-e4av(a;(nPi+d>W=YDlrLc-(?#rz||uVvg`=LwMgFolW-^L=(0< z_?x>IjL%m{bbHo(g`?SB@J1inec3-jPQjQwy;jX$9$Z;u>@w;0FrP<)z=I7xRH%f- zogMhH@G8paCM5s+VV_IH%Oyr!Cu>XJ>HE1Gg5vW)t+$a*)<4YPp^y0lZE|n+4$Vd` z#*!Z|#`pWN+S4s2%CBkKy>HpLyH&DC_7tsKyj(VHTrFQY7UAbOTVT3y2oZQXAfZGM z_Fi%~Q4di?b8BP7SIKKh9VI(oI))+$ADK%Pi%j+f0+f4c+c-KMc9ke4W zLAYr|K+r$R7<+Vv57PU?3jz`$d09zWxz=o+3gA)$TlKf6$B(&Mu0+YB z`RoKf7weJJY$+aQjlY&^E@{igBw$0riarX+aYVFejIgnJIRu>)C^;~h`-&UL2=cth zNuAHRB)VSkAbh7>?XR$kxTLNgDx}rN%7Y6+W&l*{VY`YM&=$PVUX7vJ^oN|A-~{cP zhwd8E4AZJc=-`}YpKm|dpod3DunOLxg$N~7W!jM2P|Zgxj}-pYkq&3;QYcCHN3W&y z(ubxF-uVJ@rpUn6ocX7GaC5)>#p;+rUR&OS zaSuC)3CB;X;pVmLaM{*UwDZMda6@=%j2=|31@KIeOqy#aCs|0>lWh>nSB`bc4WX5s z)T^iB-Gk)Uz1*F>goVxTV91UP-xxg4VOGc93!21@1fkeW=f86uLe%|ue+!L>=m!)E zfU}e$b1irJwZsjq2KQQ3A1L(F2$P>CF3Abps#mF`yFQdLLOL+A;U;#ozl4uIakL}* z05wDlRYOrxVRb>pDZE)DXC!ua)e#Nw&r{>#P&_<5zHz%X^d09O{Dli!Bmvu6rUw%= z7-FQk_oz)cEf{NQX=T)ZrfJ|X^kpd@7(9rcjB{;;u#AjHK~r|-tf2_o>%5^G&=DtG zh+#e0Qbx_H43DJ5c756!3kiv^ zznn@tLOgA_)AQGBgXC=GM~{4n(WN*M>qUBedlr(MQ%5g7gj;TU1!IB!3fozZO>Fd6 zpxl}8>{Si1BCc59tFO@zQu)pxR}j0tk4j9ijSW%s1(o1?5;n6R-Cs1l_iUjW>RlBQqa@vfQI&% zymF$1#3&fZ&W_P`9#Yb>W~*HwU^GVv17x?FA@Y37`~ zCJ`qrHsSqxVv4i=aEiURg0O^Vj%R0(zbX8{>P*{~Z6ab*-w3^R7m_FO{v!~kQUyWq z*tmF!#|X5AKr|GZ8BTg=goFnBBlT2@)tVRFG-IK4BIC#w!5lK+k*q;4+8|G?_LS6r z>?Y$Ip3V^Cw5tcmRPOw#l0WsXLZU}ZY+%k{lP4OU4O|puF$OSfYjHjaZw+s)&u6yj z%f>(SD6&iIBYdxAu!U~uQdN-Ic;fJIW>s4EC=jVsU@Tt6u?lZPC^s>D-Z(xTE8*qX zb^myS;CZ0|fecTUt8q~4bno5u{C@rG%N!OuW%oh7=Ya4jVg~vLR4lyPsVPWQ^;;}Z z8R6h9o-_p=VYv~eS$-Z-yEq^<1}x(P9;aFy2UoiVMMa|)np*iGQCU!Y`a7BtWUlI# zIo+5BejYX8vnVq^*8S`st^1ElUL#$pNz<9~QyDswlJgQ3c%0}+|Mpt3Ztu<}PQ|qU zW)aDcy*nXwJq4sGQStDq9@X-+3QXn=Ee6Quy67G^=7+b@X4Vo&oM@8&>9uYAhzhdA zq3%7`@eFME5@^yu6~sLq7xU}lnJ(Rr6ko1Is;v~V^A&~1V1Ln(n6vt9@5yu00P`#& z40nK9OPil`t+)E4QSgJ8tIE;;2es~Sdrqrs@n;L}d;vnl+aUy89MWVS3_v@&7xta0 z+~8=7TJ~P7A;>CJy|AX!O}^aZ$?RsBoP}`$##e zaU$d3NNciO1*-vEcK^bq(SAk1>z%DfXVHL6rti*ksaQ1VyPP#^(KP)%&1@LUL5>0x z&(@33l9kiIKqWLr%1f2^lxIE%e{@&js3);BkGzHcM!ZXuOlllw?FhTRm?K7zPtN`(7M)xEF3n zd~Yd!=@d4T1pvpoTX(wO7hG(odQR%1TEa);O`OuzTW^Se6)xSnywQ`31qZ!iaAj?1 z**&;lj8V1P>p~xTv~m6k0yK1L%|)y?IyxZ!VQrj0v3O$N4p^`<8a|*! z8R1ttXMYgKUwQu%2f5yG4bG#-EjINcE(_#+!?%FzIkq$<$sV;gSv6Sm4`4No8u&Hd z_GJG<1#8MXwnY!Y3rmUnjh2O!TE5*!RIEG!Ioz=$@{!I-7>cLx%fP*N<3 zTUB|e#AVC$t%)d%nqD<((y1sdI*xpp0VUWba{lzCLQ-LZ7Pu>(#UGT^1yzCKt)dLf^b9j+?J z(9Hd#Z<}fMwZZP*iyDF9l&ykLp7!4&E#Sp2f!3-;VtFE_}Hi)inRkLk0%c&i@l!h;0Set9_SW!i2KP|36ft0XQrda=&#X{3k z&Wzyk@si3blL5kX>%8l4Yw6-H^~C`Ty`BD$(cuboq9A!~#aBSRm)M=qE2W^K!xrk5 z3s#DCQKDSg)U|ri{TA*baKvb*R7=*D=uoKh1uV-2ta}I#k^oRQ4C{WW+TgZ5^Ea8- zX{$ba-9Z^(A8o`liwx3JG~PMim6SK)(BReHV^GhFzU_Da#RO8AUac=hC*NRiYpVws zlY!vyc%=N5YE=ZdnIS>)vLH63SB`&;TyxJuK&*ov-SyD*%mlC&K2#zf@xy@5Cw3hH zb8tTusxJpZ^}uMmG7!%Rw}ma5Bsw})Q1IxybJE9+J{<-40B7gWurP&J8cBX;;c^mM zu!pMLmL}UZH}}V2YjJLSxJa4F;qUZ2JGwr(wY@}*-_*~98ZYzTEJw57+~HKcWZpeW z7szy1m|n@aG%vCQQ-f35+^I0y13_cKQ&tVm$2lq0x+U^{CA0deL-%3y9u?-4Yq*?0 zgyapAyT^ZTex-2TC))vAS9|!)D$>w4fJjU(V+F>K{B4!cPY3Tpq9B_(m2`gXX+*D! zBg4&ng_=&A;okh)V^Kkk$2qjPEj#^oQIq++`sbvexyDLKqukZwa5rOuQ|qG3hf?t} zo$0Gj#-etyOJfJ}ok-gTo}ftvD@J@Iko4>+8ZQ8i%FAQ=90l_hyITTsme-xj6st@@ z8%t~oY4vv&Q1jAjfx&5)L(wm>3^m3gLwpri`g-Cs%&)>*)~Lb}^mH zpshaGbr_1x^=ABxM1#xMR6G?=hF<0JY#ZvWkE${g^k^7of`v2l0r>kLf7_kT@(Kzd z00Yy0 z3iZr8H>X!QW{u|ggzgITEPOr`Wp_S?_c+c#f%k7XdQO>gX7tQ*G`7mUDU#m?o6960 z5TD%_<|~&$g+3~?1a*erMVh!gWA-J!i)%z99Tn(}i8LY_p2e?+AXK#PuY|^bBpKyu zSGd=4f~Q02H7&ckoZq!A#wWi`x$nL%`AX)$!Qe2dA%8DW14=KfE{~ z9!oVgrVTl94W_;_-gy-8_1qpm0xKCH?9~%Rd&WbEkUkQX`cnl5Ew0BD6Q%l#n8`RC zhPjbxQ-{9dAg3P(_Q1%>(FJcKUw=BN1%S?Sw|AsM(3MjF3LKoDPweR6y1&?@=jBao zI>4(Sqqio0dRjGP;deW`!<=|fuoo+9ds377!1xS9FyUIi)djFvz6L?NFp~6W7y&a+ zd(tZe5G)by$aIZ}zhtzuk;I}=APj)Zg{J17aK>jtS&?XAjYQM*zv@!iu0<4iBuV|jBen&$XVEbuI+w_T5Gijy>vg72i|?2jJppi zJGqP5qGE~#nOoq)PN()ouJU>SMrbR_0vFUtHdHz+);d`uUT{;X_r(QUw%TY7>C3V$ zC1$4jKzcK)@%GY!jIbKH_cv`Q+U$+R&kh)WCCV>nvhY}ZJdz)(u2qqOMD0DqFS&a3 zrZwA>sCs=4;<2rGnoM*w=j|y`e{f41l&+8NMO)=;awoX`2$0!s*gXIVYoXXvOr3%T zvg;EVRasnrd{bWu+87UxY@KG#tn)Ph?WWxy`BSVc*Bn`neo1sxRN`nP`E5F-D??xW z+p{h&Gd&$!Fi4Cj>E+>qoLqEcd-r(RF9c?UU!vs|4kNsS(fl*ydvG%>1By!p1|QZ3 zoNwTtXSc5lk(yoCR4V3_czEL>At@9Z&A(_C6?rPv8|_MXG;Art z|1m!0fOXqS%ehlIH~)$Nwrn2AipnGeu$glo-cWI}KIR#pGL{nH_<$MoWAGwvq)vw$ zGkdl8wnDc!Ds0NnLf{9?x)y(i0w5wBV=P2Mc4FozZwACG#K4Tb^rc?#$?<N z6VuquL5HH;&kb_^0_ny>{`L@xu8?ba)#%oY#RQdft0l17)1>r^Dy6{_B^i!>-hBf= z5Irwh?fhsXZtsv1=4kb}UvbWaA2M(|oZ?8Ao%8!3?gdYC2`ym4s|unXB3v zD1D?WcYc|YW*fc-kM@1YeZGZ&u|yG!A_;E_d;LC`sS*6HR@d~A$;~hV6BCpV7OFs{ zAz+z}f`X!Fd^{2`{igIvqHIi(!LI2vs2fU=a;D)dbk{|Sf;6v$F4)U*1s`|w5<&z92$@VFgPS32czjqb6O}=V3 zlSQDCe=ItLTpR8t;5mff<*(@P9$$Fx7cw6*tdBzIBw{^x!92WEuwSSZZ_j4gw0bRj zs8&+r-+hEEfL2nnCNrA8kkDaLPHsIR@FT-`JsEafbby~a)n%oNFJlY|LV>0|z~$Q> z>I!{rqUDu!jkSXl2KY(+5t!5Mt+AO7soXj=jxJJy20C0X;vC`w=5Y+hqv2ry3wCZRYKtL4arQbYoDTzZ78vhBTOz8kVQ|C+Uj zOo9@>o?>QmGJcx>y4mA1n7AFHJ6^Q=?!Cf^c)9?JLB@F~TTiPyYHm929sk75*=?^yw=b#=$AUS36jt9hKitJK zoj*P@91D+DwgDE~1aFZ6jqwSo-Pm6^wacAra?=+gqo2KnzIv1SEbnnMkZ5w&@#ksg`t#`rj5O)IN8WGNDSaH&az{cps zXyU?_=Ivsd6)f3Br)Gun^_i$i!WCk$uW$D`d=qf2rlg1w73%0*)v>k^Yk4J7DF(+8M^3p7GHw*?(E|qOP3ZaJe74Zn50C%z2izIgeXHFAQMIFnxtzK=E12L~p@vfChU}He zc%3d$2AhRuG1?czy>yzlqpMHQlSHh!nV}7fbY=AkZsHpfE%@N6;Zv|+S*Q#<$-UW% z2hE=9Z-yNx(kHV@7n3M8sAY-CNc?QSuzRrms{AdLDbng^HDYbz_%CgR6`@siZ0SQV zPjK~!1^4LZ0Un4G-ABk;`KTj>pF~;SbSDk`e|o3^>CTzX_^ zmT$Nun}`9~$jHUWg0f$a-y@8s64*-^^&{OOZ_55H(kFBtXjM1dsYElinJ=%^3uqfw z1YAPfM@F>3OMsAsL6z8%wFd}R@9pjBGJLDT^j;S`E-Fu{P9!{5&}Q^k&UwGFsg+2HNC7n~OakBO@P92Kh2 zbo8$8M-o!UKF2`7y$mRC!t;zPBQmWLAG9q+zsXXb`cRhJ^r$UgHZ#6&`@(g%Zb~)I z!Xf%nXDi{%AxbTpn8Ef`K2>Z>fL(l>qYQ2>QBEuMxC3ErE#Bis9q+-+@$DLMtro@M zJf;o53lDs-j-%Q2AD0@7&G$%8EJYKV-#ZJTn$+d(3&L{cpW}>4!e-wAfdfUwk|pn+ z+)h;=Ur;1ga8SC_vAr3>A^(rIh}QI@Cfpi8voD=D`JdhXjcTizc~O5kgBE3xMeu6| z5Q!cyw~rh+0Q)mGuh*8pBKfxY;vGu)aj{S61EhB8CaT<%^YF=;nF-=i;;lgkn*jhy z_+o%5Y@{huyh1m#zMAPSxCahWxnPGvCmAnBjKvj@tZJSr4G1T@Kb%8;ZW8rr@oyG9 zdw`+`*MVH(u70cR_IKq~p+3Rv5;hdCWs=;Dr9{jOt>{NVd?N{TZjTBjWtv#sZcMsZ z6F-Rfu3Nv&Y=-uyy7NGe=A1Q7GVU`DkQSk+KQ?dezT@u}Rf--KwEePEu$%PPAdp%D zjf7t8JcI%UwXG+!eI8yE=srX4Lzi~}G7xTTq?ehm+%PvRmwm)qE;Z(8Aov&J2OImM zBh=jk3rh$2+qvUgJGAWYn`>&-Y#GTL;fCPJUr%r)y&QQ^n`8(&*KCUseR8IepYK;) z;Bi6#`o`5>yb{%%->b-PdtMI2coLL*FZa|}rhO}N{=%Ima-%JDG$}PNy7Z)u;Pooa z_WUo7L+%YqH5y&ixCVJ0x{Ir;FKugmfM*8-C2$G_IQ=&Q;VwH1%iHqA9{5|?dH>86H=H%hE3x%7GE(#DU z8@8}W#0XmyLktwHwt<(%6@|R_>h!A^!<_!ES$JFkS2+%nSV-1H#~Hm&hqA~MljNCb z3n{1~_&9~M-hfI}ik}$MKn%!+e}q8N;>IE!RCqLF+RK1c z^)5AG$&p`ox6+;5=L(|Rn5;e~b!jvCb;akNg^d#}qG#5KO73k40OER4rcZcmGh52; z))-2UczzO3ejSZoK6n;G8}A2O&=h>~fp6&{~sWoFGW7PGzP z8z^fwv-q~mGl8LfB!sM!IGe3BTg(3bO@a{~2y8@Bb9@Jwj8i9mB~>!OOi#GZF;YTT z&jY-{uV=yU=fXiE8&|P6_(c1OPJ&c^>SBB$%uvM%a!lT z$K;Df0~%YQ+SSGY?hc!fISxWQMaN+Bt#UyOad44IMm*iVH8M3Cu#}zXAs1>DUNLH{ zcRY428~ytj)HZ$CMTVG9r%Wyz_cVuA^Xn4F4m>O=DcQPeA8~rUB+gAE@t6YUmwukF&O{(KEp=4OF{;T|^W^O`&z1th!=+to7Kk z%j3!)uKH`#y8yeVH0mhk6`eEt_5NL8&FxNz2}|7j^hX&zg?T*;mG3(e%fRer;I#np zDsTJNWg1w1-ggGIG**Yb;tO$}V;7Ow#Tb)09ybe8GJqD4SXr(_B@*$?S0tYh=;zE9 z@0WF8MM6jJ9)j4=TCy7&+FiAhokJCgNIWE~g?>j%vF5M2zz_NiJ49hbliD)Hy+*~I z#nec_V~1Ny7Rn@=X^?!smO39F9paYJ(9vt_izK{yd_Y}XM>Gt}QNv0&GNHj9*S;Rg z&C!0WC^vbwLHNitN0T;nzTSB4Zpn)OCQr_@kA+)pa5Eh0i%S+AoGT5%_;UXC@)daH zFllWkLNjBtsWpyZPxDWobYF|DpB=Y%4It@M1u+hTwv>c9_>m($yMpNy*e zt%{Nd^WYe@H#F47W_-u?G=z-0HIYW%_M=Vuo72~gjkun@Y8g3o$1itZx6gE6WfjIp z=RGgq*lOl7CE#ojbf0?mnJ!KE03IchwPy;ju@&yF%z?Wdj=8(gNUg7oo~oENSQeuX zYGXTVx0+8oWujc5MYHn=)oO5sE$x1rdq-gEHFa-!1Hi4?cXC9RlJG z!>`efg$9{!Q_A$%h%;P1g#6K!^<^#{PFEIt7D|H4?*cGL9&1O@5;OkHZR&DV!3kzX4#Y3x!`(k8oGA+K}Hlo;rJgi-2A>p*G3 zSnKT`;03l5t}%%>Ew&SdC{hs_yfGC73J%%}jx zUI0r_7kjYi45*lioE`cd^6e)?n>5!y`9CG>8SQ>Y9-g9{%(G)yswT+ytLtgNRe0Z8^VzPrv15pMRW@JT62#WWD|roWPoZ7_Fq?PE#nF(qiRA z+5Ihv$A~@zCMLi&Ciw72!dYQCN0SQQP{>@1O2nibQCx_YH*bK?zUQja-asoTtg}2u z30^$oX2MD=Ml|PVF65lq8v=Z~0S_0d#IUhsdi(cR*VIUvL&;r{xOZihGSE1fK`L8@Xo@R>`8?g6&e_>!DD)Znd*hcnBK1wY7S6b3$5A zNlR-83Zz~KBU?Rm_`wX)5eRHY+(wWtG*{5-*Vgd=739=SHEiMR300I+m{5YPkMcvu_9 zQwUIn;inf{1sL^1I!d#kv3!ZJLsiRdfDdzhP$ao@N<^$4Sa%<4)ep%I4af21JjL}l z96|O@mv3CRFL@!uc%@9Iv~8IqG>CgE>w>Q`cr1OZIQWl>GZy7v?g)VYhJ1u2CSeK} z-z1&4RFX0CgpfQK37bkBxlHl;h&t+g=47&Z7WK<7zmq{#WBGN2odzzj2IRcU3qJdq z%TGeM_fKcWMxFMwjN#N4qXf!S`BJhkyViyp;3gn6nZ*sd)ZxmQn0QUJ3y_f>Umir! zXf->SP}{ZM8MD5kOGWU@RxOXZmpU$9y`p|LeF!I#RcqTswhqrkwoTB5`l__we9Fp5 z95}oICKQPVrf@7^aH-3Z4vU0TtVr%k8@g_h|42@`zq>&BE%}@Ez)kD(i8$ihB`wGs zIhTxFLtS2l3FdO`HPPp?3b6gTwQYn5IT?{mAOChu?ZfnYD!+OcGzbK89#U$JCHD5( z;aG&l29n?E4y{IAy5`x7^0vY;QDFLOl)0JLWMG8?(8%$z#01cmy$G}M^m?W3Ea!ix zzHK;FciZLEVWYuime`Y~Q~&Mh4}aXXm0gXV6uzl;k~(zqLf>TkiE@qQ*0j$gl&1*5 zJ}ihMA+yewDlI*C2wuG0evH6J;#>Heno>=9Qdh!E1tn`0^+!=uUWK&1TgK)aEv)rQ zhW2h@t04d(`9=Kf{#50b;s>dK5(r$$s-hLs0PK{^o*q7cj|Uujy@eJs#13|Ml*q2Q z>k~U*ejM)|r9J@6UW7~xjX)`tKj>UNKd(AJny?YMAt6{ZwA<{0WEHdmKngTB%?6ul znLaUT-1wOeNVvqMr2L{jbs;uftjCNsq^P`zATQiKmz}vW- zld}}Zxm6)IiU6I?rk(+<)`fl*6_G(jMdV14wKiw+tr2ouJk*?;wis9q@)-3bi4ctt zG%P2iQhOwpFRz!#Bvy$6le;S7xkqlu!m-Ljvn_A=f|}G7aSmj7XT6@8nc$F_ukK$V zd_~;`F4qetAl#0`E52K_oJZK@mPWL^+bpW)%=89k7as2+I!JgC&oIXA`zP%l?uZJ= z_d4I z{-lghg(WKMcLs~*+s*2Zl;(LvYa#(EGz@^}I|Tn0pa?}mLNaV|`%JK-uLD7_|L;Xf zc_iG+{mE@=auKy0#+qbvZ}J1*52#|oYdUKpz)8`Ml)>ut_ih|doxWhwb4OFGz`(ae z_V7LN{Rs<$YqE$93b^|>AMOL<>eip2A~L{V3N`5NKtqM;TF|4p=kmRNsW_lKl9)=CY7z@}&M1k0Yj!H@VRS)xLwK)yvj z6?jel6nE}BLg2U`88kO20y8e25V7tn+>zugo38#M8K*wQGs)FhdjLq)p;#IG!tDW= z_FCr{2%6UDC7bY;{becga86TQ$m(wW6BG&EmznJ^0e+~`*H+BOul@e;szP&dvNJZ& z8_w1CCO%Dw>{7&v~WpNMujhM~(A*^;GtX#Q$)fDF&X6V>hr>>o*O@TB(d2!X+adaxWZ zV!5!`m>`J}?gRAVLPv#?r*rGVDSPgMJyn|*QRt^*B`7M;EbO(E{fFkE)jP5xI-qc& zC+ZOdE)VC`Z~Wuj*ZpntwYw3$pJCSeHG1)S3`USJW{-E+OP3Cv6A~4&G?LIX1Ckd5 zt$y}gO@de)|6nZT2)4gq`iTfG2O$8Qx<#Yd`gp8_gWFLeY(qWwF}#6&Bj%o$gk1zWrZ43LKh;nLbrR1c6J;TW` zD^tX3RtjQI>G(;DgH83$m50axK}$*PZzVZfzN)(Nd9%-g1q9fIAY)hKftc2XAubZJ zB4U5i0@!gwu1$Ij=Vs`}W93im&FA{N-f+O+P_}69`lGxh+wxn)A;L2bK#c>M2w#O6 zy}UYM5wR#aMU<7%|6?y|G+PA(44<(5RYOm>NW3oIAU2S19nB|EQ$<;7w4(%Bzi7=4 zIjBUNR6`T~Y-Ipz9PoJRrbKlrPpTssS#$_kXu=&sQ3LL`XHi~g3F%|54lntdG#w$; z;TMjfXB@Swg>u)e^9m+U6O-0vPLr6y3a+o|ib^RJ4i-maMU?BuD7&ABJu*IZ*nDf! zf>}6^f%m?{#+%gv%U_4#+*2Y80xDDCGtLOG-P0bKV>8ezp^L9&uJ)?POPe@UI`3L9 zc({V$OH-S;&?U3#Pz&cJ{SpA?-ttHx&hw9v?H>l54n?zPGagx%*>q&Qw8}>L_j9}4 zN^LrcR^36QI_Gl2A|f-j2BIK9^D%gYBzi9Z(6DG$g$AbFD0JNvl6sIw4P06`0-UU* z>17(<$(~pTfJ;3>)0QL}J0Ox#o^?fd4Q=Q)n4FN5DN^Y~-gSjD&^uA7(X61R77A#@ zcDjwMCJJjvj}9RQVZ66A#fbhc8wKVvHh50yi7hf(#|-)refC{7^zi}2>@Z;P8B_2` zI{U7?PWiDBl(Gi&v;&38l78A5`b1P{$~p3?{6PSHIjsT zI^D4XqXsHsga>Yq&%?~xTI9-CymPc+*5pn^Q?u-HQ=#!1glj{I^U+S*=ZFZ%!Y=ni zj1}x!4;^?Q>XCu5%xUC9Jb{+<^CuNdH`asX;5>h%PX@0tcBPh?A@h~hBBYTa1U6Fq zdFT)|yg&hHMyQ^kk>BaBdHfMmpy27`45b>yZuNHNw%94uWZ^&mTYuf%TE8r=I9GEO zIyd?Ts$2`jPci27VzC-uTU$FJDM?!uvD)*UDvc>MSfa4F#DsTwnRmp3ED##GXfe*P zu7>H2EKkkb9+*324>y{jjxmxz4yqdTO|8Y)0sR?bc2^z{+uF(99inPbaVe=iz!4ba zlj$4j2jThD1y7@v2yCagM2E<8C1;ND=H-OO+8s zhKtv%R}QkWPF9%g?48KRA7mF>CQ)c~lwf=X4^u$Gn$E3L6|)TE=QDX`3&VkaF!z%x z+Gxz;){UE3Bm!h>sn$SK(WKbP(NfHzuM~uYtTS{(Y4y9Ue7Q?$(Xqa*I-YBh#y7`H z)_y<(3e}a76dRZ+%?@RHbv3pd3d!#QEYH(>Gmj2VR4lh5hVb8Wilb4 zXKUP3mRHG7J7T86Y7Aae6XS9Vp%z6VDp7(@y{6&tuamF!8Be@z+C}s9Ddj+Z4DWzZ2*tqBj)~A}d=mVp^7RcF! zbN<@^e|7okf9TBvEf$*q?A16o;Q@(JCr<&kgT0L1xe;lIu6K6xV>IdJ8oD9E38^>c zq2L0k3#t8Zp}kOA7n|qb!&j(CU;k9-)GlKVjP`3mbxd^OBTj2@xz~BsgsRQ0%NE>V z(b=3*dX;b{)8#$g!Pq~2H*TGyPwT5KPWP&*k%Nnn)qmnn1&Hm!cmNB z8PMA4%R|00o!Zjl;!@XbOtO8trmjPqD&ezUacNO7tiPF<_ilp804lzCHhJ}twhj~s zT_=l_Q{U9Y#;~28z7i$6{-H@_kDT+RTK~Gbp8zxVXtlW-C_=&&Mu*6DW|p8AS?mf| z|ApB(RXoD@L=j&Ql;qm=4_MXLTRs8#Tj~*_edfWJgN!JfM|xt-6$D};B}(IPBFrg| z;^*NoPSie5AMl`ocb%Ksy(_SqCaqBNXfm!D5sNRDyXW@n#hh&N-33ZM0N69X25zwo z`2aAr2INY5I;LsAuam*2Ywe9#%htc?ulGR$#BNw9$q9&;4d2d-x%NU&8+Tw@?WbL7 zY(1!bkezZdwUBSE^NN?ahhC@S^?lc{71&)r%V2;J{b<=My)q|-Yh2~0-lmt?dz ziqud12rktt(3GE8+G8Zq9c9bkIX`*f5Wtn4C!tJsmkptpUPowLh#a&)i7$Zml={oq z(l*+zU8UVQ8j4B|@(oa=;|Oe!7|5mhYq}5P#=OxyM9Gu#;87b}Pfs9L5(sf2i%3%Ra>DR$!TSfwWqXw8W)*@}&X3 z#Q0YZMeoF7f!q(V++CL4lMQeSw)BApaBEl76MX4 zagnZK%5V6s9Xe@s6?3J6Eb6`f1AtV2YC8$;0tKOvls)Eq(Unm7g$gwLhi#6$o&-(q zzk)SW#&7WO*kto_xPS=%Uny75=yrF5ygWSUt?R_)l<`L4Lk_ogMw*^4oR{h|ys8ir zK+c1$7^mL;t%hD@hR%q+a6a`_I5uF6-k@H2YkxTiYWrdA{{QJ<04>R6Nv?{{oVKFK z!kh|3TM#SnYGKTxDvRgOfM+`&^0(U~G$uqdu{fE7s}sahgOW{f=}Xw8@&m9C73$Pk zW8LvFK}=lf;dE;b2N zOe>&$CHUr`$lLtYwsCX4wFs)M zPPuZ^GR8KBJtX34FSiQ_zsWQcmQBDlugb)ulPy}pDy6h#QStF*Zw|(RBLWPc^_7tm z!oxh!oSO%K(FkjbXAo<6Q<9-o64Vs8WM~CCQa`?HeKtB6L;!^Z#e&zf_^-YY$L7tj zhx?WVH8!k%Ir-x8&Bzd~c%z@AX*#;W+1Yqd@V%M)JPL_zk#Jnk223m5y*t99GO8x} z7i6EN=178uSUW8-pijWr-2uUu4*IpfA+b2RD*NRXQVExn486{?2BNXOPEb)!t0#h+ zv1X+bJ_M)7e;m)jVvD*eIrUUP9RK<;XWHP|>x`d?%)U@}9$ z*j!KJANOO>IFow5hJcR$mlXid7kxY>8W(H4DrvK~>(Cq;Y_C(_c9!YISJcLfHpT+5RV~%I>S_FXs{BU2Ly&A0Cb)5z9 zqP^`=%*Stcoi8i`SB?wVY_EfJl*@nF$!Y+smHyw2jN9S6IO6hAGIM#0_ER_i$JAMc zWfivD`U63b?(XiEPU)7GMpU{Rq>=6p>28#65Co*VyFt37VZZ$U+Iz1<4w=_CpZUZX z_u$*VXCCeT`NcV{Ov7U3_>4QpCMQ3+h|}_!=@4P!0up304DYQGwt&TS>l^lX588%Z z{YdzT^WW+kj;LIW(Fl89s}f6|p7bLlTc^>h{WGw2z9+?NdvHyPwV-W!e)~yz`#qv@`yav9rRm z!gN@JmLb=-64Aya)H3z+C}rF&niw%xW`}dsc;r1!iJE1B>>%(#B1|yO-5-7FF$0W6 zfk#@Iw^Xz<&k8nSdR$6`he6V|C6qOvtvP_cB>1Hym@hT5yR>Ayl!cmp;=CZ_taoKs z1*HtB<>eZ6Rq|yYrNrqSo<^pL25e1UPp-b~{NXr6-Ud5-&qz9ceT-BobkJ+XLUxsg z6%`Tbj#H;|EO@xs5Dn73mX?+MUqM>i zNeS5*fGsa-D2P3`6lRF*%{HdW1Zr5rd8XAo*eHkN^Lc@zRCqjvv6xUMV*;m zrv5jf%8{Aozg)~jw7Y)Ll^r^a1|!28*B$sc&{O)8n18ZS9#x_xqk^;}dYHjgLhznT z6mu)AZQ@~Lm_LTO4UMXhwc;~CNUPxZ>=xH=}VH$G4#zGeRq=Ty!Z-O zl7LqKje@4YP|CC!1Y}|^pFV_u4^0lPcG>oX_yuI@gam_q${1bML)Z=&b z@2S$YHFlF0H*I#Kq+H1;&L5t3`{}fzl8T-9yKvj07iMuM3*@(kyocBGw@=*+`J>~g z2>(?zzf+Pc$<<#CChb{Um-W_R=$m<>>mZ7hlY@FQ;njQ>Cn&VJzuymlJdhHUpFiH) zfEj?NvXUKq$MOqjD%ZzLVGJtK{qDJhqLK2d@m5yRcl94ojg=g5xY1wVf1MaEs&CYl z?7`;X?0_RRC<=agqIoH9u8->IA`F4Wss$cdrM!Oq2fylNtANCGH;c=!M z&+}1kdPlcp!IZx_8vtfHp~w6K^z$RqOiz0 zoHNwUP4(>u?1flCuG27qoF<=({{m73S)n4t<@=wcg546;y%qbbOR$lRGZ>7`(p1T2 zLzJ2Ae05E-4#9ek`_`tjvJRO4gn(N9Q>UU_w*loId0CbrF{tswJ}e8f7xnaXUB*wb zr%b0Smp(Jx)MN+D+^;^E>8|G@zK@dIR;*0oly=LTk3zEjwooq6(684wm&NM6_r}N_ z931R`;Qvnyd03VTFq3~x#I_D0Bx&pVasUX36I3s4Y#7If> ziyggEpU3H6^zfHn*>3=rOFb!NuKq#LB~Z-wO#ds!awR3$r&MII^x7oPhPok#h;G_; z8kiJ1O=|Rv5(sYq)`y~8*E^ziU-P#X9mChzVRH&OFy z7cHgH@&mp}G^`0?X&-ILk5UBS1bOK$+EnNITq<#1nV9D~$>!$Z$i=@M+(yk9KD5u- zY13zUY1VquJh^`5fqbbcPS@a?CJ`Zs*?;ER-z*@D zM%4e4Ujsn6t?b{TFo^XuZ#h5MZNmlEx1)+g^mY0f0pZf6dO7TX^%OrY@{62XvkHtn zZ-Qs@|5(9@Wk3J!145yG*=7eJ5B))@vZQZoG0mKjvgaPeq@<+4dVnhPcaxf$x_UG; zJOdVfYsWgf_R^{1Dv6|WNk#3|t&VDvxb)G{dVh4H6P=F_E#hd2Ki5PK{O2CdFj)p+Zr?miu9 z#ml$FGWIz%x{)DT&`^B68*B-L9MWLo12u%EUWEK)Axy`4b$9V#>>(wSa2uZQu7I#| zxGzqai!auM{skSGT+Yfb+v$V+^iifS59fIa-^-mM&cE~o9I^A-Ri=YxY__voaxfXy zHD59XS2EEAXk_G6GtbF74~o^1tYo_U8l zZ7*@wrDmCTSv?}OA9?yIS;2G$O7ClcMVqNIWOd{g6ih?Ipipd7R`67-e|p!AhQ#2P zSCDAMP)ytNkEat1X{4&=b!VE2nRcL6YhPHPk1jtXEh%n|klK{&E~fo*A5APE<>A54 zpAiKjVd(i`s0menB(*UA#UVGLJ#ouKv7>9MB3Rydl~qESwR=IupsTPwV7D_-I|OHNT2N$$}jFO(KDQ}si-W2-IRzg>ZERb{kl<;hpb zPrwt_8({hL5SEvKUr`%=xn2{@zgAjCS+E6orX5JYnqa87Cj%gO2n-4lx-Q?!V6XD& z)h+OD(YZ)pxgeIeqhh%7ay?g=tpbN2FlHf?CgxFFxbm1!RF^SofGvB2QBL=#-g?A* z4a1UYw^5!qVcm$|ukl4C!e;;~6exToRA6TxwfYpro^QJyM39kYOPHD3h2L}aC9#sgqSLA(JB;4VYCeVsLcV>4jM z{i{v_|CXM#;vwte<}RzhB`qTSyTBujV4+*)eS3$0$wZjXE7t|&PzN_5YLO?IepC@( zGBkc4;pS5|NrCv`-?c)MblljJKzGOL;xYcSSa*PgK7nx|f9&{&6{1^jmDAel z5~fgvO2Og40g;tGF>09A?DgWHh!M>QnzG0-iI~jNWA~w#9ZV_)p(GxhD^_?Ti8d<&!(Bb2#%G%Pz<$X`(Q}!~l$vEMBb|eCGl`hGt+@19(E@qt44&eYbIHt=-*;KX9`yVlP+!i9hj#`x6C-g5hRft_?3baCb|Li1qBGYy)P5PM?h70C$5Az?1ZzhRBo(n2Cd{+51HBINK z-|?(hBoLJzx$t{5u`^}YqlAv9Na`#gK#V_`0;nC1nt=0PEUhX7NpSNv{td5=fO;}9 zTrwx8Q0%3DN`ytN+puVDb^n>2J3O#>=E!WJrfR77gZal3*9o#J?pKuXAu+grp+AI& z_q%x@kt;5XY%4 z%(nIfVzlC|7|{{&aJtQe{LC({u&L!=&ER0ll2(&5y3pjw9vh=;%JNUP2;KOa>8zlx%7-(bKc)2+Li zahzRsSJmQgaP|JcCvi{nzdP?jr+fXUh=OMywRV+V)mJz+cX;sBNb}x7I^oTo|yQeXX#?x@|NqXy|G4@8v=^2ZcQ7KTHPbc^6g3@#R9$tre zd$B>S(X%NxV?r544@9-F@I$rKGcYDsdQ`09RNK3~DImw@bil5DPqH_vF=5lWO z7();Un1wtp$=KLpN=q3)_@BO|BAWW|o_2_+$&RbK=8R3o@&19Bh@o;hMQd!i;On)j zk>@29_ov(4FR;}--qci75H_znCy(o6#la+I_senVms}J1B&J`V9S*PBPP-6au7uBW z%F54%hFv~A|GGF(64bM`-V8O1Eh%D2VpuN31_Vg0?`!K)F;h|ofQu9qo73L=o&@Fj zD9aCskpSrDhHOsvA`t`E-(MCS=qt5+6?cQC(5aD{|2!!l32P5AmF#M(CA@E=h_P4_ zUwa0&vcus9l7~RJTOz?1P}=1SH#!M=>-?jlx_^LS#gN*MpHj~CC*f#|%JY>$<#86h z%p&hhWZ#ZI*?0>4#C$rw2Zj2)|!I`SCC zj7iQmD^xLeE7}!+X?h*2lQb|0XXt{*%wB6DITjvA;qugVT_WiDVVotmg!D`wfGqV5 zsg3IBY6(zD72i8C6%NR`RNj2xgXN-lomlo--i3Pm>(<0GLF7*J+-`q7ZU11I{>8?@ zA~wL`00dwDR>PNj!%$>N=FUQYRTS*mNrWfdEuZ7!p%nH2`DB*qTWsPA!H7z=A|*gh zS5;FZCNZp<1+%~Q!9kUO56ihnWFJ4Dpzmvzy45>GgnBhq2dqRnWrd*#9ZP_8b1q8| zu%0f(&dG6r)phjX!@e(Q_dFT5FV@@2VA*xCraXGU=i(Q7MVgwMQpoop&w(vTBlxJl zC&(dnrlSA~z+1IAi+^5g-mO6>&Th-34|h<~)zL;{crW)9x4%RW-_>#C0&Tf5xk#Xw zP3ab=W7I6RGQUX6u$I2motN@6HYxV8@@3pa=Q?%XZjsG+bLK!!U*&%`Sg>)+zkkgj zaRrg5E+;^h+Kz*W1dt+nu!@3li_#hn@SBI$$=mu?0%!NejT++lyj~|UZJS9n2yED0 zO@T#Z&sk(iwR57*aHn)(wrZIyzjq3wG|GV0)G>dnw9NHJwZ8cWhwWu$&?Elt>jS*q z#Rl8tioV_<3A8CJti$Z$#`;gwbHjmWU3+$XW#yhqv?Evh$q7rnPoio3Sy?n% z3&;^+g`0G;@)olL%Ec_n0;)jN*vNGT`(5TNIyA)P_V)T@l{8UK(%6`yzrXIlcxlNP z9x;AGK{oUPt!IHg-<06>W~HWmeQR2l!$GRiBkrbhnF^oh4cke_v#{w%`it4Xw*58; znDW@YAKW}Wx2$V@oaLA`cV^W!L>Afbq6tlgKbv^VJ3BM*XNbhcMo;O~=v2%KZP_e0 z(@TX8xD-PZ<@g2q#e`75P zO8d#!<%pCk2Zsrj%lL@n*DT7GckaGf13iI1dcsw{x_=aOjauSaQLhcRAr`f25tV2G z3wPF!YQ>!UPWK-kx+seom_J_Q4t@p~)-_HB9I>jT++Dcs()y>TC#OBKVRImJ{%&RV zvAdYwjEf{eOOK4U$fZrmS7~taE$i5YYITV!Z(j$4Pg-8??7{8R{mK4x87|oPZGu43 z&kMEYOcf=eH!VN+bVwv|2<mba zjTQP&BbE7{4eH^WLKLs-zAxF!@HQqVsP(A;HlfF*xjI5cd*6&<0aphBkFAh?-){y3 z>2X}c_wDY8W?bKxb-vM%iH=tes8VC+YcrS;&L!<16)`SA*_pp0`atF-V*Cc?t+Sbq zy1B`NgRH8+mWO>t+2$t!P{m2*6?_F&75{$A`W|(W`eo^PUS%Kx{KVIf*6Y&W>I!pxwW_R2j5^Jsvp^PqLvc zUVic9Ee7^2FUW|x_&IN3IRQkBWJ{9rN&Q_DPG62vJ1D^Oo~XChjUwWECoB7AdU{%~ z)h!m+zzwSH=|qdpy<*|_Ig;$s(exY}SLs5AU`Yun=#moP>@`WE)HVN{0 z{v7BsL=#hBUn1{Nsd!@ptOPlxlBZW=9Kly?DHvf?tt6UXFc zLIwo=XPez|Kk}hj2yk)!X@`L6>>_YC)zvApTfEuzM5=RA^_R^Eh!7QaH89!yTawrJ zf&R+NQ;i`|`#g6#X0CTOZ+S7<%eO?%Abewi9Nw#(C$~pwT=^U;rmTz+q`JZwfkk2U zPW{m(L?5wzf8IvZ|ppeiFZ#uI+|~= zb=4Yj(Yc0Bgh+h?9^4=)3`Wy!Ml8W0m27Ly!F@~>^>(XapTO3odsTnbHC|wH>^Y14 zX&3BUo}+Gzl-o1s-mnHFshLv?wx089n81yMk#&w;Q<3+Vra^m$JA8Lc`HE+I?M4XY z2ZphY-QQWnnE|U?{f*cA0cPCsXO~z&`@$dHh$03cF5NcR^N$+PE`j{2yvnjzY5xM|CV= zVPT0xSOTA4qY%+qO4n~`snm-jkb9tpOC8a(zEcwPP8kfomfv_6tteR$D=nvFC0jsO zh7k~)bnMz6t}m%V1t7XVv2k*3mr`P84IO#E@4AiHc zGlD=sE>(VQ?Z5Ku&Q5YS_xfKpRWy7B|6(M?(A+AdV2&3L-?3;+qlxZCNvgLv zAdnM*jeV%c5=#6yQ|3bni;tbYz{Ce4+iW6!=^q~^SkKAyWD0@%%)gbEVx)nyMR~aD&x|2Kdt$cF3b9BQG;>#5ndH1(Q)H< zf5&&6^$AZ_*R~)^ddU}!ffVc!hA2iHQ4KU2m0!P_A;Th6ypB??tDEhROAXii>Eb2q zJm3;KTy_O#8LLN+f$PKA`NsRbeV5?NcWzGB2-NQ9^ODGE_1V*ql3Sz2qVS)1+vud% zEIE4=LgBY-~l9Iv)!V3|(O5TM_6kcYWoU=|>pjg7U~xmGbJC8edwy?X}?Pmj#5OMB}#;K5zy_f4rk@A_c*k-W)P zZg>BAE^lu$VKJPU84eVDOosGar61t)OB0U=6ZCb@LyOUkBv ziJJaJ;XzfjPPwvw45e}Zvyc*6khnR$6(_cvF5!z&@3cHfq$KmDqMO(9FseDjm$g%c zO3dCECb7j>M;8Ng59jspZxbySUnFMTjr-15kQW|@Zc{69lWYSTz~lYUIXt}O7yCKg z*w+Ymc8ZwI#hU!8tUd1kN{!IL&a?2Z`q73K;4tyNC-?;@r}))2WA10?7UD*0??tKD z%`1n--GLG&K;Vs~Xu2e|)iJ3#S`7Ji2id@C4b^DII#8k=t<0uLm%xfVI*hqiw;VOZNeq~1K zlhT}Bp-3#^@Fkwr-p-*IfM;YS$$^3O_10b1}6Z#RQ7|_V9rQ?kh-Tc6ed|k5%WEXDyaF}=$XCh+&o$= zWZqQ$etbx6x4%nxqV34;-$&txEAil9q?Gf71n7a`wiVygui&aOdgI2$kDaO|*Jvk7 zQa9Gp%wcpM4@qBWjVfnM{>;4~swH?YKaBpep--HhiF>g(fhbkqsY=g0P7J~eB8J4M zjSX>dnJTHn`7(B4*QjoIqvL?132XYd>cv`us+}3D+&r!jVlbG8Y#~6v{XKST%M~gF zD3RJKU4HI2Iqv=$8Ih`*oosPEd70u=9~?nqK~!Z9tqrlIv;|~nTEj}0p-!LyUohf_ zn|q6`y%IHOvtX&VC3slfc{ISxoM63xWbqbw!`I)le(^f@XzzFsf?RkEQFd{@8%HT? z+L4Mu6&wC|Ls9ZW(GTPg4J|U6H@9-tz9G)tN@Gz1SC)+sgGlI<6~i#~4v-cBu3QPo z8Vs^V6FfQ?=@0uKWqnosq=X|=mcMXA21l4bX{C9_kogW6kzGdeKMgi{ z&Z5Y>MAv&H7$AGlFF^fp#`#Q?{Cla_8Id&h_6W9bQvUNa zeQEE0PjtwVnUrPpwF_^5uvlGVexqoiPi>vJJkVtg5zh@~Ywvf17zmzHloXVNxl|JK zuX&9wLq2z0a{Oa(XO;_3)3(6LixgVb(@ejZJa`Ii^l(>8Nc)d4_df77sHR)B>`wtm+q(KB!M^zBpJlsN)msO8*&D1mPnW>~;%iInp)o7hm7T z1CiS^)P)-ObKZR4W-TgvfuWhk5vpWX7>bO0M|NIt=U{x&GM3&9-!0%sr>ACO@5fGcEVs9} ziFoZGF(%w*wla0l>)1FmCuzBpcR81uPxLxttpY2B9j?5i(( z*lsO@Rn?!*kOGlsB!5w$#LQMjo39CXF_?RXe#wk!3O>_}ZXi;Y7!gK1C=h}182%;| zkZ|P7N66y9Ujc)PiwuZkC;>{9*$2PDf5Q`=EH+4cUDutR7-qR^+j2P9*h4&4vJ-fa zEKMyY2V2X)d~)T1>JuO$OD)^#v8Ms#R13=)F|!3Bj^oLOD$ajvhrkj$5~VvA1c&g) z4yZOk+vxRGa{UFeKpWEo+VCIR+XU<+UR^3pmOpU_N_bUu&sPE6UfAmn^22nLq_oVk zfhag=C9=#C2}d3sOh3zZ70|4GG8A@Mg}bpI%S|C$S-z7hO_DoQrXMjs{^+1x_Oxgi z*HqUduc4{M!M&#FLPq_!+~WG_=LdL1#60(low^yTFEj(!a+_^!ucgV&ww}3yHGRbG zU2u+t+b^4K{jK!>!}9T+{!Ga=@_k1L^z#+Dafe!lP@Sd^ZeU8%XdO`=@$7mUdfc1# z!1)aElRVwxaPnrmH`1r2#9Ctw49sa5)aT&=HS(7N`l>0*cCG%!h%LwiV#O?ZK?>n%F(b_SXlUi z9a81w9!TS@h;{U15$H+YJ0Q1Ge!Nr-#*AhCoX7!CU=W3UTKqQemO5=J)34?B|z2;Y5pinYLgdA|!VWP~%6CuH5jdWIK+g;AAWul-S8RY@T~`Rrg#`i*-I`{#n( zJhHKaMcti8%Q*;JpkrVttvlYGg(JD}=+j_b_WkOU6ox{RNND3gDZg zXp9MLxbhn|fYpq-sUuLJ`k^tatE&y(KWQ#yfgvQ9&cK$~a-o(U9lfr_1UR_VGZMla z+k&_g_}ID2{zvEY+x0+FL7<66_Dg7JfQa13A*Jp-kjaBvt(n0qcGj>8jdtEkq;3ON zgl$Y2yVvrW*K@s}@Xkxs~lT=#pY`oz|OVOWPDKoKL#CB ziBYd@H1vU6US z&(xznn*}n^nq)P1vFvlYLXxG1FN+uSxpK`Y>1E^8P*6#u%PiF^uJZG#R8>{qmrY-u ztUd>|Q4|oWiNc7NK`zl9e%0i4loygc61-NfIv}}@?3=qd`Z6@F2~8PAN|kDAN>74fPM!Z)xJmjavEs)y^ZxzE6M4tCSU(me3qcgj zWv&Im4S}1Fm8CjDED7i*d2emUOEo-sE13ax9OHr^<#tlL4|OSIgw3q-^07XdI!6u` zxQnM*sxbbGU_~~bV2GS_ht5ZBdJS*;M1J5_(6b&;GHtNZ`yr<&18>UxT zH!%DGjPs$%d~NP+L%q}^aLK*GMws-=o*MN&Yn^`J=hqXCD=S|{oOpI>_D<#x9#H(Q zCOldhgrNM&#^BY_=`ZwOsDALF0eWAW;@SnbG8$W+w;b?>)<^FA+Vdi+D(?7^z2N{U zJEK!GZ)LSuj~w$__V#WjiXRU%jEy?kU#ipceZpbQ#iT0V-Jpf&z{h5f0ZYj^rL9}^Nqjnc$MI$o5(f(ZnFryv>8}2%seeu-y)E={h(t)dSr<3!` zvi!EhukdZ=nr;y)+=Zrk*FhNI+oMmcgB!~9Qbs_HRC>~a@n}9hYqK6NhT%>hHUVjh zQIP^lN#E!tzf-Ae7c$YFlsa!euAFSQ>DS@-W9|Bq-_JS!FIsjugo0LlXRquSD zdH8RE_#ONBq)G`AFb2}F`Z!k9p|u@1v&^M$F%9t?KGxXrGw}TSey0#%3024f2&2dqo%U_z#|T}icgK6IEOOl_J0a89=9}? zXaA1KhDY%RwWVPu4H(w0kC!2r$IFD>$lXs2(c4DDRZ`o9zw(q{&6{S;ogy~Thwd#e z?eVPJOSZ*6mQ@;+|5(G_ky;dst#%%_qWL-#Zq%^JXN5-sWbsz#rRQ$fjh8{EpTE=Y zqb-S3;oo06oq!Fj3+0Negm(K-8b&a_;n^f=qufJQJOz1AyEf z6I}Q6MYXMjfy9qcvMJ}4tYRmy_@*oudZ*u+SuMzz9H}6e1`6J7AF~oSXFPFir7`^ zgN`K#4s<$MA&v=J)v=Kgm;B#CkRMY26@twEM+mZ!J+k`()SK$orRP&$JaQ^e<-YwI z(aSV3k@O0UPyjQr^q=@Wz)6BwjrHAKX>k6wteB6~9B`4TXa@bcO4F1QEjHja-N2Qc z)?IsH+F!@wmKq4fD{q7Xkxjz63S%u7u4glrnlXii;p#!=(+P0L0F~!^8~UOqLq`&; zf7zR)y+6O$xnRRvlvu2&t=z)A;0N|*i-2m>9CLkmuzL&R`9EK8pHMRRA>w8K8zWQ% zh9SYHVc8)~xDuoeyb?=vs`UX*hrqd2x7Mr8-)=qcKQnD)Y@X10+nid~s5G^xdF>!c z8ul-y)$zae>g#)D2e9m^$=j1@Z2|uK!kVfitJlM(3D{FEQsBBL=poPASfHzlZks}} zTp*7tC?o_hFWYi1G0GxgOPp&xp2a{5#LsJJ z(DRpQpVZDpp_nN*7Nk42EPn&$V(16B868G?`t{TGZU_<{8>Fte{)hJbvD0CqCYRsq zc|lUp(}Lv`K=lDLt$58!9iknSf(Fh%PsTTdb@*exoigs|m1pPJ2*Qt8F%Ct*RFgWK zG{t-uzqDzm8W9zb`#u>l}jC1%xWe7NZE=_=59cy%vTZI`D@|A1cELf z{*DV_)isdlmV}i`a(~XrxXc|5`2(=%a3GDC*o6< z2#CfoW!Tr=kEe}C+^LGOKSSK53(^m^lHx-z?8mtEG8vHxYjs^le-%I=hNZF+V(K~b zM`M!O4y0>?-Lp5_PBeh>68Cihz{;Bi(uB{rFimc?W(&0$zvEieiK*^ef#zepm64Ec7xjd z!+?@}o0IcGmx0kz{`&gzDm$x+Rug?iMw5l(DGz*qQ05Fi^!mjiTr&7+^Mtg7=E@i= z3OLw}(E;DjjLs5Ai(LL3iYqv1J-XjVh9l$U0{S(xQzm)O^Euvck(q*tNi{QG4=1 zv4aXZ>H^g}UsZQ zp!brsbYJz(HZVRtJyL~60{ukRqns6;1r#@Sfn@D-oZ^b3 zkF8sDI&$F*m5tlQ2cgm|EOo@OK$;SpnHeRO*OW>65P7g+<7?SM=9E)MdYAeJw+Z0( z{j+mdzxAPEZS6&uE9SKR2?4RU8PWr^Sm7=L^Q>(VW*qA?6@&(Pw#oB=)tch?83lsM z_0`wpX*j_Le%JdOC8^x%>J$47V^I(jw}7&@V;a!7+4~*0a`y6}&x7LV!wfhe03uiD zSLIim%TQR!AGti9za66)7en2d*|0XiEm?!|i@337JOlEwxG1fd<{->E+hnh`i3BnW zka>X(yVtym9}Kun_Da}*hBPp$pO>@xO&W@~!&Jb%q;68;j*b;+_)+v*oT9^W%G2Y0 zo@$AVf&vv^lS^3NFmuokHhSau6kc4Fa(%`NzN3Ew!9@-f&g1V2DuIW#=tt$^S{ z7aeNK3&PSewekIj&Tby8%W_N$M~Am^ zf5|LXTp>{CD%FkyatwgLN8hoqyW-}=a^5w&anhc5wxlUi&csNBjd%deN>=1(0TFwl9|=1A1_PK zd%)Id^Dws^+rV`8Gtd4}W=)>|#%=K~k3~onYySSqlq0wgWbkC;0EBI?TY<}E_v&gE z3Nh9E8*22%AQiPSGeMBtCgU=~S~mmjq!R?|@m#{11*RArAUJ6BaDD?BM=r`8pNa}0 z`d@;BI?IZ;nTEu@KGk(CMf zh9O7h^zMX=fnrXQY1UG#ij1rnOH4)O5Vy)3=P*|l2D?D^gt_+pD{{YYmn(%CC()RB zw6tRHRi_@y6YGLn?}rXKVRnXDPL7=~GSX)2b&0KR)Kkwx_puc|5FWXFIk-jq+@3p> z_*%i6=#$#fe*fZRea+z%2Nl)M@6lg9@4Jm>&!M-~RdngOPEcQ&&O8J`7*Pu~G`#if z)ZlWVEiwr(V8qOj7T#VNub6G;Z}ZG#8F$+s%?oJ+brfUOGqJu$(ASZFtGJ|iJao)Q z=&Ot=vTZaYrby_hj`f6@pa_qDk=d77!JLmXO&?RN1ocNrI~Cf&tjPCnMVO@Rm*~Jc z%m_^}stngn)5eM#{`%2I$m63Vhqd;RwL78BvGfLGK)}7Nf z8bpPW$Y{syPVVv*%EpHI4NAK#HX}201;5T$FqEbY|CPvh`$`bC>1W=iF6x9HSHgz>lq%DsA3;aYh)VKOMi>lREsssl5y6gs5{d>r8$s( zG?4zcqQbU7?LF<0B7eq@2l79P&{b@B7vy`j;m%M>dQ8R(7+(-q#UJzVRw`v9L5Lt4 zLHy4Q@unJS-fE<1X5r4JbR8u`?vw;$I~ypuoWT>?8Mg_CtTAD|*$4j5pG~a42Ttcy z*c`a7wxxVBw!^}*JDcCN@N8;tsP8&7Arq)e`Bt~UJZ#{n7($psgw?V?iE6LONVChw zhLq9cE0mWI*Y@|07KqoqAMc<}FGfYwRB~1vhzR&eaFf{>%JI|7%28)Ngh*_2Bqq@~ zKDAbdlt^C2@0Csy&exh_f*tRRyZ|t4G=@}+^Xvl7#dqH_Vd&TC^WSS#Ba-~V_gU#lz(SIr?j$;A~S@hz%({oB_FgfgL&epmcU2XJC4Hs*s z_w+Ru2PqJ_kApwM6W%2UxBCmd^$Afv;6@g~6&b-wUtbnKvDk7PYZms$^;=we z`uc)_J_snG3&ZxWOmg!Q7Fc&j9!asW@!xikB8yTnB=0*-4F0J`76Ib&+mg{k;3hB` zCHc~GJ(eRrt|5BC=PeOQzDoNnLth4_9Ja+bvIOEin$DXMzrYMQD@-ctg z#LFmzgJ4*BG7&mu+AX!st+{U!;%RsDDr%Qxw$|Q!@^#03qAD70mKTn+cYC4Y;IU$e z*>3P8OU?S^r!?3O7MtVW(Hc@i4L%oq*ad$-_qKgyd+no@-oqWnU255jhx9rK2|rh_ z#Y+Gd_V3Y{pWp1-Hh%D=w$w!Gtc5o#fv=1@i@3oPNp-b1w3CDu&Y#-~=YyGbCw}ws zTv#A%EKOmqNr=-QNaCuB9gZ#a%C-e5E9GClz`Tv7DRlK2c04ikib_YMZfqpncdT)l zjeL0-1#nGO&{>Wa)&;y<3l*E%(&rZw`KHFl^FmQWXKTqtu#+@dhz^`^oo0kbS)Ur{ zL+e8EQ!e?RTun_MmWJ!SUU! zw8qC^|3;23ZubY}96(0Y$gq0QI%qBaD`YCg}9k4#*!wo*!y<>U3-0$5mWj zQe$E3=f>FzVT2Bx#C)MGQWioLmH9K=*wUch6CWSX=l#GNN5u{V$ir8#BAKwXjlXX; zFt#hgw$qi@$N0bORX#WRm={_)uwd1=YH&cjY|TTDHCWog(6ip$4pMKY_v>eSQdelF-#Th8j5-0J_i^vTon@{^*T zDF^z)QVp3bR{009GZX7K-l&GS8@B2*6vuk85@Jani#01o*{d1XkRLwN2nZb0lUyv; z4{UEQpj+a*ru(OD#7h~VT~F7Zb(```rM zwi3BBOj}~CR8&*i2!J#hZ{Xi64<=-d6g_-k*`sQ$99Qb2(;Z5ea6OVW`|k30*M&|^ zSSeWHbGgX4ey!xD%^YK&a{3n`Bnxj-vDo+$sZaUZ~ z8&A@Rx5;hF!_3deM@fgf zg)z~RT8OIB_jh6%%~R!*!U;FA?=$s7H0SMt^>9)nujh#>3XwwABT|&H_4I6go4DD+ z1Yyf`f6!=@B}ULrMl<>f3r_HG?@Z5M%ou9fu9kDN#EDm_A4ba>1bD0$68;?}W++?E zl#dI#I!$5jInkV-*T=`#{M@a-lE)sE@*kpx@yRcC>z`W{$GqbH`dz}3=d@u6mX@OW0vds#2&uR~bbqFsj_TA~ ze9-aWIf|S%|1$GWn>T$Suo()Iv>Oj6NJuDS2o|x{YeE(YZ5T}X9+j9lpO>o9FP7^GVtHZ?Q{Im z-1vQR-)ORk6f$PNC*$cqeWi5HDK~$W5w~?oKp6SG!39}ne3X#xVI6L4Kf(AN%~9>x zz4Xei`U<`0kg&puu>RM8>hcG1M%MR*o*u%goA+dc95tFm>!*Rxo=j3J?Rl6iy=e_h zi2h^`*iGM&TLmgPk4;{+jP9IoL@)IG(6|$ZdaB5#x|lV*^cIh!GPzEV{5~ETpbd9> zev_QW&99~9pQXX@ZI|^aEKa}Wt#vCjlT%f>XuH?GdDz7irI24NP}pjf__m+LU%%}S z+5I6ym4{;KK)x;QsLpO{YwK~j2h|BYZuaVne~IvK*`)GV3kqcO3%oS$zp9{0n+Qy|aT+}IyjRVsD3S?GvQJvs&N-Za!yX^Htx?FXn5dQW$EK~t^CBR<{iYz>sf7#JMXJzF({*+wMzVx6BV@34D}H-EBd)(8?JqpoFl z-*x;LuE)*2h>npe^^On7dMicBdulPG$5xekp-D@4Ah$NPb$@8f%pGE^aSjDry z`=@Rq5WH9rDh0)4S^BvYYAgJO=`Ye0D5hc+CVb*$$OLx|gaJFXrIR@9P#z>%=iH_4 z!sxSNoV(Yl{-LV@n%K@&*VEsn@LGf3cG}09+w;97R{JlaJ+%>AIS>%QcZBbV&08Lt zCYR6s>KyG)@Ebuy^ZK4ap397P{-Ibyy@40TxK=)AYjYD04lc8_w6wU%ZKjqJiZ;7o zYhx0Nul>U;`z(4?;dIw{155Qa=o&-y;IIipgN zyz@H;(rAucu4dTGG`qGdP-Z>;R1YGRSA2w7c!W${$u>pX#qA@t9eQY2zG>^~ zjSfv_J$-)IaD8@McZj~Zo?zd;6`Z@lVZK2A|H#V}2f@rPOU@3RsefkOKdeW+67M6_VHwrUFY*2(nB4$?=RCztL8%LY=NGEFS zf8Dm}jEdD!?&vTcxEgC1b8FNXKEeRcT{!?VpU%d{0MI#0VRYUuCC0*LF^kQ)R>rM$ zZ}RIc_A0JDWz|a+#!`r@)t)_zG$ahqJ((LHUui+ifa@N<)UwH+sV!JT-IF%L7^=_T zDVZ%FkjRL#aWV7AfhGznm@y7$TBLF2q0agG<4Q6YPv1+YH*CP&XhF5nx%V`s)+BO` zZ-COSyFmHMeUKY03PEYepxus>0j>rYv<|ZJ+~+}d`{bTcam9j5RGyEaAh`*t@b*LW1*b4qb}JE6x{U_f!j_CK)U*( z+bTW2tYy!57-qrQ9!xm)l4+`cevvgOxs&^F{OTTYxwWV%Qr5&mOtcJT-sr!wmZ8|| zz{&I6xAL~5v$kYFNAP?1)MKB0iD4Gln9bHUplHlijsoV zinjGYPUhB8$*PdN7k5HP?i&VC7o<>yUISI5t%4zbCC1jrDKa(9L|W3u$e3p4uYRj+ zwG(7GV<8BCGSVTd!{&amZLT&adhYjQb$`vW_#t%_qZ?cG_Z z31!duJ8@9^vwiOC;YygfzTg*2Fz}(WI>H*G)$FnvI?td-vEh~B((?<&*0=>)0qiZ= zcva+!#X4i4^zcG-Jgr;}QVmbmTzuq3j35^5u%dh}Du_Bc6oes919%AWvXUJ2KVO2d zglo=3ucU#>ZXYdPJfe2*Tgy#h(PHsOvo^!r+<+!|KN}j@A(Se#eod)L;3vTnp~Vf? z0LgmQzkl00I_3e;ra1A~=6j|1pe&CYOYeG#)_QV{Gxi>OgbqXUzUPwWp}Ap_rGzx( zL~(O8t#ZQiT7b%Ux)9;I%tQ_47hBc%q-K4(yqoWvZ?+oBK$gj@3K-qauW|&=t%M{s zd(Rlk^MK{rGgbxP!FqT2`hA(Xw;*^Ph)xSD* zg~01nOnhmqe{QY0v6S)>;-x?K%IcdlV=|}Uq^BQ3M<2YGO|kf5xg+=+`DH*l34d7H zeADx+1zW6u)bxz*dj!Gv-Y|Zv21oNZUtfxu2WDnhz~WcTU{An1Y<9P6ld>}rPxRm+ z!%y_|#@&HP5P%(nP+1uy`fczubpH3yL?iAw4r+b~$1y9b_X{yZT16|Qj5la=mKk0( zH-oN2XL>THx^mn)4xdAOENBSSInM3BIxI0|WcWwCF3++%mzj~$3%MzI7v0+n>r%es zGa~Hx><>fL-C**!9BHaRW5%S{)m3;wq$30HRG4anxq;yxFBWMKJ%&P@#RSd^NdwH+ zS=;&2GFJ0x+$20c?ABakN1*s)hI)mmJ{%m;zF6K@;~Vc+iC$a)uH50}OdiCZ3>Ed4 z(0W;Z5Dp?Hg_yq^d^<2BEX*DBjVK8;KZY&uCd(7IvjJ2X)EfHv+~jyvx$vQm#>n{}ulWv8;cylRvU|I)zb zyEz4lPwLtMp+PKCdQW-{1!;Df>-Np*IhomCr}_Y++4946(Gy~#uSS_!>E9PE_TU-V zuI5f;ppWic6w2?C2F1v%7BWK)R-|06mA$g)o~Upe7x!g>77-WM*SVRQK51OeTATPq zeBfyE{{H@Wz6#2RSTHbiu0*0A+e)-oRj(g)KSZ6)5p&^kQ_qP;PMorT&EYMDvZK%( zX$qZeq+($2)VF2X6G-ocvv!%@VD$agR`_H_LG%Q}B-iF$IRo14U)p$m_4vR>Qs*dj zfsV}DN<%G^avIxL?-li}RB`500T#8$cXsHfk zOt4h=gtFxl{y4EV>oRIhYP_(Iid2cJ@w3FPGhM_H6o5Tcjg!Ceu671eD+(9Ux1)W*2oF5Np*bPP|SBL5<)&|-W$9yx|-e#^fJWeR$1ur}b zGGXR9Jta3yH5Is#2|KZiy1T*7TQr~m<$!7r5$XWZ%$2+S$Q9xR^O0WdzV1&A@d<=Q z$&(1vrJ~JDcr49|x9=$BZw6e45kkCBY08i$ct4`)zQVbS%XyV+&R|01ysN4Az!k~u zr{l7txA2QzU{*{jCfpalk#rXsV)r;vFu3g7RNrH~dZoijh=!8z!$?x{!{?L7fX#z5 z0aM?&AGL?Hy|6LCy!D@Rj@^~$^4Mis<9k_HA@mEms%Q8&7VV1@r3>`I-MhhJ`G}y^^*6A`N`^xsPG6Vs zhU-VY5K@fT*~72ktS3tgU*Ag?va`){=$F1sppokZ3FGsKd|rw}DHY3N zm*K&jDK;kbQ?Kb#k{he5;4QgXMq8buzLl-sBdH5L{6@vZ6b%Grq{B?+b7m--r7|RP zMc~}uqM{-k#K7YFCT#^wXDFI9e};fUzV&fJzM(`L+0#tr2SB$GP4DyhtD$193oFUNjK4${S`vxboE+)c1x;&KKJrMR zhfa1eUyMVX&jeS@yUVG2_hP)~@9>WOgO+rq-4!2|6(Zt@K*T=uu6cB@JnrzYF`8`h zwcH!h#$Zd0DQ1T2=SY-RL){e=?xnJ6Xa^E56Lgw%f02BFsCaQ6lQj=&usE%Bx17Sy(FqsVXC4+Zy+?_fLgw=Vu|^YKaTxAFhEi?Z|&CkdHKq6wD(o3I$tbeogmDV z5!MF`%8lr!YA*1-vFWO+*nyHSZXiWP$!IdSUy4|F1Z%EQr5GU7abjA1lZD?X157Er zkFw03+br3*`{dNpyK-LH4;*}64kyK_&bPzHdV;7K(zOj6fp`s|S@qxuWo+RX%dz6i zZURriN%!LV3xc((fY1UNJqO#oxl!lh3dbRfXJM*|seEU+HsV93J8~{(xu>h~%(*E8 zqtOC__Ucz4S1`= zhe}sw|AXFH+3Kr{*@AA!=Nc}LeGmF?*KgFRN}o`sZN|p8>0;n(prgOXb}hkMn{R&K zF@6K|aEXh>=gkgz%W{<~G)EMvyYxps*&z4qWNQ)+G54eNx`m(Hbl>`3h`UVQ8`qcO z-vh{?+UEz*RyfzGPS4Nx30};Hk)jG_#A0YbV}U*kB}$Usr74?j#muWO8>?&zn7>s& z&jV*3!U2y3i_IFeITPc~G$2mZwVz$ERC`#2wQxYTMV?0xGEQ5sV^vQ3Qui640=xDA z@o*-S)^~iYexr+*!M&@tf~q@WX5{%4c-(-}^o>^o5GRGNc1xHq==cq*fvtjAc}a3A-&% zd~D?hxWIcdLZyVgTLcS%<)258^VbJK>?JdXKpoh?F};p-Iq^X)(56mkuRtgkt=FDr zp*lD=3fKD_zz5XDX$=(0W-fBRJl3v_&OWADettUOwu_}U`pr3iU&how=jsBDB@;uf zRjEgg8Qee7*u3>R06l7+uqd9?s#)~OU7|#N|4(jcJ`#u6x&02-cGkFW!A)vS{;>j9O9|!$o60tQf+y4>a;L5eOw`>!C?4x2e{xy6_~ zqiBRuE|JGx@diaZp_njVn_WU;&`nD9;^cM0pJi6k^{7K#<5Sz$N_B=9PMJSWV+RU> zm?t|ErGySm5>vUA%YE|0v69bitE2lkyPgZTbl@wjRJn$)-bwLAJEQH`X4DuG1*FGJ*oN(NQM(7qGP68)JvF3 zgsmio7@!X~t()+DPPDy+g^Jt~BHV9v5MRpKLoG2Z73M5VO@PIetQ+|*?nE{7+9J#< zQe2nk^2nB3ulO%$Ez>i;clknK$RFS-0#_?gCSNXWF+px3~RH zbO9~Bp^A(#CB9a3RKu`09^UaGW=r|{Z;|>b$zrRs1)Mw|e^FE5I=KA$37u&&40C+X zqOf8~1pdzdkbevd(zgKl=Tq5h!(*hwVZGz6vvHLoJ6zaxt`IiJNnc%H-DVy_%LUwuTl_`k$9t$DVAi6uXd~q7tMg%SffNr z9RMV7-l+wlQLZ^lkmsxM%pWC3=U5TKe7$5oMJP)J=$%Ms>AvsA!Qh2!wlD?=`}wp( zQ=HajJjhp944={f>#YIhcIgzYPN0E+oR*&cS;V1$m7Bk>moxPq;)!;xpPwX1$vA=4 zD>2#CcSUUDaC^Ars)-VaR%N|7GcNTTGh@!1gw?GLu8avuhNZKcZ^&w-xD;vj1Q`44 zs03|V`-RP&E)81mVeM3L%kjB389f?y8`pU5=#1ZuZJr&DPnXNrro|ZEd6B4u5|?s0 zOksI{u3b#3ljJyk93$9pus(HetOsvcjeLGa{;)$FKlwn)_>Wy?&SrR^bZGvQOd4!2 z4*~RevfzSdzF$Fu{ynMRc*Uma+CT)%u=b%??C%hY!`1Esq$_gfa13L5vXF`}jKB)b z+4Qe-rz&;});f>-s@>XF5$X)vythnM`Nj2|Y#336Psj`R=C*A0r&0{Cg(z5(UR?i~8v547>;&3C1H)1;IemY(pT7oDaF z3soBG(B*3l-o9kEdXGkbWQqzBB(n$<%^9w|*>e^&r%}IUUvh~9g$N|*`RyjRI8-#3 zM-LnT0CmKEtmfgDQoOkrz8e{x7%ELaY3~qAO)<=bd$s3Jv*kJpM`LSS+%RgYe{-|I zZt%97B#7~ofcqh%5bpVu!;bCi0qVr}DTB2}4J=D#uYrvADxTBb56E;Fz)37e&}Kuo z7p{fT*$ABaC_z8XiV*CtC0?uQFs`siUlHBiyXL4!awhW6=XC-fUD_G`KJ$ zPv3HJ+w6wH<9G6uaD3Dd<=UvkO{tVmD^=)&CS>au{VWx&`vW9^I^Vx^JQ}l-UfSqi zLLunN3+?Q4_iEAw=xZ`G96xBf6Q#4R&2er1S>z{v(xtb|HBzWf1taJZ$hywc3^3Ey zoOiW8n}{krg5W*8z+s4}0?n9)_9Pg;_3;E5)|K6og8fE$LTmRPc+(*gXj%XevKr=UO9W5eh8vc&}65h;tO_0roIZFYLe<6 zuMK1&7ikaBU-KQyEG3&W7ZG25xW^DvC5LuNOmZztyaX=iLX>E-i)Eyfa|cG7I|0Zu z>zVW%|4E^wHv)b?#@Daiq+)b#wTIKzNv1mAk?gAe(yu8P19v1e};Owj~z0$@{^|^bu;Zi+2K`LJ&l~&es@Io zPp(*vwRX4amyTo>bHHY|{d=4@2dGUEhQsJ*oZ%S{a8Y_?b!;uf>XKH(K+k?&;%A#SfbgRx_K)}Ix8!^3Nr<>Sms<>}(2z|}%aA%zEoRasU* z&I-fTA}d5o(+$vGqIXevgD2B{$G8K~eFU0aK)Xt8QyhiNhBr*<3ol_t24w4e5!t_0 zKJj@Zb`g5X_Aa-KI1uDx*ezAjz`NHz&}mlS`KLtC!zAI7Jzb|!=Yz$J5AdH@dQw@^ zP&H*fSo|6SnvI*Rwej$`bKtuGQ6>f!mfiLKq*_HuVPR%vr7TDh8$l^Uu#SUK$Ypa; z%d=4XAK3z{^QQHg;2PGEq}m(AF%)9q@>bPkNx9XkS5D#EjruE0$7>Y)ehI$I9cZwE zBi0knIfskcecEFcg-!bU^C)1;WM->EiWJHx zw|jNw$=_Ur&vk;{LK-3zKEMyRIY;!PehdR7_~nS1rKDdJJUmviAsr`=j7ilbpfI5n zFDUq*Cc;9d@LUPSbDg4`@PN|7DCDMhP*~oll~MjlE{WHZGn!2E^62j31F~ULNV>MWfBBe zrMG`Q6&Y#+bri`*h5@qHEpn>}Ko-ks$%R=K@qiL91@ep#KJ6q5*6uy04t?4j1r3p` z8kd_(_yn;=fkE4$2tYU=5}QQB=Y8M<*N_U&t+mU6jB2NvdX=WJL6Kx)4YnhtSJB? zso*&icPRFgX4vBC+7m+0?Y2Oy#*NEH*p8Ue+1LlVwXbdh%h?^IXpn*=5kb&!dsY#W zhn1%kH<+<($ONm2wDfas%&+U+`V=B8cNsiaDwBM|$F4&grb(WwUORlFyIQ?hN>Q(2CM-CQ4KZb1*!PT zjVHuM&hbF`4gyCA-}wpvtw+%#tUym#+Y{e9VB@{4NC z2@QPFy-Om}2;NG0r*{MJq0kctWV;c;y%rNyAP3g9Ts1B%Ms_{xI={Z_o)<+iLc2GgX(nn3ohPNIUz7U|XnV+ek#5||m{;ci5*Drx-X@ogAr+0G#i{-_dXJ6W z517w^c0m+$bm4&3bfbioH+cl|czwPFlt#Ck_?mEPq>`=eqB@1f3GzUYMX zz~12$tDNa0k&jN4O9@nlAzaAt{VV-KnDlC`$<;rg$&{7f5V%WX#uz3g+8t^t8&uOaE_ zzX}5Je<%p&lxH`GMZdr8ryo~PI+^q^{# z4Ktgas0NW5`t&9|Cu%O=hEqqI$@0N_I~fG7vF&xU>8s6OReD1rzytoCY2UHsOC6MO zYfqCtu7`7Bpn#dxi;dKd$-r&`v7manK5&9@9EF{7&vcGp9GUb&es-R-ZbAp>s)DOQ2i^EYa9QBO+GFI0A`(t^ zNL<4Fd^0t!&uLDwzMUMUnrntv;K`FKqOb4WihBgL(njGr$g={NXQDGGn&yCwo8K(M~xeehjzq<2L$!JGtgzV;Gv z)(%u_+g;JkO!RYe`QwdO`_uUHp(4QIuSIz?ra|#h!8kqqYDP)Zst7rICQb_Z&gCVw zV!Fbt0%#jMQP1Ju5%_dAzd2wzqFtzN8t2C4zBhs2F0VW6ZG^CJgRhqHQ71xl*ZM0} zBoO8|bV(Q3Sf7SRJfS;NgGr8{phuCZrr@`YzEO5+`(^&| zg4I1nA+o1heprFAwVn+UodA~TXtdr2qr~~X<_tTep#5DQj1t;x@w-M`Ns5PMUIL$$ z&k3@rk8HfL=Vy9X*r7I@$KRaxzx@tRQ>=Ol`;Kg_pk#gfp@io9L)q~wU5~254-N|0 z3OwN=y~dr!7H^e>L++}nZyHE5Snc_QKg!}hcZjsT!P1smYm;i|2t-!}+z479@ItjH z^F4s;;saL<|2>~NW#^E;X{pr61nVVY;6_|~rj-jp^$eFIw^Ta!G(U%gwQiR{NZBFU zGjIKB2qVcy5hqrTv-X0JgI}D0t5et!`5&UacXtJ3&;RN;YWH z!kxcPf2~aD9umo1luk`iTlto2Oa@F2_-Rv=WJ-cd&Hh*w-Mmj~ac~IwG`jT$F8rp; z%D&p%F#17FEc;dS_09S~pQ8aq#=ZRQgK_Y;Jgn-e!F-vx_PZOXpiM%8q7ZHNr2eEI zG-PQCaY-*qyM8c04ll0`gcXllp&roEvvPYI4RF^c`AHYw%vGKsHMrntc&;bIu-sVR z43TapESlhL4z@pPX+`mXf%!$^mj?3D=am7P;`MvNa8o={G>u12oE0L&x5tW6td$Y4SP^rj_@bWAErPho<|=V zK>sjb%uuBWyHx_S@JK1`qFzFW>LpL+LVO!HX ziWUW-v=?p>kQX{TDt!STm?HiNCwxk5@@GWv_sg|=pPyXV(-ec~^(Mr?Bz=z76AJ>s zYR&+pJy^ve1FN_TcGMC}1C(!I`Et0mxbQA#%*7u9ZgSLPtW?sJR_9*>sVT(Je5Ybb zY+ybseRsP1Nlh?45`(4b|25E3LdG;Yinl&O#F`<}Zkxy$<@nj2?UC}QOoLjgjKYgR z^REw~DfJQ5PIfY|s#HQan%54kbxFV%eKZ(RMnlR_x9Ze55%tA4<(l{KVul^;$Q_HR zp>KH*vr!>-gX>w%hTlt2OKKEYD8JEZ|FjtB^1R^=Mn@l%=0vqm58p#}T;~N*6;;kn z>}#X0qFa!QS6|`*&g;Bk3^FpMG|k?P((d90^G7EaEpL2?q^mvi=qLiVFCx|xwj1Ag z2ZLtb8MnSkL1hzAb&E_c^jduY@=(+e?{7)N(k?!xi4>TBY;%DE3hG8OV|4#Ew) zvsk_KCe#VX@b1}7`G4j`%5=I3?UUOS!JQrI@cL?6qsFBre4a*#g z6XJ3^+^)ldOf{xUljR)1W5f~Z>f=atXwZZ6G3<=T8EWW3Y@wKLbPZtR%L#-5-z`Uz zYU^09g)M1~R5PEgvv<0vLitxQewat)45-Zh{au`}!*9gKlO%v;5=T(*qVY;vu@p$! zNqM^pz3w~z_MAyMrJCcM%7B9UoynurOpB9T_e9w6KEG!$}L-|nAO z+mmcF{l*wmog71DM! zlLnVlkN%yFB25mNe?+(kH28oq9LyZ4%|CF)8cXn%cFi%`#d0=XQo6QM>`Y|uPj*8DK z)z5H8ApD9ZJ|B6eT{}PS^Ph?VXEA7D`c!eN!Of+ri?^JJceqh z%U&cWZq)Td@ySr5wudh$)oq)srHo#ek(d31i7UP&w1b5#s!$`)Uc_EhYDCC5a-V}! z900be3*j`wE?UfQ=ECt6FZ4P3@8}M=zEYj$b1b+#Yvdj3e4{tfEEAwTKU_pl9i}3m z9}b`tsc9>|B?seN-f@jNSb*&8r^mV&%m08DIIo^1Mx%hy)rYM}47llH>BOJQE5f~n z?D(sxPgk3&bkOlioI<4RtC4dD~TW@3Mb&k)l&_ek@*~f<)KJMHj=2UK>$&TvSFhnfs+ghP@4N>+*OuV)aYfm zH@HvE!&mS!k{;@=zzER%E^7|x5V-VXBIQnjvh_zP`V2>d?CJvttx3waeJ{XFYWUTT zjGdmvb|*GzE+JyGfqn|FvaRXx*u%C)pm?EhXND}KvTCi|QbTMlhLO(ms621?w+F?Z z=-Bx3FA`P<@MY{O7%{$_QW$A1?NYDC0h@7R9w2F2CQr_77;P9>GEhE?%qa$rz@$M+ zzd#$a772{DrZCs-s6c3~UNK3lriDRsKfrN@23(Sgfb$O&M@EMw_jEUW?C#22^UMB# zM1fR?%Kt&9)fZ9kexfFMq&0kB`bvsE;a(_1|MJi?M}|$Yb+kF`c~X3`U8SyTxuaKj zC(l(%%21(#ExWo15&w?h8394)`N^ z$e-?l@ zYndbEt9Hlkw=RgCo%2&ugU|c=iX(s(_X-vuK>o4fVn>#MT_U|>)-g8osb4G)qzp>k zBq~8qFm`+|&_4f=Q&d_1Ca0F?H-$my3A-}le z`QW3|jv*H9ve9>=BI)LoF}joDS#$_%EZ*PA^+MT&`9}f78WN8P7HU?1>~V1NsJJA?&lWr{D-)*qp6tV@lA9?_B9;Kru898z6G}KLoS2BktUz&SP!%6$!YKE3Il&D3E#_CeK2< z6^`SA-6OdRkmun(o1v8_Qi=nmY|K?x-ynF|FCkU)RErz_ zQb^Vnsfx;tsT+SOqJVy|dN)fa(WH8l@H)yC zo1tLsXtnq!=!oFtr}mVY1kPa;fFgWoh7DQ@C6`=&5&V)ccZ96_F#1V=qkgTA2xc62ci`0@W>+wv% zBP!*Z7x(7jDvu@;lRU}(=+yjlZ3ncOmF=ZXN#9pYdIIbM(dauzHj(3PW&86z06oi3g~Mav1u)UOGS#fzJn^J(zsWD zpgWBBzGo-(P?7h4BnH9*%hE2v)(px27tvtd?0(@~#!6ym0H2Ew5%U(&MI6(P({Q&; z9D4o6YUA5m)@ANY@a5Ui8|Y>)*pCX4{zxpRzUeh#F_E%yY{cHEhKT@z+X+wPf>5b+ zhIA@$lPiA}M9IFo%m&!M%LKZz=9C5jU>a);T_lBqw(vU$(;e)o)veikDg zKe-SFI%Gl)F1R!-g(I^{NZHh;8i~dnDlK zCJ;Zizq7@{)C~{rJPMR6R*_akJ|pxZ^y%m12`uSU^t=cUkaZzw>B{WyE|yK2kz*NW z*VXyrb-LTs3=b^BhILj^{pZ)iDMZ;>Hno$(%e!mWk2GG9_6Rqgxd^Vw+^&WG(E~J+ zDxy`jDwwy8Af>SP8|-#=1Fo;FoXtU>i2*7_&UP2kH53~P^~(u7S=s~b<67sdoWZ$0l&-;H!iqB^HUh?WRh6l-gvtO>Qd*)8Y(>-;BZ5Q1U+vAo!296Q zc9hDwzX>{G^8ZEuRke-UL%t;C=XDraJ$L;f_KCJA1vWC*$?dO_V?*+Q*&;~|I$GuDSx@rm7X_0Tl_F6oj zZNQmfQ3UVCELI?kE&|0A<`YW;g7}O)w?h-&lRCdCvW2S7<-aiZ?!g;Dd3TpCs|L}IvVFQwoiF42TM%qs<)@BvXCiu4%v0>e2rH>3 zT}L%n{a3u=L^3gGY59;2%<`x3>TZ$4LoB*bus`c>gd5U)zwGvTcXw3r;@=_emL|a* zZ)Y+t5f|~U+t2+X1bhkl?W3Wq4@O}YIkbqB;1RTUXU<(*53oXbw2&s*a{%m69S*|i zqklKTQMz0JkeCTfrKo5rXLCrmYLKGs+|9}P2S=X20j@Ll3@MO%l&#Y%P92UfxVPa8 zzy$@yps7y3R&h`pI8Oax{NrJB>WIjcXFsexo~4{@nCZ%kJ&>k*U|xq)s5gWFaMx2tc!__sf~t;!U(PVGV?Fi9E$nWPoH*0veRe@C6%^Ber20A#Mx^epbv7l^xJ5k1!Q0llLG3rRQp zsh|>xbFl8$73cPljN^a?c+jJG1{)7`Vs22K3oczi^2sDN5q&%%C7p3lNpDpWvZaN? zIy>)H?b#r9M8ankZ@m+M`JXiCoBHN)55w!cTJ+#mR2IvI0z?+PIFCeHM)aV7x4Z$R z`s;^RN0Uo&$HHef7tTyO+m0fgHZ#I&}|2ONpX zWNAis+&cq!2|Iv{ zEf0rnQV0si^dEB83T%JFJYQ=JhejDpYU=unMYWx~V=+Os%^kH9HQ?v?@BH6zk0`c7 zv|mrb4_VHP9R_h6*r+W=U2#uBCZEcbDJ-7v#HSmzsZ^AtX;Y6`S*bV5>4g z5D2!)%4OYoD`HXVsQJFg{QB8hh;0qlNNpS&aX^yz6{9^8YJXI(4s2cYAsSGMaE%fskjsm*-z05Ax7u#ZuHi0ngo6aRQ(`3$fVw^#G3C zvJ|i$h0H+0X4nvkjrOVZhJkQY6aVkFiNg<(_?1rayAOkDlsO647NRR1K&W$=Gu$pg zM%~`MTcc{VrY2bd{qV%s`N+xg>deC`A?RD#g>NP#rRQDs?Mw( zSc}v})qNF5&ZzM3D5dy6qm+fB*0ywD!JR!kH_fBp#auXE?6f%@rg6`gwHxJLMEEEd zQa^1)g&uPy1eM5*$7Yos7WIQq58ul5dqx}(8lH?n)s8|u=l(_lrC#Y1wr@@;oE`oDJ4lFd%R^}P$M#kj!hLPF zwoi6xoR-J{GWMXelG^dM+`heGI1AEeFUIygVnZ6yinPT+22SW*)1967@iRnA)hp7_ zu_0)3M-7~1zshw@aF2Qa%~i-&KNN4K^N+@S?nkwO4qTlZ*#N!;ukhIA?{9cUxF=*Z zg~6~4^>EP}R%mO-Z2PX4q-`Ok7`f@5zrAQ^3pDPh=$W~J&*+T0i6vlUNq|3 z!3;x5HY6-BIMaAy%hixz8v$?}u! z2Rt7y%!M!z6{S34VgZ^fnM>`RlxQLJU3F}V#J^WZ0L}*D?tCD~AWkWT7hF-Hs5j+t zt!KC9Jt3ORS$^wGXDZqJbNZ#r{_o7Gk}m5~J|W%4G$1RZ&*6K8Iyj#C@xW9r0{t(* z?JOV7X~NLGZXDacwDv>5@!(lEs{7}EBW}>t#)qH4^$kv8dC7WCS~jd^ZE(V32Tc9Y z*>8&kjH^TLE%rDdjKaeBE6|ssfTj2msLQmU$V&q2^SWdgc({%FS+8pjnE9x>lvuJ>6J-a2x#e71&=GwFfnaoO?Yw5p_bs*6=3iPs@5n7ET!?^+a)oi>I<;z8IMm!!UdDbRh{=E_I z1+buTHk`VnQ$t(QTf_{)n5$8--HSblK!OHkMR3suJTMv1Szf@1!p!5wa}6Kq!PHh0 zzX|p~h?iY;mRAf40Q7O}Pe}gp6ly0ZNI0p_0f<%i0g$$-BlByzHRA zV<p#02jPYoJwV|wy@9%drFOi??pJIu@#H;3*w;#d+-M2H?5^gmv;8| z{`_e;fVN`V`>i>^Qm(~B!9DWH5umse0QT2oAjy=fmh5xv1=UCR0}|!8FN(^>!9y*sS3e^n`t_>TPfj%T@x-FPXoq6c zmzU5zGnyOu9REl>BF-+Ljs*yixyRTmbO2ZRlLc>D0b>-{G6FK7&2poAi{F}zsR z#(^XE)GCtqB^wasIqY{CO#hHA)?0fII<2m*0&Qk;4~Khu^8ojq;YTOKFEE*pQ0pbU zkgi+7Gpk1#^RK*p||b3XUE;_Yd@b>!rbI+vBN3o#|@JJ^5C`pH_G0bk7@AYHDhR6!Y>^Gu9OIUz(1c zRms+^t&G8`XrD)+mK(~{yVEHC*&^MZttl7xWA+*Y^jqDQ#;y&o)8qaeS;;4A z-+DGOTl)ltC%j2H2Ibg7jo{c=3_E*!F)^{u4I9A!0`b+s;mhgismJY#vw?xZ1kf;7 zLqkIaSi^C?S8n-y$;NARw#)?Oj1DtrG{T+!j#=M!Z{NQg4n|{*_y$OK9r@bAO+6>(m|)p?Zwn&=(ROwhsdo%$<$oa z^0;-?z$Vj^%Qng5*v^L8G_#>fN#H3sfrV%~81R$nPfJ*ENA&{rlaN;Mff8ZuB>?vv zKp3}a^?JILN;EF~okJOX8avuAicqk6}y`z-!_HzRypV9vA@8pK$>o!R*XR+-#x^{5=2P zo?&m;82P5AO zETw@Jt?qmv#?qYL90YLNH77wyY5|xR`r(Zx7M*BoiAZQEWArC79%&9m?i`F#0YE{4 z&<2(>{mv68(J;Z01nLLcs6z09_)VAue-rxquY>`73jPbx7c~+&Fc5*xnnVi@0sjT= zSG=eK_%Hk>HQ%yHz<&|QA^-pSuL1*4J2F7S8{+{10Z7Z}e}9~Ajy_|l-6MQ%mp-Eq zC~*UciiI`X!SnYwH^hM}0jPPSXs+?UIy?8ErmrlHBTgx_4fp~bs01+*#Rp1(R7yZ$ z9f>XMcQjbaYZuk`3tvnTA4agLpIK zkM@Cq1(rMY?>6XM&D>lXV?w7}(xIxY=o|z7S}7~D_4M=<$YR1SDVW&9&t*tPX6CT$ zR8mTcZYSMLCE$dT$Y}s)t4dA>5d$UyHrZpLes!{VXnSE)(r5 zd30vn({}S_5Q8fPjT-rA3%8Vu3{gg#Z_cv0c~`Hl!jUFk$MH_j>COyoM)lGXq#^qxv+0Y9py zOkBbno0vq;#0H;RY4p_?EMW>L)jL8s*FdMCBX8qt7%V0a>ybAglZdEdJ&wD1apY9< zLf?08%E2QTQGGSs7d|`SN0=9QnK>gtx`#EbOF5lb`p>WGqUwOL;EK$&LDuT(?WN4H zL(I2q*@Dan(xLI&1$O1>9lzqj-9H+BM@1vvj?}-TxMZ4cJO~NZi~5#jg271J*M~)j zTWN9;mkDea$C$ybdDcX|;odCDU-7xX!KY9td}N=+uGcJbwFK_1_INX_udnz3^mL4< z(zPzU{fp!IxK}at`ssQPIkeyi00}GQ#t-fM;i1o>LJ>0)tKBBzoGZZl76vM#viO^_ zGBUcrvYsm!S+NERg|x?tV|C8{n{SR7NdUkDYkYH!!C+`1-4YN2n+0C0r$H+K6D0+x zEcP?N43gs=Qxqp0rWQWBeFKU&)bZScRVY*~377HnyGJ_7@gahgbU(j=N~J<{nYpWNdYBGXU={GL>d5(tcDa~W0y?Or`!(|n|L^Yvl;q(^Osy;6 z`r=xY76%R-aQh%Bz=)*V&o-%4xp2$&>{#21;d{p~hSp58xu|EX1ivF#Ml=j=Jd-}o z&q@HtiiajjLSVl`KeowZ|4Cmv-@-OnFIXYoiz;QE0wrt{6BGGJeQuU@O7{F@XF*}% zOYmBI=%h}T*LJGm4k`pww4ha6-oNy$yW19zpUyvBM2PDHjoe>r^r;+@LM=R7(c*kF&nv9t_-VPk^Q zLqS#lSu@QxQqS>Y>ceY~9eWUAqAzTRRGkcLKw6qk99t2PkGlb4XdEFg*V{Td!+iVE zUy>IhAv+8UME^>-__>)KP@Unq8cMl}Dw^hP!)0rtWlLz7l9of5 zaPw1}&x{*Fyx#^H_Z>exy!#x#?cKD_beZLAw-!JUk#HZDj2-o_Dp1Y}7rHhxoG8;7 zJ+?iL4ELq2u;EdY9aomKai3i)8R*c_r=*rnCs$>eVUN=0Zl$87fU*RSyFZ%0PMw9f zXKr_M3sy#f!x)s6l^J6&r?Vk(aTDK$1A9WR6M@BI^Yily_a@juV!V>#Bt59#dtmad zUA_7-G?R99ce8Swp?qJFnh4@C6<3Rk4}I!0E@$-xAP6$lFAr;q%6 zr{~L{AfXW|8k(0B1UQC2HGab9Z?m_DyxDpJR(&tDg`*!4PPUW7>pnintQ{3v4r$!W zdFgP}=)j`QlF!a=Fa9-hucPB%(;yb53)B4sM940JOz~{rl`#7H$xcSi zyv~L4QXmM?cLc5!GBd- aD3>o0h4yO}HzgauhjhUIFKo{f7k&rqU6RiL literal 0 HcmV?d00001 diff --git a/output_71_0.png b/output_71_0.png new file mode 100644 index 0000000000000000000000000000000000000000..702ab1144a4a03315710f3ed5fcdc408abeb928b GIT binary patch literal 11154 zcmeHtc{El3{`W>v2}z~Q6%nD~DDzZ?gK*FxV;YQ^9rJJ+6`@2*$UM)H$W$stro$mK zNjNgk^Yh-m_ul8;``qt+)^Dx5et+H8DzdhH_Wpd{@7MJHJk-`yVc5mC3qcSDtm*|F z1fga?5UQ6uXyGR+jfwj3MZ#6dz*X15!qwf}`37>)+|}`>gX>M}t2}NuoL#IP?9Ygt z6FGf?$I8{!(M3{J)b4K=h&VV~iXJx^@`s!3bX2|Uf*?%h=wGTdxm0Te5!}RHP|)*; z9`Err2)~g~Gu?NRq8cc$>u}AU*CcGvhi^?MPcSJ7tJHrpK2@0YW;=aP_iu`}sci+J zGh~RqC|Uck^*A=$jl_3R>F(azv+lT-lkNH#mi=Zg2iEc`0G#p<2%3TtC`$(G&L5R$1 zGzfB15uO)O7J$X6+VR(mFMfZ>!ap}v&6H``7`uys;nG-J_I`HuOnp;NCCi5Be97L* zLeE)?^@ZX}GQ+v@5#`^k}ZGPgO%h4{q%2;!?g+UQlqFFxGZ4 z+o(84W}%u%?#rkvCCWCZxs)*G6TOdk++GWjUFfiU_0{6F_17@I;pn=?#>jdLT_>mf z?O!*v;6A*gQv=muNwu|V_W}ZhPMyMSu1!9$>w1%ZDHG2o>*JAlV~m`sAM=3+JKj~S zuc&ytwyus{n2zWo_F58YYUMq4j1nl6)AZpUz1a0Hk0pl>h#05kn7k8|mE9<-oSgP> z9cen8Sh=5#E#p`HOEcH*(Uw%g&o9g|;!cXm$;n=$$&sxkE|w+)@};n(2M>1Ku(Y)O zo@X8<sEV{KS&4BorEe{!dE8m3|ds$dSB`5AM$u>P; zK58S^=h|}7Fz?E(D6!Sb&7E&2D^@XAKkks3{dPu8Q?sq$MxCCXUQ)7pWQOnRg0kmY za$cVHr%#_&8aLOp)LoEB$psAJmj`tr5u;hY{OhIH(m((o*5%i?=C@9RbK}K*Z5#BP zW)hw=Nz=ZorsZDgChy!>Ig9-_{d{NZ&q?|$<>7OT({n2~4AB>`FBy6!IfxcetcKEmVi8Tz@V zHq8n5DmGTeTJn8ZvR#&okwctZ{Ez>wQCoJW3}GFFY(J4)r-;M z`3+7j4z|&?1fmu(v*2HrxYH3@H*w< z%M>aaS^)`(%PlDvTU;7tEW>N`(U$)d#5#sTLiu8ESDHV2)iMs=(rfBH9ih*65gV4G z@#5;7l(5m8xei^X*_oNSPTO4Tss8t+Gqpm5xe;8pLB8Vl?c3F`*k-6gQ>lfo{I6P> z}L8nc zk!5zC8)^0$%Pwy4?tK{?j`#oqE;Yj=C#9tcBqt?V0cPTBsED)!r$|I@VUtolI!2Br zXl5(IKE&!I9+qfnZMJbfvT{vHH$?*nTQmnHZOFM3VS5xoTg6oH`t|(MV5rcMBOgW{ z1|m}~Ra=Dc;ZJGdPdSA2t(~>I#3hxHOL}Cij(P`@su>ejJ&-3!i^z>M#otLtOcWLW zoSJMt+z{g|86)Yp_EuDso=5)sxEnM?<~3yMPMyd*4d4aV6O6LL40KFft*>NI)J>xOjj_ye=-Rw(2~L`7xXp<_C0YAs$j>MAHA(!d=_d*#W@j5GF|L%+^v zW!1l9y8Z|nIz|E5CMc>*nK!^cMOMv2Sg}B`OE&C@bHecst0LIY?ziG_St@b=++X$Ro2l=<%<%Z3adgR4rkBgTiY)4*lHGefRqQ$oaoXCCdp(Ca_a8VQC?(ZJ@j!fdFc`h_0gNb^ zig`?3$sFV%0+yO$H8fgZoUx>E1U-BRh##T!5Lv38=y@mR{8RO;L?REj8Y@nY0s549X4YT{qZ_G1jC@Dq!jkN@1lu?MGCA+%0P8MW?`WoFfLw2@n~9F z+DSIcOjv7`+Q}1k3?{P5`w~iZV?ZOsf_RO-gDq0iuHDAeQgGK^HmA7C38$ip*k@n-q zRr;q?Rsz4yiQFe4xg63S+V;gpk!F6LF@x}L$-;P-B~B2js9O8{>94A>j1+&Ku4CM7 zysxsdVH!XVK#-K6hxpuD4h};5M%b`WJJ+oz@9X;0LGg}`eX8R1~Q;Tm0GZU$-c;GS+s<{l@vc@Q=0TrZz<`})tZr?OB zRM*%cy}f@pVC(JUOi!Oa9scBrIbk>A2M@WNmx?Oh={mJLbwe4xN4bb8@o8zQdjUBD z1qB5keeSS_{dB+x_wL~-v}Wp$A3xTd;35fc z_1nt~#--nP?99zJd51rK{CHqsU|79H3n>}&@wO@zz?2g&>+!>>-is4xE5^Y-lF8)2 z;9xQ!X?6&86_eN8NPM~XV%tWRQE>xBb;lm*R4P+-O-;PBa{>7jknU@XdXM&P8+-uu z2*C${3_gPtp>LZ0Kiy zZoi+uap=o|rZVK*PDSiund(I0V=Xf=AwiM-oV^|hGC(z94cfT)STD+Ppsh5Q;fBuF zmZ7mAG@yop51#sfK1DdKM>g~%4ejoE3kV8^ zeO#lBN(cy=eK>|lKC3guDg8sGKG{Jbo!o*5#@4*&Wkc;txU zjT<*8(6>tI2&Q#qeoV}&iKhqpD=g{x^Mj~hT=@|sin7UjH5#_8j10A~eFqL$IPFCk znu{IGvW-i0K!->0`mWEn8y4G}#I)ZSBz=ZUKMqa{oH?VrzA}$0;p`BaII3e8qmquQ zgrq@*7j%s~zw3ztj#UofuqI%(?SNn5m60)ddDe~uq>~jw9d`>vrHrugTkYlLWlD2m zz*+n5v~S-u0K1P13)fRT&>Cqq0`isJSh|Kb6;O78BqNbFO57;{{VX~z5BV_H9zy%* z>SSg6+-S>jhQ}AIyk_<^|Dt$v#8_Eb zg$^H9urKb?kKDFL9vt>}EE5Lz2Zn)qm76^HDhDIZ!3aVN^wrl<*OeI(a^jbBNq9uW zCuoE?P)*4xDYXNR#*Wcu_FCdGnqcad2jL>;g=gDl+26W?*4+vbs%$$tI!eJ$ky9?R z7g@I`Pft&;{CujF6|y~!t1ZVQGdz4BY!_;;M@h+q27gfKYHDgaAdW$z6gmwmt2-Y# zsSUzGGe*+-^P@ws7`oQh>GqZDZVYS~RsZ!dGYAi=)c-FKHhOQg899)@y*R@zafq6k z$^CXa>;lCn7D@?)GUx~{883tIUGl!X{QN=^63b=7D#2`gSim8bqkM`yiI_MA0PtS_ zP2WrU`eswMk_hpY94fC+jpO4}rWq@p-j;1-3xPoCLZ@wZ$aZAv=mI9r6xBk(?B^)6 zjdJaSp>jEeg_w0PO0OjkAXT9TptTA?M(UdoB6!omYIf$C-!b(Z+FuUKbAX=)S)vzW znA#aylL+?jGA9kvuaX4_-zYu%DD3Ie{hXZHi7KIja&l&w`nhd^`-QU5*RBcSYsGj5J&gr8r1a?5zdjpb~$GkF| zYqL?(p3aFD_vWD@m389Rxu$J^Wi}N{Y;@Y2j(6UW4Gx0ORQO;~{@m$ZbR(#M{QkV&xbZS3L!V zTL4hj1P;Vc506hlGdWZn!rOxEMc&F#!2Ogsg9N2~`Yv ztW9?T(?LY)G&eUF&90+p>EJiZ{^{dK15Ty`R{+OK21BIg>d*DHN}L5rMwsk10V7iQ z+wGmwS7fO(4VT!^QS1sz)CSBFq1Wf3Ix6vDyKzvXV;r{Rj0lLP{2QE*Ta#cPKrvt&LW3XwExw$t8{ZjOcWG5w8o78L zhkL>crL^yop5DRW*JKZuGh;^rw}fAn`~0nAf&v1nT%k3TgUDKyeQ_q_S%7H6oP#Y9 zv;ozJi@UNR&wwz?%#@Az$yg+^prGJ+pFE46scBAYtDXc$2z|&bd|GM?6uY>;F&j~- zp*QS`A5EmlS;Y^wPx-Z;)mvoFwv>CjXI`U93n;Q}7v$qpg7~PQ z_2t~n6;WI2Y8~J=b*PF$_sQPQSCC|0=G-YSqo=PgboMMBRMUFo@TO<%WY0T&`U58( zgO+THKhG|4oSKTsU9lXBTjR--Cm>*(rjNg&Cf4SI>EVqc zRRo~8+DeVo4*1@{(q$IZ@!ZDhr0wtT`3I6O#Pu(1D|=(xE&@taQEqMO&WGx10;Db( zklBI%$E(ovCxiKCICwH{VfOA$7GA8iwKW*;2wreGs$ybdYt^WDb$}Met04VHA3l6o z`rVtJ+jkBpvoewx9KPe$qb?RG&j)7se|Dtux_UUAIi>;cl214;y6^v?@}JWlSs_$a zOz=*?1^co1-oJleI#D{NXJ}|cIDwd= z5rx;{L^dcAr3)9VAWMV2QI9#ruNAB3vxNQ9&6qEd{ck_ zzG>n+Pd0?Kmdk(5NoM*Z3!2selgCj>bA_HhbB3I2CO7}PLpKanl4$4zNpkj?1pxZ? z3g6Wesyj2Cpkt;zq_>{Ot`mbL1)u9pyZG|#Xi>YVE*PLsqe!bhEcjWw&ZI3s*iHq} zokucs1}av@I9w!S2&Rej{lk1mkDllDU(1(W{e6Z&X-!}7xPCneHT=~9Oznp%A!Jul zRzB;jwv8Hgij-?s=~59^L>R*pCb~NkE+CZ5loaJdhYoFtXC8s-Az))f4gs=2qs%;@N7ZDV6Q zObzz!-K+CX>oCMSP-QSpBBN>9PL^W=Cr)TU6ogI(_HlDJp5qt6K_evt`k_w|>-p=@ z`hZls6_fZK^+4hb~$C<~8?5yq-%Xk@ua!~TLOdB(fG=)YME$`|80q79}%4Kk)w zn6I>d!7>Y=Vn)<&ntuHUYbE57MB3AyU!A~niMdZ0*T+Z|Gw(gz^oLjccaeccTk38| zasEkZ|6_ZKF4g}>q_!ypT~F#Qq=xxrWO~pyKIyySIzQ241V|hB;6YRW`#X)E9$nW$ zWm3@5lDN15z!V$C>hW2J-kZ3q2EkC|sJsE&mA!skK;SViWXj)uTt~|C|Fr*7K*832 z{fdJ`1D|CO4?{%gntb>1y`Nk_txru&NxriD_Bp(YXN5Bia~{sXG|lc3h+$Y zkSne%PKsi^=9*P(8*4s(9J$A8sttn+x8L8<-#Tk!Y7iPhi}?ZrFOYSq0bE|HXJ6J+ z#1Xc*zj(|A(MElsI@nW~Pc=iz*!+CU8(BSui4z6Jaz&xh+oxt>&BI^3NcUS`Nr%}a zp#cUoS|A_rkQ&Z|I!cR+lLuVR6F8m)*6+@@S8`^+hLDSZqaxC(f*OM<0|@s7mj);( z9W&qg2$Vm7hLj;@tpqb*t)ONQEW?miJXyJE`pR!5U3RIT21J<^@zJB*zH8GphVR_6 zB?%PQhUKOv?R)p{Q@{td2^V)KKuUp*71>T*y}RAooDV#PFuV=mQ|WN5H|lV?AbG;r zcZ&;OF1P@?9}kuN$S)Nd58`s0yLWeBKmY{Q4B|93Lr5f2Yu2I7LsW7q|IkPY5QAY? zYHAfBJFZxrkP-0eID5Q;iyu4FKSmGYSNGq&nFdrQejv-BVE1XF=s<1hhy zR_Z#M(BFTBFy46y1|S1tkyVXN5DSpsxjWpudshI$5Evq~fg))*q;G7T)#XrWl5JR| z1DQl?rN2K+$v)ivn8yan_Qk)6Sg58*ps>SZV{^j7_U_-eZv z@P87knNK`4q5$Bug2Gx~P4a^PsrN!-?YZr73U_S!&M~vFBm%AIoB2%N`}7s@u>BXI z4X-uuBx(vU)}*9Pr=C)RZEN%n4m~B0WQV>AK}+>?S*%OREnSJ79+SciphNF)H~)!7%c?XdnSO1DOjf zNFwhj%mlN~^p3is!Dw(4^Q~Jlz~eAvYU~iREAH}CmO?O}^Eh_-q|$PfBzs zr1N@utrBL{-KB&~N%x8F=Qw5_12AO&HVr~VLFk}L1gJ(=RrLYH==@mpBn9*>IJIM% z(P?O?50lZ-f&1)pka1Yg{;FRY)|Tw7C7 zRNF!u|6|gm9tMhoF!K`|%q?dMvp$_a#>TB6zLYhCs=o(oyJk^FwhnOxCLE8n86r^ovcB&8DMRmy`m#bkY2wBe)#=zkb|_!6)P z6|aE61BY7VVt9|ezPWk)kHNu4sn4lG42%KiAl5u6kX2uevMYdpV>cbfj6r|vo1Ou1!Qgo`EJxS*W}BbfQgJ~P-+2&n=pRwzPfmKKH<0eU3Du*fC?CNow_Hw_+u)*Au< z4+A`dLK@>>Vr0yjRWm{4A9fp)NY3llxI1ZiacA6Yak$;iG$380VEq9vCN$}Y3C)DX2+-S+2Z*Y_&H z>Y=kba%<~I-^O^~Pe<`N;5?g;515C`PP11vs{BQv!g&TV7d=oBEPZaM?20N%%#fcl za?56cL;khO7YI#f2uuZ|KsJcu#voEb-Q9gA?i``qGF0DD4*yg8N<_j&z-gN?&^>6J zfx1RG1cBZxJbeUy=3}Jjkdfn+1C&5~8Uoj%QWjzz4ru29Q5wVbnXo~KzpNn0 z3w}&1NB6gA&T+vG7&rtXmn{Z99n=1X?dkmS^HS~;;Vq-+Y<;VNKW-ts5jx&9hIyf& zsHncH>l~19Ax3pmfDy*Hh3M=l^PLJlWjt^4o4qGwP`%XbJ?Yq@Py_`9loXJV4ru`i0cns< zrF)O*`|Y*X-utX|&OZO{{rz5kpAS6GeC8bYxW~B0HLh_#xvL^iLP$r5AP9-VZJB!r zf@zE(7{&Ow@EeQex05XM1ZqXKTxc7hKI8ohwCN_pwGH3XL;T45K-GBAR3u3{R0(8o+ZhYhD zJ6SHMee?ZMq3xJRhO$KM+_zU@iV0Whdwb8gEdNN*SIH-);X_!J66602FaO93lFO(! z^gB+NDW~GpZ1TsziZbZia~m{QUXrOiOGr zeU@RZZ((VvoU^lYz*!4ouidqT11$H+I*h3Ef~3*s1?BAR`D*s2Be`0t9cFOlqUl25 zr@pzFZREo9l$59k#pZ9}7jQY*;Ucr|#TKf1m9F1zb2C@x&MgW~cn5iG&b^h7W!&2t zvAg=XpQA0|o*Fp~O*p4k{^Vx2M9abUvRbY0v2u%&qGH2jeUMs?Cby7~&>PdX=NsGG zU#GuDzU^D&_vx+=!u$U5J}3OCuB(gG*VlJ%DvT*=nEr!Gns~HjUncX78>KxGm0*pY zM*_4b)u$(iAqE|rroO!Kf?pkPK7{WmwCHAB8Ty2Ee7M`a;rZ|(i|gvoke$_$#^K=# z$;i$ELaHklE?*|l)YM!mtoGV{xc_IiH*jdGG0fQ5IN-C@V8hR!A|npc($b$y+s^c7 zt6_&Mjbf;X(TRw7@oA`q^7)?Vp0Z;prO z-iC2Jx9&M2Y90X^3HYwB5wo5H7q2~!j}PwYx$FI>ja_(cQ2{IgU)S@=L|!9To8sKL zb3#4`0;uJSExI4}W!}M^!NbEd*_f<<)R##DYeS^1qchzceSYt7y*7IIo%OQdj-&6v zmZfragJRsp#YLQ*eelw+NmosXL+|J5e6GtRx!gxyYBk7n>C&Y);37CWlaXNA!cU)`>4yenXLFq8H4tq1Lpbj=Y?+G%utA9 z!zUnUtK2NJq+`7u6L$MFiGLNq^xue zc6_V2B!%CZB1}2ko)DCm$E{Opot!0I@Ji4wG%bw@me9z~F81eVtMfZ^ULiu zotURU%Inu8HK$|}N96FNN{L)*VX|^^Xkde=guAY)s@gK2<`?5Q+YX@wH&3^$8GiV^ zyM~J`zSsD8q1*h&k8|H%3ATJt&mwOA?pIJ|J9h6>(aqkzt}X!USyEDx&CNuv2bfAq zNW1#Jiz$)xc2AA_Y;@tkd@I2%FmAn0yT4FzrDQv$!W`%CAMJ5;(O&;aW(rU*G;ih1n>XJus_jKc?+FJD$* zu-IK2gZ;gCygM;q3|R)!)-5nOapwHYOwf3>S5CLn=4)(R+;njBWUHg_i=HgO=~ko+tT$KZ(wk#xvUXtYoFJ3YblU-O<%YA5zbqCbZ={QM5{AZY~+p4jT<-8&A+{T*z@KVi@t} zJTSAb17HMQfaSpg>VX_BYKRW%Ve&FErax;oHteUSrkJg5Y`(TWyZ9CS^6Rg*xRBV` zSdsNVMJi%;U>QvRa>v;Skdk6ErJ-%0MsdcxmLPWAWI*YS~0nLkJNL z^1aN?@RRSc=O>ev80##~U~-7p(~zj9VHZ4v2S!(1Bm3^H1!oZ#dI<>$wJa5ePnLab zYLJaEB;&8#SM-JzVd3WHZt2dx`!+CJGw-FniwhOH0Xh=7DYusfC}9KWGX}eVvN`-3 zNewn;^N{)0M5wnb}Hs>UAxI?P*q-7QgRlN2_d9vN|%jv^iCs}5_R8@EH5t) zzxQ7835294;HppHy5S-&OQu6VuG@|43BZp}jpz2`?K1O$kM|$`p8om}!u)hbta$st z?jLZ?2n;OT@DL*E2yn27QkxM%+UAke5etd6ZDqZ{2 z!*rz=Ji@+)Oul<>Q8xuJ$=meteohm>y^#0s-`DSOiiqeu5}*t6=6~3P4`_>7PfxGk z7=Qxp&sVS3AwXVg+>w{y1(SY_qP^y5EpPtkY(uKJ&y~@!v5?x@+WHMxXt(}Q6nb(8eo!Cc&Fb&P+%bcu>-)~P~?JUuC_7XQMBMVIV_b%R&p``Jn*tH zw~6aCC%;>m;NKfljZ1}fb&~MiPq?xY5>}*=$fZ)myfodtyoit`a21K)@W}L8tINxr zVDtD@p@XOUM}e8A0Y646oU)J$=3Ob4d(6~~tz~B$!Y{fTVJleBXid~q<*Il0 z**R|+3*We*iT(k04WX8nmP=Kv_`z)s+2Ke7(Y;04LOpxXK%*+U#&ySyI=IPK9ciZ82thy@Ij&{EiQJI#edSrq}`I|72#+)^w7b1;pt<2%G?15Z&yBOc;y>(yWv0D66^ z?Zrih2C0VB!Q|=SQR%R!a2p*fm4D5ZxgQ^F!^28Jo^6M3M#u*X45_7#cI6lCYL63Fx6)2k0F1~~IL^wfk5`j4 z>lPXXK!%=%I~^`%=JZ%fZ-A21=V0sBqet2GJQFC+9T=bj9EFQm4;SIUYt(ET3*Rqp z8%jzda54L%z2C}NX^DxUSa_sp$(gP3;kgKGA_g$%Ih9n=CwqJDNV~0^p`l^b{@g3t z%(#L4)fJ6A9V(LZH=3Zt7%;wi_3Ga23&WlQ!&>XC3b%Cwgiq)arlgqhCTzDZCozxv zA2lxb=jl>YvMJZWyhb9Qfvh_Em-Gxs&- zg>Z|BG2C=plbP>&eXUwiWuoRNUmcm8o(^0Z$jO;W5pf|*OiZM?>B_}&@#4U~?{pJ^ zfMxHc#v*b1Ny(tidoOR;5F$(7wch*uw&PV#%Emp30K`1DAs`@lH1_3s43k9a6rYlL zhnll<$roRX=7t8$Xu9k7MjVb0Tx8_sO&Wp;$fYg_2x!>I10Eyps`T7>dQ^LQ5?Nj@ zBmmV9q^Zt7n~t2kBY8)UhKpFGq@)VXI?h!=g<4ot)Na4G+!n{aw>#l?)#tz&9vW+` z(yawdjpAS~K!YPWKer$EXTR;zm3&|eVbi?Ox3;zP7$ONE6;4r6(f%ojesW=?4E#Q- zu+C6y49vSM^#@c}SKkujU6L)uL2Fas8hYL^@%Y zzWR9(fC!dLQe>o3e%A+AXXhq~)1x2=A@ddHb@uwJ0GHFKnj(ZDFE0-$k5hHxNk~YDC&p;;avy4kY_*H-9v)^Rp}D^*()f<0 z(j`ugx+P90o1RcE^ktE8adTsE98a!{l#%i9@Zg?eVqzi}`kdO4*>?j?O-;(Nc?WxY z7a*8b_s#>5!!>+(Yhj{RLglqcNMRu#(jJ)6x46-DbKUf?2416F3{)k!jbo#ulM4&k zD&5*!5*#NdCrQ_>&V6xS41@q<1o&78(r#c-P_fS`WF+$Q=ObZd(t%I_Kg+Fma1n!I z4N@%)G3Wh{XHSlI4Yz^ip@GHXPwAMOnaQX*N#E+rzV|+&-kzG88bHI9mR+**H;ADE zkcE}Jo3AGfE7dxw7uT@0F(uv9(lTGpHShMi*UNRr8SK|zV92z+JQx-iN2!t`6ad@y z2nZJ3^Lk=XS_RD?tZPe5Y%}xl@$pIf0Q+?P-o1PL)}u}@&0SZ^?WZuGKYwlyS1GTo z%rL0-1fu2sh})lEZN#g4i&<$KKdlPTs!T;i#ooc8K7xvqzdwP=W7u{!EGLH(%-fS8 zPnN6w3A3Q~MC50QWl(rHz6N8RqoE3GyGK#XOpWo&FM_R$|E5D^h|6dq$f&Do5A$}JX(+VopNxL_f| zK*+)=UdgW^|1n>zF8i+ ztdEPKOdLGM(tazHlHGTm!22KtV~u`sA%Y?yR4yZ+w$?9n)er!svGH%iqqbGI-daCD zxPN2VBuKpNJ089ArzUc(DyaobJDZ!*0N#EB(l>!LymxZA&K%5ldjsGCO2mMxzE~6> zJUBBR*qf!w6h(KP@VuaH(>sN@LgPkUSTKn}_R(1jGQC?vr8ei$SQN>!^-|D|6!In- zq?o)nZY8eU{m7-Yov4Y1oH7N4?%u(2!6*AEsa(B^GiV_ok}7UW9h_T}Gq3tbFqGe{ zee%z2$55@Ggzx?=_0gXWUVKtgIeM zmjd-qDA^~crUJIMwv?r{H8=H-PM=I1ROHfDlSIh-Ok~MPkdSdj|&J9h(x{F*>MJS^{y1{?ezqx+W0701g|6iv7U3P6ox3TBWNE z0R9VogWD6j=8*b&0JuOjFoF!2ZBQ+u7|#&^)eZPZ-J3bKJ1-Fg;(QEbkvFg(IMmXy zAuB`xhdT+e83NZC@zW!xZ84916^O(b0OYKP3NfIPZ3!hgZ)9T=4Ii3aJapHr5ph@? zEMQ_&O^urHJ7suv!$vCM%KZ(%%^wS3nP=c?ONR0lv(wXwMu1Zz+kb1zd9=zyeQXAcL+jPo z=4QI;*!v!glP-6v|4& zjSR$8UxSK_@!h+3M!=2WdQ~`z&?miyK!Yx1*@Uk&Q1qLk-6+Egd6II%_b~6)u68nm z)Xvrxa4YO+Tn2~A9;t>J-*{```%sY?5qKhTDVfKy%E9h>ETqO6;I)TJEYY=&&$-C= zpl#45a?7haQ#m;h3JeROn6Vr!-r&$sw6viehoth#i~|Zgv=8tJ$k`yLE(j!O^$Cy$ zduL|{@rODGy*qU`B5}^jcmt?|KF4%cZFb$alQgQE81eBJCjsBMv_%!P~UepxE7 z9aEYkdrr42V2cJ#0alQclEQ?7J;8e7^oW5Jons-?lq5ua&iH7O-H5e@8tzC{!eevSOPlsHUENO_!7#ve85C?|7xNsVHt$y}) z$zPnG$FsAuLy1k*RMEDLFEw_#fvAUQ8TwGcrV|4LSQN5z0lN;gV?bG1*-tT|H`ZDL zbkX%pm;H{nwF1U?H~@@Qxo<6~WsVd<7NbLmyO{e8ZEIaubzHQ;$sw~({rVMOVE;Oq zdbku18`}uLfa4Shs?0DNgc}Cr{coJg~xP zp3b`&cyhGTLqR26BK*mdda(W{$63X_g9CFBpW_#&-{qO!LN22X)C5PHTv>_Y)-8P_ z9Y(secC-R-V&UT>hnOb^Jp@RFG4O;_BX+g2kT#t3n2XO)Q-=Z1fa&kq=?5%>y|Z(0 zMn=ZZ8CO^hloLhKGSCGmbhTgp!HsqeAP>=qy4#ngsb|QMlsx*53HOCYLRjSpD2?Wp z$8FF+21E=>3QoeW0}BdxN$G|B;VzATwLZgT|5(~qN!PAAq2PdD931=x)@w=O8-f-VXi_dV|JDE{ z!sPODBp7)bxI$pX6Y3f3sDHC`OhNXshrXhK?I;akoq&TD9Viuws?Xnc-5S|c72n5( z1Rs!)Kqca~mK*vs1;qu)Pz#yNbtXdt6tAkPiky-%2+G)>(T*F$% z)seCm@c+9I?{W>Q>Ch1GkZe6t$~`(d+EeaeQvT)3G;q2Qxo9EQzGL)hUGlOVDb4#b z53QQI`Y}LNd;-YA73+z@EP#I+s%1$0n*k_cRwinhxOGbS%6m8pCZ0q_ z68$W*i-pZl_x-!tSlby!Mp9ULprhwjeFyfxWZuL71g%Ak3(|hKJY$(8&Ov%S3)}M? z$^=2IO$Xlo;mOfH%k}H`8OXZzo4JB})0AO%%d|ab4av*PgG%!~v<;m@yTfB*&Os2O zHtR@4c`uZ-hFy1eRi3TbmK-I~#E&+lr>3V_1nBN$j*+8uDMAj&rG0xBTCYt2&!NBb z0>IrF0BO|deYCZ;;m*vyk0kUtPCoY9;kRNAhOJKlEr>IK45)PSG~;>nb>M^SS}(qJ zr3kA7?J6lGA`$`J+(=lvNO0a!BXP6)Zsz*JqQLC~R#tR(cSk9DwfBltK(kj7k9h;- z6andx2>OA>78dND+e`0Vv!1F;0Iy{E@L+4PVQfqvx;lEW%cb?q15P~PaE?pcD4yp^FgXhsmonO@fZd3nr^$&@tWaza ze+g|}6-l5v7CEfPW1=A@!^bB_nxLIX9J*X-0ZBZvek1n_bp@2O3qSH+p}h@wVw4fy zS{mpu`f@Nk3v4m&`nMIYZ|(4;Tu3-6g9r`r;I3dP6o|y@4=P>r(9*Bx@#l1SC>CgT z^_dCQ>TBRXt6bGI_>v8{sS4B?3HK_a>IF8p2T|#YH)MK|w*t zIoyv2^SN(W4?Ufk$A4RLv)J}=>N?}CQ{nxwQYI1S+f{$sIZ=KcoHP=Goeos1asZ5I zqVOcKad6CZ<~NsjEz*40+7r1s0fjp1g{H2jvy_bl&L2ZgPDeMmohta0EYR0Y&^bw3 zJxtvOhAt9h4@7`RP}ckRutnMvh$?eKvR@%R$UqqA-|ie4(T!rbsoC`P>+F)(aJ5$% z+6jXGF$KzXJI!@cOn7hJ3GM#Y!T+q!?i0CU86Wyflovyv8EEvq{rxA4eOVUS#~!DL z6Q?qglKvbIirztHDxu*w4gYD@wmI?^NURU~%c52gBryGxL_His7w30we(&3bhhMns zlH@zqwYWR)LB~wE!6knURUqW*SDpjC2PhU2^hqh64KG2!g%#fEE)Q5?v$IJ83DTx3Kj1r4bzDWXwWZs=>W3LpMlthEJ-G_=T$iOvvs=eG$K1#YJ z7M0CpHb0sV1{ha2I7kgpwR=Mc6cs!MRpF4eW?-Wa)%e^*)63hIUFgb8fsvtWU9T!} z91QuxWTEG6^Oa;&ozru+ed>0!oC!d-YxCV{@=y+tpF4*OG=^TSFT?f6{dN1B^8+W+ zXf+taaB~_G@zo&{RL5ibIHL2(J|HMyMVGiAN=ZvYwtUnRpbJj`_iGP%PkDWal%twn zVx-RjP~F3a4*`L2t&YdQr{e{s@FDilKy8XEIC_I!mL(WnYN!tvM#>62y<*|!h^q&v zIW>uaL4X&njymAj?Z4SF(eI`^IXSe8hxU>ytsJvh@S?K_?0zCCeBecSv%+1X;ePMETZd|Uk zdn?)N{IGZ*HRLHx|#yWcAfUKfSA~%e?Y8-|mefpUm#jk=C7LGAHqb z+dpq<`XH4an{1?vqWD1G2Mrz{A5#FQ1v-`NMihBM#VG(KZ(#>33k%DYyK*CxJHOf} zfksjC@!eh1*Q@cSMcE=ZH|V5_+5euFJ=*G1y{)9A-o5GQ=ot9<^L1};Zxmh-)AD13 zTLuGUhIYw!;7JT<6~LZs-H(`81`YjW0hkTUA8eLjVqsmi`6&Rc)$_>RGF$ziT?S!C znd;afpjobZ@7V*~&{@rOfyngV{fLG;_%qX~)WGJwvdJnS^!%q{s;l$D7AUEx7#40#@H8M^=Z_2iQx8|p3sazw^JrlWE$ zK$X{geAY%Qw2Mp$H1qYIKotYsvNMkc^BI8h7;u1#gh5DWzH|v2rGU^IfXqvmV+t2a zms0Q4rd;cJiv^+m>7tbsK9^1jewy#WW#DBok-fFb^~t5B2tc0cAg(L-Jr+S@2JqJz z5P%SWC?wLM>`ekm2+G60c2!g)1X{Fz{`c?S2=ZD5@3o57(>nqY7FGfYFE35}R%$$_Z2 zI3qwcdEf|)?d%Ni-r;*09E`o~0D1yov^ffBE`q2Cg7GZ?c}8Yttd;Z`|1l)gKoI@s zJI$4K@&Mc1XtW1l7N>nTE$_R=<1St&J0_zO8`DGOw7=HTpZl3_p|F?^eQ^?moR-#- zPn4hkp3k>`1*n351*jzh>;h2qjx;hhwgqf7wZ2Yzf!SP|Cf_%E~Zq3=J{32I*Su7XQzwR(93YNvJuOHi4y>24{lGE)b{|XbC-mf;$~# zm>YloG(g<}vV{Oh<(SBS7I)IP3ZgE7Q}I)Qch;U9aDp1@gZN+?7ZZpRp=vV*at<_97gnHNHe+@!Vwi^yU5&#(%u6bwDvsodCjzIIo zU2XpxZX$ML(C_}gVdwwV2$DMZpyz5tS9EqZ1Ykwu$jEtAQWs3V1Ue4oWPTi|_)*am z^d;;!=k7dUr37!GqOoMQhROrP2ROjVghDgf1YRcHbmK|n(f=58&23GO>p>BkikiUv zP_+QGxk;h0DQf>4v&g@i`fLFB{0^0^^HM(nf-3yHPmgzn+}7w3Gu|Q4RBS-61eG=* z{=m$W=I7@RRXDN37QdL|j7BSJHtt}6FZe)jGy`aP0*QPYh`C0`-UBzKr^9yI&mWz zy%3_SJA!E);2`Riy$wkjm3V4LJA?!WxAN34bXG@Or!D>ylQ^$lRdXefW9JS&-kXUX z0`~fb&Cg(xKj39D2w)>bvm`U_ym1?=wNCW8e!m)&|xD0 zMp09Mlmpe))OBo<_)me3S;8Gih8hc8Y5KLfl3_G#C-^>&HsKm3wQ7;faBGlpQXD~ z#T-_KuA<6vs8kz4g^nQ5(wCKy!G@^VzY7Gz8%U)1BqZPXgWtb_gv-%x}Y9(O|HUnU|mq_px6y~tP+tGP=z!=DM&#__i~*) zaX7UQf)1+2X1hvBdFD+2=5%^`I*M<~E?k6X`mga#d1d7*7yLL^p-J0C%wJ$r`B%=P~(niM(ApjwO2`a-lT1Uw}2Cgt7w+*~N|vmXi|9?n3o0H6+U zzs?h=IS5~th#3QOCIvqmKn1@6DJGg@Gz$!(p~s1Zpt9!w4BoU~c?FlqmV}T1J=iO* zD?7iggY5D*lE6-vew zgLWmMdG`DYt5a4VhTk!cj0_UXc=?o30=Ks>phQ4217l?c!NZ$194><7^(QGjoP+mW zSRtTgbaX=-2r5WNA4p?C!2>)D+Ab`C1dNc=(-Q;f43ihQ1=Tw*bDy^<%gAF{bYD5; z(L-!Uk+t#r4VnhRBA5d?SOry>{W*C3c{$jEuw8R+lNsN-b!(yj10_TlVyPh@SKst4 zl9Q9aA&RAH2&BcW<`|r8WPSl=0-sqO7%aEsQ zYR0ta;y694Sy*fp>yMCNV)nwwj0g~!xruaXxuCb{toHHW|EGW(y&?92*&0~3a`)dX zVDGf4&!AcXk#Qqvy^P91*8)McC}r+{#zoZm!$W9c+5)}s(CFysrpHm7mo7Ceq&-W- z)vMN_Yl(d!{U{sn3?&J*2U#q8w$8Sp#)m(=qGC*qW5)z3DbJ0cg%z{LJ?EmJGK=)u zU2!-p#abJ6X!`al#{Eb;lHsO5!%d{_jJWvsNBs-pbb_Q|aq5aHan}h#u9BJY@9tpC zO#mI_%*w{r4q)tENFfNz&R>*^l7!kM05=-l?a*0X+60&q&uhpC5iF#-+9$v#<`al! zvtxCk{lXml66=2eS#tYPhr0m-IoyS|uW{BUPVHi~lKC+~%3EUfBE}y9n{y*&r>9!> zXDD5?EBMb65EL+9dPmch@~LinxvSiFjCT3QfK-+WrgZ4Lj63I_Wz}hEoNX43ZyO!K zOY-~6TQM+jLnRBC6pA^27#2e5YZR1*qTC;J@=(RfJ#}@ctgOgoQ1mvJxJ{M`lO&os z-}pw`+uJXl>;I4d9YffTq3Bz}g1_N9+1`T^rM>@;oi4V*$z47&7^{3**C1xNTts($M{yT|L zchP5@P!jdW2DOaYns*j&m^9(nwa5==um`VPc@o~L9if4L({qah;O9H>vQMAtArVsm zQwbyks-GU&tZzMfpLxaW=|@eRnqy7cot=@oJl(pF_uGxd)J@FZmrO0)e@|j-Tle~= zWSTgz`n`U%6cov6EL08QMNVreMe|m@mo6}4xUXKHl{wm84j`m5)!Loj^4hc=!^~90 zv$pnc3=0r(iI*_*Fz`P-F znSkXw6$?`frBeJ|slm@yl3}Fnyy!qC)uY?Ec*(;emcN{{;=&TMRU*Zs(AXKr5}OsMv|W_~nyj0;b} z6Uukxd2e6BO0%CMaAjAI+8&Cr>O5yeB-Cu)BF|YsA!xo&KPXUlT!*TEb6Frnh&rMAud%=~OTKCCB(eEL`XA$FA=Ko^yhLwzrc?fgVJ0&G7xftw&UA*UU z35_xH-B{gYcLP$5ZSqDhZniK5JZBBakWZ*K@jGI!U`%%Tk%MFc6=?{t@3i%lbFP`);n-!4GswVTd zyA2hjIlAwTxg|J#bzfItNl%Ytjv^eJ?Wk*da>sr*A2;F3Ww8lCTdvA0eHJDedZT>4 zRe!u2u#Hx<-*;aJZqgHMdH1z2R*8)+@$cU{{W&jUdhX7ek81D<&>8Jm8=ZL1?!Pd^ z48r|HL&hmsgk7d>0wVrAU9V4x z9_p5I+=}vo>-{ppznCHHrm}b}ewE_Upvo|%3DA5WU-T8AFPef#JT|wp&wKNUw z*Vzum4bLMQXrWdRlxcFpn{?;9+Ee+C+YU^c3z@F6uq1c*;bwth06&)J%;u^=Fs zK0T}>li-+NhueQGg5ls$l!L}=zTodf!uFEFwfM+fC&sw9`eWgEvYnl}ZVAq?*aCel z&n=^Z0~wi+0OqJatIZ^Dw0Ph5b=OHw&cvE&$?V_HPjRHFkRh0yyai5&-eHs?9DRL@YT)uV6Q-;kc{Wd$^6)Nu~YO|lv^iP0{)H8eIfi7p+4M%6}t`rP5m3Z{-Jm4|77M&$0YU*ZMB;(lXveMx0On?8u3=B$W zG4v%kI=bdH$I9ZVMr<7a{)2je(|o+xh4X?}1idm}Xbt9{jzP%|1DuEG$4F z*W7F13zp!WiL51nyGbyUa&m~n-nB=p-s{db+#>{Z@pD~J|qDpe;t zx^?Y}uCk_tUtC}eKwdaX%>K=prjnJ4z;F(&2<2{7Xbd9=43;Bx|6ZKLsH1uvPfzIA z2y~Dqf{qQQWVb!My+skptiD?on7g_jrOgc=_X}$M)iNS5dW;UX1T^wq+V<=AEsU5F zZeElC#mqg)yx&2F1oI6<2->&@Q7v@J=%SXPV+A!lR~85#xRkqpVJAR$zwQTi7r&~CiY612 zxHk=qiOL;|GW%avr<-b{q~6<;$xuv)8>$@4X8J%#KyW#Q?274ha&bQylQ?lS?Zm2{ z1Q{NwbIWK231oHL_eyDjWo{|I+6hA|crv>A|8|%D#pG&TlG46=mptE~Is&-JnvD`R zm6ULxRC2m!W@gmjWQr0Hu7RqQSJcPEYbT`~=C#c5-{P!}*j+Dod{1L-4Oy&Mezu(< z`oP2g&)}WgxA9>f0E_dQ=-NI&uA7;6u-XmL{U*F@; zJ?4)0A`%i36u7dxe>_@wd6C86VJ5!in)##28TIms*bkj?RlTCcL}Pj**}K+WZ0>kk@@1b78XpPQ*J9NVj{rH89}QQnsx#)^umGAZ8riX;6K102P&7z7A6cO zrP=YPRlrYvtUSWGp9 zpoGqM&}_hXBQY2d^ca=7&%eoei}G0~{c-Q4acx(`ky&!dSt!&};Z2uVE(WMd+-LOrjWapTQpV^h+?j+C&xto$o#U(vVdm5r-%BCtJYLh+ z%UY)o@USKdVwaDW-hJKcQ>SHkd48FkDluO_pwuRy zUnBLMs>~KwDBrc+t;^(R--$BvV}q2rgRc*WW+(iwI9R9P-Rza_jK6&F@4|n zL$}O7gb1Ef<`NUU$HG#v*Jm9XjL5~J^iZl;K;|7tMelkhCUqy` zP8R#nobf!2xs!Nx7>iy6`_bpR6yc&AX8x^qPB>ekedel3yaXLUBspSZbGGaE_l>dQ ztBnl|9G98fJ1x>MSQR-0<4=Ff4-b%2wAGWFnl%&jcmW2 zQ_|?o%H!}N3#-G4JJl9l8YkfwSUi*Yf|H-T5)8PX6A$^j?NIu;rTaX?Y-}iSLb3RO z6bYo0lJ~aMXT_f}h#=g$?fIb`Zd_dOAc)bd;$*A@Bsm$4B$|d!kQ232nbSo(dO>B> zTg2K^aqVehW(vB{MMn779Hfri5{7TCBQ8s=d0`w9bDe5C5vxDnqaL-zkG=tq6p@cX ze*8Gqr&Tb0?ClMbu6TIbLM*MnU@^IHYwL6;kc5d;Bl|)bV>vKH4d(c zV6R(ALTZbqd%dgxp-{WiQcEX2(fLdWmA|N{f2=q}AGLZ8eL9+(nkX=O(}((YD?G09 z-G}Lpx-3W%zwDw%N~>NJJwbUn2Lm}CUPpdtc&j_SqesgS$XS|?@fNc z_(qZHy^|)3)4PEyex^v>XoaLyAPQ5XzypGTuG^fu9Gi6qD}pNS0m(Cm>P^zSP)2Vs z7kXE~f`=0_f@vO<-z9i>{V`JQ1^3rl4iysTC5+kFSa#LF3)lnqE8|>prU98XHB(Zm z*e0h6Et|l-qNPb%&#TJ@&YvFmmE4?Vu3Jl`eRmrN00~%TibJ#0-fn271$D=0~x;_uo6ZXdfR)&Uc|U(fb;4?DqcG z(Y~a275YSkgwom+)RdbO3C8M~2wgP%&U9gfI$M)uZ`aVM?F_m`RK%f$EVjQN&VJ-G zG@RTXg#CRf?ES2tS0gYr;gPTnK-6G_&)G0NeR7y{+NWAU9c5r!?S(av!#P$`IKjul zk4J1QJ2Yr$MRA^JZ*L>wHj9$dWSnYz3lVh@wGRuw5BxciyXHWVNOFH_it3pR&?$<% z2eFJ8R+^a@^0Al`eg#KqiENdkEa{?C(RLBJyA+fr7M+n0alBq>;uPCnvkw!)Z9QsZP!Z-8M1RR1(=MkD)7 zoIV+*i6Ei>6$zPxP6WFAFveqkkP12=IQZw*v4su>F>)YHU^ImUvJOgVl$29%xXZ}! zQ!O?=0}-8+jt-rkzCKB4B?#9+ciXxp2GZ*$;0Qq;CkDzBW434SPWRan3YQC!Diu5TU^B#x51ZU zUWMrjao&D06}%b$;>tlxxUsX7s2{3EwMd@G^xr$_Fq|8QZ`|H4z<^9H2z6UaC&7_8 zAa?rZI`fwE!I`hCt7x^Jffp67toV$~7!94x5 zlj?u}pt=9UT4w?Aebj^Yk9r{M+y89Mk zf)G0HUyZ&XFuww=7>jpHL@FQzJ`iGK!-ZLfGdWjDp+N&uKah(z!r@8K{5Jll_x_Lk z5OySjFbDrqjLNzlTnOi1pp$h=27Cxu0{VR~>fJ%wvt;!kr10NFh7uCo>XWOh(1ihN z;zN2y2Amprp^`X*qlf$k9EgIRdN$&aZ&(|Ho{`WE0#Ed`0kp3#9ZKvmMfY!YU|(M! zQ2SUwA3PFxNuBCz93C4h4~4;RIIp1bZ=W8g>)+Zw{|E*Q_4MeW|3?z@JoyzSiLps@ zR6RhXB8DtDB4cUhaCbce6z%Ad0MO#L;Y$T2AT)qTLKo92D=N%{eL&Hkr)kC4`ThG< z>H%sos6Ndr9ia^-UU!5Fmc{>(2XS$AmI>y;cpFV;+%@Qn%5|vJ=DbSJ z!#~t0n*Xb#DC@}C+Wwc+tXDc?2WNhOVjv9m3aVa#_;v2ydyi{CE1<_@6&4o*QEk@q z*-8r?J0981)h#2Xi*BAwi;lj-d_TnvIG2vQ>&0c$?NJ{(B@j6E?qTQ-oOy{2Qz9b1 zYH5CGH4bxkU}ubfj-RBf;t8$;_GWTzEe4c%7hyOb4qEAS_~M}-7Ja$$#*(v06q5ua zs@HmQh83MON6*iLpJA125*-zvehHA_5z{<<`vYXU^FsRS$zce;KKpe#5*RIcF)I++ zF53BRUCPmsABJ+!$wBl?05~FxcJ1Y6)lq(>EI@v2iK7iHIQ0#U7}IbMpfQ$(At?0V zzr{V6@RtM4=2iC%BlLJb*q7*Bp#zNYOXZ7Npod@p_W`QFAXrT}%n9W>K&Cug(>*@U z2$Pd{PvH~_s(WAe)nU>w$P8zKS%3ox>j*!<57dmSWz=v5_Sh&M-&V}Jd>B>(yzb-tIn)e}0QKKDc^vFb* z7K2)PycO*Cpey=vmIpopLv4cD=(J6@>&r|5G7OrMRTwPU13@vIKMM00yVhB{XXlJ< zeW}sYA>m9nBaqJvxk9p^sEvh;Wp;DyD7R8J=8e=Koa_NS;5%_uB_&E2d3g9E_d#;Z z1Pm8{|DetuWDLiAXh^oOfxC(dBwq2pI!4V+6jcV3I!hk?yGPjB^9 zI8yB@oYVxNnj7NpHJ`EgIVJ=~i%GXVJUzeIJ2_GQJ^K+x(+Od&ss<+LxU%8~UCQ~y zCYn1_Zn~);TpD624zZ#4-)7J)`gh|+{4;d0Z6mDG?eK_HnL2oU7D1`Mts8xSBC zt_X{WTy`a4F$=lG1PP4LBCxQ4gmH~d+4q5({(*kj-_O41JE|6PK)B^Uf{YDl&N@?@n%*W4GA|*&W&ke=!D^z{ z4}AW~`ucj0ZpZl~7D*K7N^`qAMEqDY!GdC~`#Jr5+J?zFMa5>zYqQ(3z8T$>7xV%e z&5g(&%h7B>f2~8UKAid+#7UNAgApdi&eZj12MXk(KL*}SJ%r3P2q^}b#Ws@CzHRmJ z>;c*`_|-lgh=k!zIh8-P%8KBS*92YPa;gm(CRaC&6iAufsY?~-AQ+s51lk6a7`_T0 zB)5f+z!W;#dguqTiDzvw(5Z!l@d)KRA>wL4crfm79vglilLk7>KJ^^>k9hQY|Mn^2 z+4daEUns`6%6Oq~kPuBO@F1)P>*$@sr~}9nXhY}mQFGAKk2E1Zt@{5p zM3t=53in=j&;8`A*G|{E2x4N^Bc8$(=HDi%T%LnTF`4m9lu}3<%P}xC%)86lKWAWWMt9^I$UoL&NJB)7|)TGjaB)%6_+^-I-ZGe6Ns!Mi~X=i$y;#uL1lQ zmCKoH^nP9O9<5(S#E?!cmeB9`lavX@?1=O4ljNoSrPTpq<9916i#aF+t@wap(rapj za`l_hW>a&DJJ9)I7o=O!J&qG#jC^$En5|!j_{r42go*t*=B&r-nd%W zfzwn?IICL#B}x!1A%TxYuG1O39lCHDY1cRLyfFw0PK5>BiCdFSY%r?=BIHBp(S|M; z7M6!VrW@h>5DI6^B*+0vg?$(ni*PXdJ+&9Q=3eYOZrAO}M5AHP+-^9qjMNx{#wjBb zF*B7zxacVS_=ot)CFgQcV{ODp7a~EC&n!HH6rxOsb+1;-=)-h}To~rno8%p-213)> zjZPm}@zs%GN8kgubVc2Ag={6g?@*Rhflwh!iVLLho|5;xOEQ|Yfr-G^#R&a;JB6)f z!Gut99-7UL7ran7RG98zO_N`Ogm>E34UoJQ&TwKJXg?Xa^f`L<*-QSI41RF%B_)e! zfv+q48>&dKC0`Su<8gD};$0m36=PG=>KrEJF~wA#Fh;2&<%V`<@!=Hi{GVe1ATRZC zo+fQ{P>~>vg|{x^02C_OTasOnfKyxMv+@k@H#s6TcMFy(8EI&-Dc*Tm>a_DZ?SZo vKI&cml8f%dOc*&Fm#ZHX|Gy^LohO_DyZW+;G+`EU(>ZQ@FW2u}g1`71ONeWd literal 0 HcmV?d00001 diff --git a/output_80_2.png b/output_80_2.png new file mode 100644 index 0000000000000000000000000000000000000000..11db45867f42cad6e5f7160d438c3f2cb1aafe40 GIT binary patch literal 18616 zcmb8X1yogQ*EURwfPf$&0s>pQQ&K$!mkLriSP!s}kdSa>q$QM*kWiSAkdTvZ z-vU>JNi-M1F9AnMO-B_QQ%4sAdlRG=29CB?HjY*nhE&cb_6`;{*4%7-Y+Ni<=8lfG z4ub6LZ~wW0&Bor0ol$q$8#IDxE3M^#goI}R{X@N;>tBvj0cmE`=HBsyVt3kS25}%_wilo@>RDU0k$?fatZK* z@-lV{2?l;>m6Y)D@gse{ra}KhmXnl(KK&dNgg_wBScr(ghnSj7OyDzuB2`uJ8O>|8 z5{lGfEG(?CN(Xx0HzO^}_TyoXzzrsI{I~(Q6fgmSxT2z{@B}nZrEzczBO_y(5ok>s z-Dx-6_7EJ{jDtSl;0=Ekv8gXLi-oEp2Tdqocp35x|l?aLZi3;m7Sx(NHe8~xQtHfY45axTs+Rh{+Z=vC~KNoN>7{vI(AQ4YZa9-pjauEiXc z`2fnz70{8Lmr9XLi=SW3ooy&8AX7ZC6pBP3RKc>TlCqJoXrnp(7Sn#v6>IR%WyU`n z%}su$!k$%?BoSa~*+H}R)>W9+HT^nB+XdA;=rk~bE>+cx4!g>^^(<;me6KUi%oim| z(h?F(vXYYDGFl{5)R9bkd~NE!CrE*d&%wn!G8^9n8~+Qq1My3}WN6})^_ZBHzdrdx zIFyUAG1B;nv1|}5y&IUJX!UY77Co!h60>Fv{qb(FW0up?U}`geMw{Q3KYjX60Gokt z6dE!kGZ7IcrlJU@j7*W&6Zv>!p-=?kQ*=;}ukS=@cPKXULytQnc{iQt0G)W&$~)SS z!H`YD_}YAPH`5-x$HUh0C*8z2h$)0IhK3M{wGF1RPTBjK->nT0_1= z&kMt~RYgvh?iJLXSw?;QXjiFIbGnisSvQlVNU6i75h>N1{KS(~CPS0=P1C?v(;8P! z_{o=PVHnKt(o$dM3o>Fh9nFQuPdtu{M+H5!F_hrfq&hu)^8rAf=m?wj0+9EbXF5(naZ&wkNkJq?ycgOQCHsgsd1u+*eI49K92=DLj zV~ILfPiJIgL_|kR>gXhv8_6LA;rAzga2})lo;+T9_9`bHm>WcBC_0spP(p0%{mwv% zZzAQBFW~SC3vcgNDQ5y|gPAXKUX`;YJbue$myn&!u&}TYBrH*r{~U)KeaSv4`t~H+h4RChQ6f7J9rqlV_>-ng1{mcmz2oJ$vt9a#qnW% zRTlC2^K*B1!SV5N;oSyQ_~~+t)pS*~TCTd?R_W+Kjhln};o5wsCd}lh{ZU^U`sNg7 za{#m<3EV+bb*C$2$|@={FJ7R(UTTlb$js!j7@%otZa&>>qpVzse`DUChJJbWCtbJN z8Gg2&B_Sz!%Jo?~POT8PGe%tVe$6gQo{q)MI_^yxYU?v@7?MYJ+~>Zv(&Lvwqgjq? zISNKrBNJ>PdBM&=G8lyR4Vazv@G|2SPgX7P*HiKgv z*_WCIQ+~cRnNm}--|();r4ZVPU&JIOGsqu$-PbPnpRP7odpT(#0p^;BDAFDg#ASx; z7tq|v-u$L;92`RB(j3t6V9FKRVr$%9>eH1q;FM1MgMy^d#;LT7=e&B0sV4SDz#i;No|*QJ%7thj2{`K0-i5c z&wo9^!~IZ%yv(Njfs_PIHn{VoAzR6|Uvkd5`N=Uff{ZjU0yvfMl>E7bRI|rU<3TTE z$_Nsn%NZteu1omb4+RJY2DgBD!F&!zCc*>fcl?bOfcv!G3mO9>a0>X8Sa<;@ovH3l zC%fXB#VycE&ZVWn7K~W68@l35g)IrK#toq(%mI+Y-iI&ZUmVQZe{rgap`$}nhK2#! z5WS7fts=&2+34v_AI3|%UAyj&)r>>a@EUB91*s1h;xTNtCme@c zxr|i!k%LgX=|voxRfL9ya~~DwaC>1 zt>-&waC4f+_PgzAYCe*)!+x+9?K@zGHJ9ug9eSVYkb@)n>k-ReW)!~vi(bd`&oB)= z{i1!P>p?ePFnrpMobE-u#D`lr*?P5t(^XDJ=?d>6?tY9yIarC?YYE)lD7@(`K?-qn zVj}s(4-4Rnv4bzq5(Plle$i_IOZ{fFfR>KV|KSt&h=hai@K~Wc)nz!Oyk+bmaDqjx?{!GZy{2#QLj0g(ee) zlUsBmBFTAqEWlpDiS%1moi}|(@~N3Sr{214YEA||lTuK?{r>$slChcDy?ghJ1R|w} zHAZG3r0=*{?VC&+@Vhu+4 zVgVCN)mP0o<#=ytHKD|3e;+zjdw9_0@3vnAs`d|hIh?+2@xWkLU(#R%G`~l9vsh5O z;!TK0f)J`spv9+4XB+dMU!|rZZC7F2-(cK5R_OVX*T_SKc=cCUc%oJiRQ$e*nPP5(Dhe`@YiACJL9>e_=JaxTGYFbax6K&VvSj91goQs0(#a7cwk| z-E2ibJ0oZZ+ALU77jV0P5HrYifg@vWw@ zj9SNlb5<6BF3NYu7dhsTvTLK|szaDpnH0L(w;a9EyEq7y3MaZICrD1|9_yIZ3E_cit4<`^0w6XP6%ZZ<%1mVGrHVw14;{ z2^qB9h8!~luW2NPvhD1#%zt8ORt`YV4?@pVCkZC$ycBwkv^i@7oI(3KzyQ9nH^9JP zl&#|03wm5O3$$tYO(S5rlbYqu)e)cT!3$`?WTAJx7j)!z)4F_zYA`DTomE-jWC+qA zWKjCPtLvjiArU?%4;TP7li-9rgbU=@8#f9ekG3y065IhWUP$LM(?0+CX35(&0!&O2 zz1v1@@ckm%$&78^fwqrAe86nkBp?YP$WZn-n&V7q#!*t{QBW;On7wI@jcocr&S ztINyt&eg%f5*hn+@;;B>cI9+@xbaPw+*3W) z`ICdLIPSpkaCSIAu_prGrH2VgEi!$+seRy^@rlvDL7qrK9Xqr%G<|83*pJ^%sBVt7 zg_23BtE@EZY93ah5qNiGBGuy*jKJ~2gGi&8~WVKemUGddbnU{p51d0j(PkLgJk-LT7jo9qaynX@B9Yi-(yz)twt;e%?ljYDU z`XU8g<+UVqTtm{*>Z`Bs0r2Miw@jb3w7F>)gLP%FS7|zK zM2pt+=Zz!zz>Y}Y2BVOVv+MZ$#Cf8=g3067K;!e zcKj^re7{IIJ%Mb;+4(E5oHf5sSG%X9)6=L}ae71mdD4ad=}=>Say}x#K!k)C(@9Wl zfp$rfCw11xKtk<YNf?GB5Low6U;g%X-`4w2Ia=An!I7k)ym^q8w>Z!UD`5<&W{kDH|D z`&;JmOrUhMGQd=4`l!GG#b76U5-%*y=N2lk6_*x0dy=aB)KoGW|0w!hQ9w3*r zP%trfyZPwZOLrU+G#W-xyDOG&uU!aAw78qi4jZNpUOx*yM{29-@z1I$vB77AxWp5A zdoC8u*R6P>cSJ9j7D?p2aYkm|wzB#+qKCU(vruT<|KUNP{lr}4%K5&P$6$3KHOvoe zww5gGYMg?~TVWL3gHPMSPS^a7yx(McB%+vmvH$RBA|Kg9kHMbk@?Aki#;B_xI`Udh z7$v~8gLoKoL)I1qa(L==zVu3>&3UL7Ud@ZO9=f6o!!I1msz+MyQuOh+kQ#gmjok8WBq=;v5%M@ zw{wt6)`tAqA8_`4-uDSL*}m*8HvlUk;lu}s@c;p;^hcbz$@1f46l-cQMv@^~{` zByA3jg86En#DNZkY;hjz*6;_oa18vt2+MB%PJ{ha^DBm&%VXo8f*xZr# zl@{|8rCF!`DOru2d_&e4-P?cM>SQejFf2>`jI?$KX#l=?|GCqSyv@`HmqO5X-j8H| zD6mtVn2<0cDypgPi#Vx}^QJ}p?2TpX?MV^}3=TeU(!t+*=dm5QupE=ypC*Z%;_c=8 zd-%E{l-c9a@UGSJmtPN zUkD+H9Nos>L%lP#9>02f*)K#%!_WR~e2k1#+C1(`6!>^@a?&IvD;p%57KBiwKoV9F zNcRbotaDd#sQCV5iKJmH<}xYYzP0X7+rj)d)dLZU4EVQk+?RS_9gP5A zd8CYf=e}(SiGE0`+d=Qi!l0F5{WZD9^IP~HtKyA#ggkX0OE*%E&Nj|0f44QCdU0gb zH<&59(3TI%7H+?y(R9o7QfRYOf>^rw`FSvF#HVmmQ#u(LnV(*Ys;Y!aN=n`*aC!NV z(Q7+={A>5$jGDC%dL|F)@Xe+b|7>p2*K3l&h#g@I1hZF9j(^qDzRhYlin%>o5+A#1 zlX_(`GhHuzw*ySUptE|G7wpj^i_rp#o3K*n=~HCzN19Pv*jIQKLRAtIv#5AS)HReW zP^dHmX%oYm67BjVAk;ki-sJuGX`@zA5j5vsgS(haBZ`U-L4epRa?Zl6o;NqD?`_hT z`V?Yn%Wd>0`z2at_YW#x|GccQmAz`SII(qzu6RA@j^ZoXnB4pNm>vW=XgC{hRITey zO^-Imn=@oSwzs#Zf+emw->&x7e9a7_o*Ps&ICs{e^_;eQJ^8pqH-^pY&I&qjk58tj z!Jy%ZNm-`1L`VA>K9LW2B>ej7xPEDQ`MdL$Hi-9M3q>Ku0PE#aj?J?ga!cd>raK1i zg}G3u^vl}_05ed;KHQp_X6qZWy2V)AeG)V7T!KKu1U3|tJV{8r*?*47V83no{U^c_ z-6G3Bscs71=*8vQp)i6wz*^GS`UW&#oW^3S6RY`jCbAr~+%v6yttLbib#+HUBrnAb zyrw|~Ae;t!CztzLsFoy`ht3bUIQDpPFHdg?Ro1L0_OG}daPd30TN6hjnO){l;zz$+Nm-aOWa5`|A6Llxhtyygp+M!M-( zWaR|8Nj5R|i*1(uuWY(=b@%EgcPcT8i!Ug9bK_^whb`le6ZXD#r)&lCluOd^cZi*3DQQ7$er?Mr%D%$vx#=Pde*> zM=rdU;wpkait<|@nZL*_2kHvo#w0eG`Ee7Hc^6A=r8pm~56Uk&o%d$L`TOV^CC(9P5|IX{R5Fdhaw;?GLl8u$U1QW0jW zT3g~(15}~sdCjNpS>YY;PVALlNeLvdU%#(6xY+K}-wuA?TCVEKr;^zquqtLscZY1{ zC;ZBBCG_q?oNfK?lwbrBG`f#w@#$d9TDeWtfnokc%v8eUS3B2pl-Iio!u3H2Zf{(q z1pT51k~9$z+@e5lqrN2KzMA&*WLjv#o^QnHcAXO&E6EzDKCEwbiCw*}GalJOK;zSl z+M{0DemtsRv1?YiX+J;%K(LCkFdxSqCY&m9$0zNRsMYT;iTiKZ37E6hrRV{C<;7j% z`Doqel5r(IP0b);o!{|3?y$b3&wIdAH5^iIekO$mVH5ww0E2Tf)2Wlkh1*rSLia^y zLNM?E2VYy|G5f~e@XYL7bUtEKr<;+&z!+o}jI!;CUR!7Za$O zosY=+ReXLKVRn@$@hlN^`($>6q}yTfRX2`D4GY&m;@=$ne$c3XlZy@;|A8s@l??|v z$sP`buL{#Ks1~1aTf=jE^)lbSaxg}J-F~;deRo{WO+WpfB<9BCaBZ(W!Hm= z?quF>`a-ozqSe;jwE1#BA<4}TZOs?QqVU1;cZ?o{fgAAp_1@mP~4!_ya(W#uI z1fZA@w;d=`ug^tO>NAdA!@gY{n^X%(uz-V$e=XpCmrI1hNR*I>BiNE&@$uppaf4Nb z`WmZcw~-v<0xp+WVoZpWSrDDPo(;4}8CeNy^xB{Mu<~OW6$8*(9}KY=wpko*MSR4Y ze7~2B^w)x1Ew)*tsHo+dvZ0ZXV%pTAU!T`|d7cId9nc-*rNOA>p-wKE6B{R1u+*dk zW5vpCD8?DKHv2b*QFw*F^kU?TUG4Htu;7lo3!RIr??$u$lvg;wy~-42o`?G%ZBa90 zpB>}9XH2aiUg_-+z!jPSc&!C+dw|L7r9J4a>DNZd%8! zdICdeK99pF-|5n`?T_pV<|_3FU}V1FUc`R{{6emsLNE7a$pM8!I8EeTke7wk#Z+R2 zt%`*bI?x51Jd$dXBzZT9b3Ao#PDQMA;+g!Tc2Sh-nR4*22KYF$_BeG2NpOEEvg}cG*Rr6%WqOG>4Vso{8kf^=Rp+eVHwaa`-xw~AaDx~M+bKPX4?Q7j;z7OaGJg4#1ywMQQ zFf!)s;sfRyxGLAdI(BLoK8Y6b+D@x1M#C|ViW9^39%tm<$uO1TswAp!Y~(_>Jw%{h z7Xl=xRbr}?r9c5_+BhK>wzhCecBk{dxord*NAC~CeYLy927H}6z5xl`-rqD_e5@Og zCL@DLh;e^u#D7;%`Fz)?H2V(O<)IX7y zk=awx#?Oh^vWZ{)v|*LW(640%QsYvJ@I!`IpZ*!u7XU2R_3r6cxfm|+20$DG(wphX<6wWky|a_~VrjHSK#kTMgkPgr;v(nmp4Db}~=ll4W z975M7$@kcC#-dOX8E8Gz*Ex3RI)LEczTfflB|$*-i^Q_*1^#x;%-f=mp~TVE~-&l^*r!JS0AKfluK zp#=V|HyC`Qd0Nf)6onh{L@xkio8SfrDN;^DwDMUmp;F7?Vj?+-n&mO-v4cQTdJJ(T zWX+bZF)I#Gf(aWWsSYlBNUx2OkKwnZ@W#4f3-lvFfY=~pufO1m(RC)xe^qXJcDNpL zpYuJf+~=_%8raOIy)Rmd_>;nj5fy$G?N3rxEbuc%5Y7tq?zB99V)wBLK6Y9FJgb+% zmVF3`jx91^xxVJdkl^c2lFAQ?(DPa@?XIPB*iwa%nPvKDqbc{w)?pQUaUNe;z=Oea zA|&P;6OtKBw&Y`{WuzVj*Z30KwIo$eAO6W`Wl3+FB)imNE2MV62y{&WHrI9b-OhYF zTQ>1MTa9#9Y``jb;98FOve)^X0$q!sCZI-1iPVXL=8f2qgQ&!DomHBSt^>kwL zSfYiCTDRV#YdHJkd_ag5?wi5frMaO>g9iDl<1P1DVZJpBJ}KHi8yHXA#jM#5*YAm` zh$V}T>h6qz9f|>2M%}ilB9~B7zBL0rIa)xPEiAm=(steCoD5XhC5*0p;}~D8>UMJ@ z>GiEu{vly(!-O#f6$>1)rhAI9dl@pjo$Tt1_rHfyZ(EhbK3)_D5fvOV<27$aJyrzT z!!r}VDNa(;iV(PL&K8M%`MiM&o44P!H` zSKN-JR(ka_u%LK&XY81Wyw^Wl@MUiP7LSNiC#&t{ANnkxu!p6D8S1YNRy~EujtWW% zpS6@j#$1R?J#O_Z=0mRK_27biW11x34>G*NRIUrZF-jaho;q&1&AB7YK?zwZUd*TX+Q~O4*I{ zOR326v2_i;bsg#cLAMrQD!g!CUfUmR3Ov!tzyfLE$c|r=co+(KG%u>Atcin@-LZZT ze{kA(-9ac??|R9$ayl0tQ9auGcZ&kmqA27D8}wnaF$JR+(^W;T-${Fuar8Zx+epF- zF!u7hU60$m;0E}!5Ss7Uljj@4n@(qZII53VK79)v9niZ|I-+$It8@|ZSCNq5NrI{E zzL5p}(@J?ulM@7u@tReD| zmur8vV1#WQ>CRO<9y`MVB{WZV$=D%oJ%W+X6orw0{n|~rZV<;iU6;fj%~^A2Qg#Bn zUizooRd4N#iMkP5+P~#aqBYsXL$X8=wjlaguDGG1u-L);#YW$j`~ZGZ6s}*SXV!oo z@VF`R4rP5T!uzJB&7(X;i?;=f)IZ%X?99jRK7RXtZ_)F@FtSvkKxOvj@tG)1O#)Ht6i>F@RPC8QKJL$>3u?(NGgyCf)OohrKI`&$ojWdN(9acglIRr z>LTo+aHRt&TARFhLho{f*y~IuAP!Y3IbO9I}&* zgHYhDr=*rQfT+l|r-8`L=Vh7tEnlLX9g~T@ruHUE0pJu+|yU*Vj zvQtNfOR?XNO`9BhHJ-jsiRpE7U-Gqzh7x1>|A?;k`h(4rf>fzRn3;el%u>lx7|K@q z;OpyaST3WexcV)(APuD6hjKN-F&?`50PlFt1W<^0Bj;H8NJy#3*C}9;zshyH?im6x z1!WB)D|_>rIPBDZxd5?qnwL%f#QhVXRk+RjQVr{qQ&M`>G<1LVr%RnK1hZ>?H$?A@ zVKI$b8YIx4U4FMIpS{m<{8KP(0{D{QHy!XN%oW5LhK ztEJEM{OybqV;atEIl^K-K{zmIaA;0hzMW{ zySloX3ZrS5n1Zsiv$<;h5w3A&6In+oRKgS1pPAAi{g>nV*Ok*&vTofNX4bq1L+eO! zxm|+Mz6+z+L1MA0oR5`e+0-EX20ayACoVsoZ8!TnEHl7{HX94ZiIm=AvgtfaU^ zjr^$MUZ5P?JN!poNuNQ)oZ{`TU0MU+utH|`<|RtcgE>Enpp%r|k!+BE{P>q@?DX_B z_(fU;yyznuJ+d1VdTl{f3P{|k?86mg#^w81K zwQ7InGPm&mXZ#?Vz zgk_e3LrThF6-(lry^-^m-6&?%k;bm(|V$b5B3f1j@>1OtalN`on5w@y?$3)Xm(v0UY+_ikK2WAx&)gC%;` zX=QP_7M~ z3%H~@F%e`yFEU1N>*iGzlcYuZ0cE1!SC(}Y=q{g__C8y?oNe5Dq}NLa$*y6_#d%H< z-e|CeuI}4EtG*k}zsH_yK)%nBO0FWt8Jg;jY8%#kWdn~_YDu_hHrXO&f+QY0AkYaP zA7p>=@r&$fFScw-9{Kc<%#%@+YgEz(-6@POXZmZgW5f@QmN}?sjc?h>Dn>q@X6@SLm325mh!R`sl^84|W`rqQdloc`v zm*r+l+d|uRVSV8AY5Kopesbd{L)_j>j?AWiWwu2Hi#w+*Mu`A@2Gk)Y9RH*J`|22> zowK6QQAui>k+;elJO(Yd_mV(7!Dz>nn+A%WD?iJtTi{>^P&P%;(pqWe-)bp;Yy>Sl z#1(mGY-FK*C1!oSBG3Jh7pu&Q(Lh}H0snP#g><(UGw#eV@!R(`}&Wi=8x>yP%K5ItLNC3v~v(bQrgC`?ZTNKroPgdw8%jD zmx}Pzg^VT5Be<-qaE|K=bd3Z;+s$ssluY6}G)29hW z^(CM5&6yMm6ciDD{llpCO!GdAE*2-}?l1b?A(i?`G4NVxXpsQ{r1tzH9f&GO!zr-I z_>%V}b-(T4keerwj08(B=d zj8?r^qY?rUFqR1jdlE3x^K0NAS5ullDkh&i)4@g{K3qInS!E+gg-k%k3Yu7wVCHc+YsS~j*TF{)ewpqhr&7Q&Zr zS+k=XAh<Q z-MValIls5x$qr$dPnlGdxEXQZ!?IOn7#TTil1UX4ZLsYd7sQdJ46%(s!$*s95{XkZ`B-gT2T)&o3J6?VTSc zcb?p%XTnchw4K8MDUP7!l1>GMI4*P_pqh!P(tY*}1*B~1f~a98Y84`1S$+Lpg~I9< z?HfyapKXln4r{PI-m#G?xvs;G>lOQr?;zD|dwD@?tEr#P1)SXPk$gFzz1FI7WbCo9 zj);zl37Fhs+rNv?-uG-G!VZ!vis`34l<-|-@6%5G`@*gq*u*Rhe>_Zk5@q0U`1~VU+MkLRAPQy8z+rT0z4|a(85u8y zOLW;3Mq#@c%EU~-(V?c=8bCIAhx>qjR$X850#7yOzrWfP_-6Ix7)AzW0Gn}wO_0sF>>zlLnDTjxS`v(U=!;T7)bt^5ct;P1svOtwtxt11;2n$>J zfG6_0HH0+e;gboCNQn#@ZD}&?2Rysm&M=WB08oKKT|G}z>BJ7q2vV*_VWwOR8>lTR zvYmehfa|+Oejb~d#5PLr#H-8moBb$(Z6PkV+S6C`MT`GcSKQ~YPQP3O@scEj3EQgU zDk=v54Rs|9CbQ+|Pf(6T04K-LE5w#M7VourX3zQdzf>APrtSOF_W$kIy@*Ck4E&k8T~+Wy0!QTDwPuoLgqm zgqU}LyZX{oB0_tmb9?mJQG|UnPLUIHo*s_TgJ!g`izeZjxm%`PJ~s8G6fYs|#?c#3 zS!rxMzAUO)Tl63A74p57G84LJRnHDNkI@LegUk%g5JexUD9R8Qy>QXB2Qizk`=7bh z6ocQY)!!w6b$FH(mVG;sg$biB%UV~nW(>~%h8TWXTB`|zda~Kh*4~Yz5nDNy;9KB( zfE;tWGcSD$3TLNK(9vy2bt4kq2&MW$BFL93m9V!{0x$FZr&$a&Bv@KXITr67dukUU z{T>a__x1~*EF*dGECI+J83u_gmQ}OluaSmwPJSV-9f~WEX3i2c zd79t$U(!yYei}z$yM2pMMPto+*%>h3)(fRAaC+BOZuQ>CJpKOj{BS=@`?zIm>5m9? zel68vZ|-YPR}ozxk{Jo1^d=X%o_h8e6Vg|H`8}t&Qu!Q9Vx%}h5=GomH@m+t1n=tQ zlAMOFNv0P$#@UfybHF8~;xkC|pS^zplQlQu3qbp9IFjSqm0)I#^TY0ueC*t+4nZ;0 zZ?*X|!WZZ5jIx?pC=vhE^w6iAuz&VtgC@vnSLz_|5tIElb0{q~~rF0nOVFdA_Twq+^rBC6=; zit&`|JE*r}?PlvDlD5vx3F7~{*He}?Uoq0KCB-cH$>0atSRs-Jyzld08FbyBZHwx= z>8P;Tg}G-CVVeWpSYuRpHquZYrd&+?UYcZ)Wpud1e>y3+C?&fnkQSu|Wr91|1AwCO zWV^a?>&So&QwEy;=P^AogEHng6;v*Kc{+Ez7x~^7Q z3)(XelJ*{%%rh37@Pi%WK*#gu)?|5ewvtE(Ej2*FG(&44l#Idl50#J+fxzdo#Z*#F z3GJLPB={0S>$X6cXul2za9G(jDDRwvfnRUMW@C!fACGSlX#7zzYA9bk0|Gv227$v# z#+V)(YoSoI;<3!TdZ_yj^L?52o*R$C#e#{89Oy&t&!@u)xS)~AM9Qsdlz@$wzp0LFNmnf{wvg3_sk^qW>$E^^ zz9aFmZ>}V*81Vf-?;-V(?gdoa0LrV3KzIn4iy!UIqE{!6l7w971O?+knbt~I+#-ku zzr5H`$$&9cD*Rk*!Zz5{@8xKgMv;+5WNCIWpAr|mdj;Z=b_h$!Dkk&g9ez?dP0}^}P2@KF2ChG%VC7wSYsB(HU zFfibHvDa34JmcX>^n&J)AJ;ga+o)HvMxtY3=n+$xQNe=xQza!+tZYw@zcj$}nF%%b zRKBs*7byJ#6&B80AA?UuKnmh(jGnBqvGM#WsLyHyFXc}qlR&uk&Tj#our&WXF?{mBsn_mTm6E}4eTf&rP z#>RxzDgPv+68!;t-(5l_TzvReQi13px*cnGMbw6>@c+n&<4}2Fw2UrFKzGE#7Lz;F z239Q?-Wx_Cv^HKsU+Zz4>3w|_jV1gq!XT(&bnwTk2Kp>@1qV~}`iznHcY?QMgU zHg#A3D&okmv3W{!=o*&YQeKuI{{CYO*z{@%k4^1Z8$6GnVq)}5cGSl{=H!e7CB9s5 ztBu-lt3YsH?YyN~W<_dXAnBph7Df@rVSoaDJpyVI9{`?wKC`}324Wk-V^Sg_NmW%< zH=|(RvJYTuVCsp0tzn&5nRj(On~*zFxA*+($ZuJqdpv6iB5F^oTB~JKkEq!ym zBp@Ut1olSJy7rGckn*gL7E%Ib^CF;O46ZItL&yaNG`>qb3s4u4bQu^Nkj6xAZafZ1}pzB~rV7#ozG7yH8+yTvwRd?9i88 zuHoVdl++tQwo&E6H>%N3_;PsFxf-n4{9NM)P)8k8q1#6iy){|B(M5@mA4ygEcJlFq z$5xsPqaW(B2?+^{999)9NAdzY+lZzHubyqKh0c`ExG?mckDTM8zdNj>XqyL`H&7IF zJ#U<#a=J-yc11u;tZsSlz^|f$e?#;&*UI{r?P> z5##sc|2+`m%Z`a&_RPx4au`gSlSL{fWMSIavNqYtZ8bGd=w|_#x?7COaZdPU%+F4)SPtYNwEaoicHxsOYt-n ziW&t~_E1 zfYS>IjDtG0%%7@tyg(V6^&;VMnbFDc&UHQ$1A}c;R8(T6!z!`YHaIQ{s;Zw32ISba zq}RxPUXpo&Sri!6^T>}DCi?P-i3qAP2B#fcR1Xm5puCzfGBVOHWureGgY2=@T*Eum z$FQ^E2x{?cAXEeg&J1`aezl7M;Ws0B^EC%O>7an`uiJsL6Zl9i`4zGf)9y47t3$QD zF56Q~yg!{ldCovGJy!e_6=OM#OCb>}iWGqvlp_4QwuqE#Y~b>jo? z(c1$N0ie7)K;+sEO!W>F*v12+g>;EE-5k@K6Gm`(xV!Ze( z-oU8_IGmVxc|50#!wwMGNjlR-18WW{&+KNp&Z(}pNQ+)&TEg#GA z4*bH$$473!poEKo3LsSLi7errY8ZfD*`TytEShk4`+R%s`y-H9Gdtd%23a&b4$&Rp zEwoE5m!n5_zjj<`0YU;FxDjCfb&ZW_ARh|+tDjje5%5Ts!%U#YN~C)Jg5f`9OhVfg z&CZ1N76TcWz_aCPmwqdXt(dkRDbV$p;HJop2dAwBd@%vck2S*AN{KNS>ikzZ5HMM` zfUhs;0Okj)e#K&`e8!zwB~$(jC}9;onfq{YanRe9BANntj`5%^qW^aS#Clg&aQb|E zrd9|XoP{uCou{*{=C@L@KO{%+d+0Q6H1ta*-B2_4wL1}zBuDX;S_WQ_)9 zNGLt!G^%^CuIQcSd443k*K+S4kucm8m{F)Ana6Sn0pK_!YzO84mCK)BSxFsy+uYoQ zNd-dZUt9YDbOgJ&dyP+a=Y{v%A0;}CXz^GK_=4>ZOa}R3j3&dDC+I=~qe|v(O#Ou) zsI>)M-~&vKI53*){pkTehrSkhPAH|mDzl11B|PUJ1{$0>9s6IjkX3YOB{ky*#;W+! zmRf_ibzu;2BZWCy~WW{kgB49(j1T? z)lfp{DkKpiK}4FA2$3F$p(ljoeaCm-n>Ft`bLakh-(@WpD~FSFzVh4qxA*>T|8&Z1 z+m`RPKoGR;=4Ft=4E z#Ev9>_?~F$ih33^se^cxt%S7LAy<&LLzR5ks2I8Vsa;>sSC?-*e{P8q+1X2zKkU)e zBz%ioG;^_fvE$TQsKUyNgo!~`jjSns5O?@hxv~g!?Wlm2R9DX9$9p0;|vGF?0gr{KNFI%YZX<3022s;Xm+-0m{+SzAZ3 zM7{YF!)cqK{ed0AI#0o-}UrtmnD*Nt)UvlYTXda^WscS)bR^!xYJ|ecU}fV&~`Qg-~N-W1ao|QUd-;6QgCP zm7a?w3WXXBohjMZa16S*i%D-X9A2Lb5~W7O2NSoFV#JiP8yg!19WpX9zVF@hN&NM- zoXSf7twEb1=^`49R#03VXLCy1wQmmF(wv)}E&qOCKsc_dy4uX$ed=)s!PxktUkzA2 zv$&Mx{zqwP!g2cC$sB7N8}+v-n<4VU`sOib0oS&YKrr?2 z@G$00FlZ$uC3pqA-_QC+`(1yQS zVSlX-|Bdf5+LDr&mse0&7<2F5y@JxxgxP`WrYT;PM=x2};M31q?3SH5<>g0`58I2E zH7visqp=mTZ~&W_XPE{H(BQl8zH^zNWxzXB0AP^f6zcwlW4PAe;li08>wNQOM_mvr zA&k|asp0j0m*$Xv*TAqIq>BG2gA5u9uyu%7>c(Ggy|?-%%3#+_Z&_l}DV>9Jb*#qY z6Nda%hVRHt39^{21LEx2v+So<5r>dXy!qh-mi#6=CEYhQg_ilg2?Xp>z~ zaNsi+7rgMwzdw~_G5Uzv9<%sdgU2@H4Xr< z|NZU|ea2}A2k8oQN5c5{I3Ev)z|Gq`;nAZ<$9wC!(?w=2C#|imjg2qcC9@)hu6?6i zhIWvbpPrdPu}4X2Xj*!zZjg7eW1U8AZLLe|Jp}{;@79@}s)jN>s-aeiYug^68km! zvpT>DLLJWr!x!4EfBI>MCOsU>o5kQ_gBoTW)iA^LtF)j-_3*?EQ0k5?lp*latYJ-@e5UZ-;!gnvPCX)6aedeQ!jBpw=Bo=!YY}h(LF?j%@hPr7x|-tzAe< zOH1psXT=m06s#Q`Wd^D-xGs*csBB!Wc?!AGy-PlYN_vRSl(HvyO1-@$bnUjs=|&M4 zluJuX_{eoG41EB4Q%6Tfy@l86Y5~*l_KmMBF19Eda#~Y$08ABFC*#o%!E_ zwm9v>l!H=#*ix=cowxf5ymBH77g=myjg*(?a=F=nGfJEI-1Cj$9K=FznX??=^A(ql zOnu*%-zaW%Ps+&1us(NA900`n!UdftYY=4GdxFQK&E#fhW@h%`QD&gG@>jNR5y>GC zG%j4Yu-S2;$a($H)vH%srrzdS1HhuQA_9w@8gxR#!V*I>=H})mnM`S)jnFG4hwai@ zI~p1qz+DCx>+9?F-oJmp*|8#sH5~lug>X)FwI;!{|J&+8Kl8zmi3~QV&b5MGcTZ2a z4*B-3uC4|HUqR%j2*DZ9ot!N)bdJpd45aFZ1uCC^w&z@_gA^bu!|6w2O6QEt%*+H{ z0{;5G21{s_+#l=NqUtc!DC864yO3h|9Qbnme4CPQ^ES;E_#rT9br;!E-sYM| zv8*9z=ii3ujPi>wt_O3*Qc&H6XFGd(#4E0}$CTJtFE?EZqBllZpI@cR76OrBCL8iS z+#Mz|!@OUos_pY8j@%-$$-94h&=K+QL=or-`gId!6LeAen}4SI{*AlspNZYyPn&$_ zW$x3b2MY@ev!6Wq9CGU=!>qb6(IMC73b-A~^69U1w|UpwYi49*#2lS zW&o|JCrP6~u<1@e0&Q{ir9|V7>fun2^hoX$CM5oM@CpqLb)h84Sla`>*FB&d2jJ!A z?yfyui;0-AhpB@Isw;6yCq6zNfV>A+R9yTTod!MEdSFYG*7Df{5Svq9AO1WzBqXG= zs%l&9IG!RK`&lM<_W8W-wZprZ`1|`W(wABEtPapReXqVfG0cI*^T^Aa_)E>VQjfT{ zsg+U3{O(f6OnuPM4>9vwQV!bW8H2`GSzRqEiNRnJ0oL}78wz*}?9o^iGU#et3ZN!F zcI0HzDB!}|>NG9Xfwj%h{>SxBhYlf;3H=plGb|P>I1k`;R8!N;(y|?~(4jL^96aBu zm{V0%C0L%a!s#GuKHhWl@>&`egZ8L|G@UsEBy6mNN`f|ayk)Qki<*63)!E%G1}|=O zv`MTuDNaf~8>ojLfBbQjS200;G_LxN>xgbENjUk_%!$#He}n z6!+BzcnEd}uFMWd+`QR%M*@&RifXuB{TA2+KvA8Yorv7rTvUS$^g%MNr2}IX z|DRU*7ZpO>-kat&Ha2I@o;5jn^5hv?Tgvk6K%!0%;7;F86A9AC)+E&Y$5yz$^A?0) zZv7LGZPURG5WIW=Q&Lzs!5RRhA9L<#Q$| zwE;8o^4Vo&Du$nY5ALGkhc6tROoveieg#-G8hz&6IaAPV z?k6XYS2#i!(@dB$Z~_`TczvmtA;Su$SWmzT&(6+HPy!ls zme&S|amH!H@5A$-Cue8lVI#_bjc89#pv8(WBVLmXT(@vbhv32&0O{uB+5YGl-j_k{ zBY4^0zkgpkzzLZW>wwgZ(cK80zGF+Ycz8qsU@*I(A>w&(SXkJZGiU0j-s{d0_w^Lp z?QB|~#V|lGYsck7&wokjH8&xVNNPZZ11&ozHv=3r5Vr+Sp8{GLz%=OtO-+DN@%o`U zda@4K_R4zaLxp8!iKJKwO1d`IWp1zrA2|Dda(X&O!93a6xFy>p)`c7=)!El4i9pbS zd4@X~yCQ2{8L%psE`kN1rnD+%>BWg|f+SfWIM^g2-a=Jrk}f(|5Q;_&weKQ3CS+=B}*=9e{tyE-X9*STeh|R)>J0^Ya$ufi^T?Mx&W+f}%%bC+&7<m9HwNp2c84YyfVxpM%Z|-f5i3H+B}dkm2n`*EXkI*OG1JI@}HcVni^a&U^$Q{ z<>cjEd2Y#cW;hC>~*3{lAE=)cfC<>fz1%hl0X22Gb0M@7~tYj_VzTIsQk0gLEU z!rL8?65FyZ+Hl&A)KjiBlvzXV9{iDq0z-%Co z3utS{!gzb^R9C(k2qe?^+h1yW4iFB53^mah(Dq6LD`KO;&*87j8PCb_yDLUVN0~qj zQu(|IL$s}PL_i<_&K2NkZqNh_IYFwJn3!udJu+;0vC9e#d;CD)>n>Xva6TSjh4Wfh zluL=DF~vZ^4pe#A62eyIn6b`0mviUNC9f});bg`#5)C<-q}@)y(0Brp?gtBSKVn=x zODdy10n5oW2?`3*07(TCta-a^7!%LDDdF^r;5Cq3MIa>1(+Z?avGOeb zVt&7fO8p)E`B(dZ8twulksJ@-bl9G7S;@BawQT6*ugdb}QF4*1mJ_U@I!#?5cFTbn zWKQL0(IP+Hkh^SRV$u%+jD^}cUj!06L2FM&I=&Z7fR^kD0$V#2it%{CaHXchHN`Qo z{~CUJdYWnO%zYa@hn0V|qRj6dX^yG@fvdt=t5xKY)As4AxBSGTMCE8m;)m-@IJhJP zvt34xz#ApU{}j~^UYxnKxER+Xt{4~I0ejkhMFaM2Arvs={a~_M*=y-;2?`F4?0C#& z_#47;hk^M7VKa5+0*Zgy+RDm`*@xeE)x%?rvPI-Ko80yG?U9R-#>S40L)H^mPcRI@ z4AA=Vz0SCZ^SGUp#z)^(toBqlirM6!idQPD_d80^-n(^786?=wCLl#ncC0KO2m1hnx zeMTkQ?3iGKB3J6@B#FjPHv!|D>#Yo8*<&g=Z71CNlAD{GWV~0Rxsi6PQYld$w)%2w zeH3|WxmNh9k3-mOm2a1&W;{8WgG*Shr~~;hf1QP++*ZsCwpdXg?;xs10t(*`bBCxQ z&j$#XxTV1T_l=^qlV08wf&H_ZYukPNFzuJ#-d+iKk;3L`6t8q-%D_7Pfs!qmyEH=y z_1H-R<><0B-R-+F6hxtA=rVqdl8tFk)1-J+4{7w+qoT+@ zMXh7^nT?hos1A~DBUig5So>X--&CN4l zkh-D_)7=-1Q#{beor8Sh5iovmJaY-&-gUMlf(=Rz&Z>;51FB$Ymbz^dqmwkRA6Y2k znsz^1XVO>^&HGTm0ox%{s4!7~MsI1&_#-ATRPCVDKp0hiQ$*qlHARJ$C4k#y+EMq@ zffSjb%OHrRfwVeYIyCiTm^fJR)|lAX3Sqf$)ipry!#G|4$v5ZqfAQT%uUK_9ID0f4 z02Opj*Zg$9AD17Lg)4-OKSY;OeQF00LMv zRRHK!UKb>HpP3u5y$=DLnpqFCS08lP!7`v#el*(N$f$V|yrFG{MG`1F+_G&%vsW33 zXrMaaB|T-hzR1+2b4~@Wej2eJURu2mzRKs$^lLV8+L>|cv{yizm4nS=f(+1axdX?? zE@~Rkc;L)NZjmm)@B~f4>`^8#+XgP}0AuBF69N69Ba+9En}`^?uDswN1>L!&h68!f jbNsjeTC5u<*r